JPH0231817B2 - - Google Patents

Info

Publication number
JPH0231817B2
JPH0231817B2 JP57152084A JP15208482A JPH0231817B2 JP H0231817 B2 JPH0231817 B2 JP H0231817B2 JP 57152084 A JP57152084 A JP 57152084A JP 15208482 A JP15208482 A JP 15208482A JP H0231817 B2 JPH0231817 B2 JP H0231817B2
Authority
JP
Japan
Prior art keywords
light
irradiation area
focal point
mirror
curved mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57152084A
Other languages
Japanese (ja)
Other versions
JPS5942432A (en
Inventor
Kazuo Ichijo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP57152084A priority Critical patent/JPS5942432A/en
Publication of JPS5942432A publication Critical patent/JPS5942432A/en
Publication of JPH0231817B2 publication Critical patent/JPH0231817B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1434Optical arrangements
    • G01N15/1436Optical arrangements the optical arrangement forming an integrated apparatus with the sample container, e.g. a flow cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 この発明は、光散乱式浮遊粒子計数装置に関す
るものであり、さらに詳しくいうと、光の波長よ
り十分小さい浮遊粒子の大きさと個数の計測に供
するための光散乱式浮遊粒子計数装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light scattering type suspended particle counting device, and more specifically, a light scattering type suspended particle counting device for measuring the size and number of suspended particles sufficiently smaller than the wavelength of light. This relates to a particle counting device.

従来、この種の装置は、放物面鏡や楕円面鏡の
ような焦点を有する曲面鏡を用い、レンズでは不
可能な広角度範囲の散乱光を集光する構成が採ら
れていた。このような光学系で、たとえば第1図
に示す楕円面鏡1について考察するに、散乱光源
2から発した散乱光のうち可捕捉範囲A内に散乱
された光αは楕円面鏡1の鏡面で反射され、光電
変換器3に集光されるが、非捕捉範囲B内の光β
は、ごく一部のみが光電変換器3に到達し、大部
分は測定系以外へ放散してしまう。もし、この非
捕捉範囲B内の散乱光βを光電変換器3に有効に
集光しようとすると、第2図に示すように、楕円
面鏡1のほかに球面鏡4、球面レンズ5を組合わ
せた、きわめて複雑な光学系を構成する必要があ
つた。
Conventionally, this type of device has been configured to use a curved mirror with a focal point, such as a parabolic mirror or an ellipsoidal mirror, to collect scattered light over a wide angle range that is impossible with a lens. In such an optical system, for example, considering the ellipsoidal mirror 1 shown in FIG. , and is focused on the photoelectric converter 3, but the light β within the non-trapping range B
Only a small portion of it reaches the photoelectric converter 3, and most of it is dissipated outside the measurement system. If we want to effectively collect the scattered light β within this non-trapping range B onto the photoelectric converter 3, as shown in FIG. In addition, it was necessary to construct an extremely complicated optical system.

この発明は、以上の事情に着目してなされたも
ので、複雑な補助光学系を要せずしてきわめて高
い散乱光集光率を有する光散乱式浮遊粒子計数装
置を提供することを目的とするものである。
This invention was made in view of the above circumstances, and an object of the present invention is to provide a light scattering type suspended particle counting device that has an extremely high scattered light collection rate without requiring a complicated auxiliary optical system. It is something to do.

また、この発明の目的は、光の波長より十分小
さな微粒子の光散乱特性を利用し、光源にガスレ
ーザを用いた光散乱式浮遊粒子計数装置を提供す
ることである。
Another object of the present invention is to provide a light scattering type suspended particle counting device that utilizes the light scattering properties of fine particles that are sufficiently smaller than the wavelength of light and uses a gas laser as a light source.

ここで、この発明の説明に先行して、この発明
の基本的な原理をなす光散乱パタンについて説明
する。
Here, prior to explaining the present invention, a light scattering pattern, which constitutes the basic principle of the present invention, will be explained.

一般に、光は第3図に示すように横波であつ
て、光の電界Eと磁界Hはそれぞれ波の進む方向
Lに対して直角で、かつ、互いに直角方向に振動
している。ところで、第4図に示すように、光の
波長の数分の1程度以下の微粒子6に光を照射し
た場合、この微粒子6によつて散乱される光の強
度分布は、電界の振動する方向Eから見るとどの
方向に対しても平等な円7であり、磁界の振動す
る方向Hから見ると横∞字形8となつて、3次元
的にはドーナツに似た形状の散乱パタンとなる。
Generally, light is a transverse wave as shown in FIG. 3, and the electric field E and magnetic field H of the light are each perpendicular to the direction L of the wave and vibrate in directions perpendicular to each other. By the way, as shown in FIG. 4, when light is irradiated onto fine particles 6 that are about a fraction of the wavelength of light or less, the intensity distribution of the light scattered by these fine particles 6 is in the direction of the oscillation of the electric field. When viewed from E, it is a circle 7 that is equal in all directions, and when viewed from the direction H in which the magnetic field vibrates, it is a horizontal ∞-shape 8, resulting in a three-dimensional scattering pattern that resembles a donut.

この発明は、以上のような微粒子による光散乱
特性に着目してなされたもので、以下、第5図に
示す一実施例について説明する。図において、試
料空気10をノズル9によつて楕円面鏡1の焦点
である照射領域11に流し、この照射領域11を
照射するための連続光の光源として電界、磁界の
振動方向を安定に一定に保持しうるHe−Neレー
ザのごときガスレーザ12を用いる。そうしてガ
スレーザー12から発するレーザ光12Aの電界
振動方向Eと楕円面鏡1の2つの焦点を通る軸す
なわち軸線とが一致するようにガスレーザ12を
定置する。もつとも必ずしも一致せねば有効でな
いという訳ではなく、略一致していれば若干散乱
パタンの角度がずれるだけで、その有効性につい
ては問題ない。13は外部反射鏡である。
This invention was made by focusing on the light scattering characteristics of fine particles as described above, and one embodiment shown in FIG. 5 will be described below. In the figure, sample air 10 is flowed through a nozzle 9 to an irradiation area 11 which is the focal point of an ellipsoidal mirror 1, and as a continuous light source for irradiating this irradiation area 11, the vibration directions of the electric and magnetic fields are stably kept constant. A gas laser 12, such as a He--Ne laser, which can be maintained at Then, the gas laser 12 is positioned such that the electric field vibration direction E of the laser beam 12A emitted from the gas laser 12 coincides with the axis passing through the two focal points of the ellipsoidal mirror 1, that is, the axis line. However, this does not necessarily mean that they must match to be ineffective; if they substantially match, the angle of the scattering pattern will be slightly shifted, and there will be no problem with its effectiveness. 13 is an external reflecting mirror.

以上の構成により、第6図に示すように、照射
領域11で散乱した光の散乱パタンはレーザ光1
2Aの磁界の振動方向Hから見た散乱パタン8、
すなわち横∞字形となり、楕円面鏡1の非捕捉範
囲Bに放射される散乱光の全散乱光量に占める割
合は著しく低減され、光電変換器3への散乱光集
光率はきわめて高くなる。
With the above configuration, as shown in FIG. 6, the scattering pattern of the light scattered in the irradiation area 11 is
Scattering pattern 8 seen from the vibration direction H of a 2A magnetic field,
In other words, it has a horizontal ∞ shape, and the proportion of the scattered light emitted to the non-trapping range B of the ellipsoidal mirror 1 in the total amount of scattered light is significantly reduced, and the rate of convergence of the scattered light to the photoelectric converter 3 is extremely high.

尚、上記実施例は楕円面鏡を使用した場合につ
いて説明したが、これに限定されるものではなく
他の焦点を有する曲面鏡、たとえば放物面鏡あつ
ても本発明の有効性はいささかも損なわれるもの
でない。ただ放物面鏡を使用した場合には、当然
のことながら放物面鏡に反射した散乱光を光電変
換器に集光する為の集光レンズが必要となる。
Although the above embodiment has been described using an ellipsoidal mirror, the present invention is not limited to this, and the effectiveness of the present invention may be slightly reduced even if a curved mirror having another focal point, such as a parabolic mirror, is used. It cannot be damaged. However, when a parabolic mirror is used, a condensing lens is naturally required to condense the scattered light reflected by the parabolic mirror onto the photoelectric converter.

以上述べたごとく本発明は、レーザ光の電界振
動方向と楕円面鏡もしくは放物面鏡等の焦点を有
する曲面鏡の軸線とが一致もしくは略一致するよ
うにしたものであり、構成簡単にして、しかも測
定上の性能、精度を向上する効果を有するもので
ある。
As described above, in the present invention, the electric field vibration direction of laser light is made to coincide or substantially coincide with the axis of a curved mirror having a focal point such as an ellipsoidal mirror or a parabolic mirror, and the structure can be simplified. Moreover, it has the effect of improving measurement performance and accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれ従来の装置の要部構
成断面図、第3図はこの発明の原理を説明するた
めの波形図、第4図は同じく光散乱特性図、第5
図はこの発明の一実施例の要部構成斜視図、第6
図は同じく動作説明図である。 1……楕円面鏡、3……光電変換器、9……ノ
ズル、10……試料空気、11……照射領域、1
2……ガスレーザ、12A……レーザ光。
Figures 1 and 2 are sectional views of the main parts of a conventional device, Figure 3 is a waveform diagram for explaining the principle of the present invention, Figure 4 is a light scattering characteristic diagram, and Figure 5 is a diagram of light scattering characteristics.
The figure is a perspective view of the main part of an embodiment of the present invention.
The figure is also an explanatory diagram of the operation. 1... Ellipsoidal mirror, 3... Photoelectric converter, 9... Nozzle, 10... Sample air, 11... Irradiation area, 1
2...Gas laser, 12A...Laser light.

Claims (1)

【特許請求の範囲】 1 焦点を有する曲面鏡の1つの焦点を光の照射
領域とし、前記照射領域を通る微粒子による散乱
光を集光する装置において、 前記照射領域を照射する連続光の供給源をな
し、レーザ光の電界振動方向と前記曲面鏡の軸線
とが一致もしくは略一致するように配設されたガ
スレーザを備えてなることを特徴とする光散乱式
浮遊粒子計数装置。
[Scope of Claims] 1. In a device that uses one focal point of a curved mirror having a focal point as a light irradiation area and collects light scattered by fine particles passing through the irradiation area, the source includes a source of continuous light that irradiates the irradiation area. What is claimed is: 1. A light scattering type suspended particle counting device comprising: a gas laser disposed such that the electric field vibration direction of the laser beam and the axis of the curved mirror coincide or substantially coincide.
JP57152084A 1982-09-01 1982-09-01 Light scattering type floating particle counting apparatus Granted JPS5942432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57152084A JPS5942432A (en) 1982-09-01 1982-09-01 Light scattering type floating particle counting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57152084A JPS5942432A (en) 1982-09-01 1982-09-01 Light scattering type floating particle counting apparatus

Publications (2)

Publication Number Publication Date
JPS5942432A JPS5942432A (en) 1984-03-09
JPH0231817B2 true JPH0231817B2 (en) 1990-07-17

Family

ID=15532696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57152084A Granted JPS5942432A (en) 1982-09-01 1982-09-01 Light scattering type floating particle counting apparatus

Country Status (1)

Country Link
JP (1) JPS5942432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739701B2 (en) 2015-07-27 2017-08-22 Panasonic Intellectual Property Management Co., Ltd. Particle sensor

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621860B2 (en) * 1984-04-11 1994-03-23 株式会社日立製作所 Particle detector
JPH061241B2 (en) * 1985-11-11 1994-01-05 キヤノン株式会社 Particle analyzer
JPS639848A (en) * 1986-06-30 1988-01-16 Shimizu Constr Co Ltd Corpuscle detecting device
JPS63133041A (en) * 1986-11-25 1988-06-04 Rion Co Ltd Light scattering type fine particle meter
JPH0755490Y2 (en) * 1990-03-15 1995-12-20 株式会社堀場製作所 Device for measuring fine particles in liquid
MX350736B (en) 2013-03-15 2017-09-15 Theranos Inc Femtowatt non-vacuum tube detector assembly.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9739701B2 (en) 2015-07-27 2017-08-22 Panasonic Intellectual Property Management Co., Ltd. Particle sensor

Also Published As

Publication number Publication date
JPS5942432A (en) 1984-03-09

Similar Documents

Publication Publication Date Title
JPH0336944U (en)
JPH0231817B2 (en)
JPH0137689B2 (en)
JP2915519B2 (en) Laser irradiation equipment
JPH01301146A (en) Fine particulate characteristic measuring instrument
JPH0740080B2 (en) X-ray beam focusing device
JP2595315B2 (en) Light scattering measuring device
EP2720326A1 (en) Gas detection laser light source with reduced optical feedback
JPH06223401A (en) Super-high resolution optical element and optical memory
JPS60214238A (en) Fine particle detector
WO1991014935A1 (en) A method and an apparatus for cleaning control
JPH02216100A (en) X-ray condenser
JPH02300613A (en) Measuring instrument
CN219496065U (en) Novel particle counter light path system
JPS6383633A (en) Fine particle measuring instrument
JPH0255936A (en) Light scattering system measuring device
JPS63269131A (en) Parallel light forming device
JPH04369463A (en) Light scattering type particle detector
JPH04369464A (en) Light scattering type particle detector
JPH095663A (en) Stray light removing device of coaxial irradiation image pickup device
JPS58201005A (en) Device for measuring particle diameter
JP2830915B2 (en) Particle size distribution measuring device
JPH07117483B2 (en) Particle size distribution measuring device
JP2867718B2 (en) Suspended particle counter
JPS6321854B2 (en)