JPS6312458B2 - - Google Patents

Info

Publication number
JPS6312458B2
JPS6312458B2 JP56029940A JP2994081A JPS6312458B2 JP S6312458 B2 JPS6312458 B2 JP S6312458B2 JP 56029940 A JP56029940 A JP 56029940A JP 2994081 A JP2994081 A JP 2994081A JP S6312458 B2 JPS6312458 B2 JP S6312458B2
Authority
JP
Japan
Prior art keywords
methacrolein
acetic acid
methacrylic acid
gas
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56029940A
Other languages
Japanese (ja)
Other versions
JPS57144237A (en
Inventor
Akira Iio
Itsuo Nishiwaki
Toshio Oohara
Masatoshi Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP2994081A priority Critical patent/JPS57144237A/en
Priority to GB8206428A priority patent/GB2096601B/en
Publication of JPS57144237A publication Critical patent/JPS57144237A/en
Publication of JPS6312458B2 publication Critical patent/JPS6312458B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/35Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in propene or isobutene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はメタクリル酸を工業上有利に製造する
方法に関し、さらに詳しくはイソブチレン、t―
ブタノール、メタクロレイン、イソブチルアルデ
ヒド、イソ酪酸またはこれらの混合物から気相酸
化法によりメタクリル酸を製造する際に、副生す
る酢酸水溶液を製造工程に利用することにより、
メタクリル酸を工業上有利に製造する方法に関す
る。 イソブチレン、t―ブタノール、メタクロレイ
ン、イソブチルアルデヒド、イソ酪酸またはこれ
らの混合物(以下、イソブチレン等と略称する)
を原料に気相接触酸化法によりメタクリル酸を製
造することはよく知られており、その際反応系に
水を供給する方法が反応の選択性および触媒の寿
命の改善に有効であることはよく知られている。 近年イソブチレン等からメタクリル酸を製造す
る方法の研究は非常な進歩をみせ、可成り良好な
収率でメタクリル酸を得る触媒および製造方法が
提案されている。しかしながらこれらの改良され
た触媒を用いてもメタクリル酸への選択率は100
%に程遠く、多くの副生物が生成する。副生物の
うち比較的多量に生成する酢酸がある。酢酸の生
成量は触媒の性能にもよるが、メタクリル酸の5
〜30重量%程度にも達する。しかしながら反応で
副生する酢酸は(イ)反応原料と共に反応系に供給さ
れる水、(ロ)反応で生成する水、さらに(ハ)高重合性
のメタクリル酸、メタクロレインを含む反応生成
ガスを直接急冷し、メタクリル酸を回収するため
に加えられる水、また(ニ)メタクロレインを回収す
る際に用いられる吸収液を精製する工程で加えら
れる水等で大幅に希釈され、その結果メタクリル
酸を回収した後の流れの中の酢酸の濃度は、酸化
反応触媒の性能にもよるが一般に5重量%以下と
非常に低くなつている。 このように希釈された酢酸を含む水溶液の処理
の方法には大きく分けて2つの方法がある。1つ
は廃水として廃棄する方法であり、他の1つは酢
酸を有用物質として回収する方法である。 廃水として廃棄する方法では当然のことながら
廃水公害を避けるための処理が必要である。処理
法としては燃焼法が考えられるが、酢酸の濃度が
低いために自燃は不可能であり、従つて多量の補
助燃料が必要となり結果として多大の処理コスト
を要することになる。他の処理法として微生物処
理法も知られているが、この場合でも微生物処理
に要する費用の他に、生成した活性汚泥を分離、
乾燥、冷却するために多大のエネルギーを要する
ことになる。 つぎに酢酸を回収する方法は、資源の有効利用
の面からも好ましいが、回収すべき水溶液中の酢
酸濃度の低いことが回収コストを増大させ大きな
障害となつている。酢酸水溶液から酢酸を回収す
る代表的な方法として以下のものが知られてい
る。 (1) 蒸 留 法 (2) 共沸蒸溜法 (3) 溶剤抽出法 (1)の蒸留法では多量に存在する水が軽沸点成分
となり、しかも水の酢酸に対する比揮発度が小さ
いために多くの蒸留塔の段数と還流比を必要と
し、希薄水溶液からの回収法としてよい方法とは
いえない。 (2)の共沸蒸留法は水と共沸混合物を形成し得る
成分をエントレーナーとして加えることにより水
を塔頂に上げやすくする方法であるが、酢酸分離
塔の段数および還流比は小さくできるものの、エ
ントレーナーの回収のための設備が必要であり、
やはり希薄水溶液からの回収法としてはよい方法
ではない。 (3)の溶剤抽出法はエステル類、エーテル類、ケ
トン類などを抽出溶剤として酢酸を選択的に抽出
する方法であるが、例えばChem.Eng.Progress
vol.59(10),65頁には上記3方法のうち、溶剤抽出
法が投下資本および運転費の両面において優れ、
特に低濃度域において優れていることを述べてい
る。 しかしながらこの溶剤抽出法においても原料中
の酢酸濃度の低下につれて投下資本、運転費とも
急激に増大することを前記文献は示している(例
えば原料中の酢酸濃度が10重量%から5重量%に
低下すると投下資本、運転費とも約1.8倍に増大
している)。同様のことは同誌vol.73(5)、55頁に
も述べられており、例えば酢酸濃度が1重量%に
なると分離に要するエネルギーコストだけで酢酸
の評価額に達してしまうと言われているが、この
傾向はエネルギーコストの高騰に伴いさらに強ま
つているものと思われる。 このようにメタクリル酸を製造するための気相
接触酸化反応工程で副生する酢酸はその濃度がう
すいために回収コストを多く要し、結果としてメ
タクリル酸の製造コストを増大させることにな
り、何らかの解決策が望まれている。 本発明者らはこれらの問題点解決のため鋭意検
討した結果、酸化反応で副生する希薄酢酸水溶液
を次のように何らかの形でメタクリル酸製造工程
に利用することに着目し、 (1) メタクリル酸製造工程で副生する酢酸水溶液
を酸化反応工程へ循環供給しても、イソブチレ
ン等の酸化反応は全く阻害されず、しかも供給
した酢酸の大部分は触媒上で反応せずにそのま
ま流出し、このため反応生成物中の酢酸濃度が
大幅に向上する、 (2) 副生酢酸水溶液を酸化反応工程の生成ガスを
急冷するための急冷工程に供給することによ
り、酢酸濃度を下げることなく、メタクリル
酸、アクリル酸、酢酸、水等の高沸点化合物を
生成ガス中から凝縮できる、 (3) さらに副生酢酸水溶液を、(2)のように生成ガ
ス中からメタクリル酸、アクリル酸、酢酸、水
等の高沸点化合物を凝縮分離した残ガスからメ
タクロレインを吸収回収する際の吸収剤として
メタクロレイン回収工程に供給することによ
り、市販の有機溶剤に比し非常に安価な吸収溶
剤である水を使うことによるプロセス上の簡便
さ、有利さを生かしながら且つ水より遥かに効
率よくメタクロレインを吸収回収できる、 ことを見出し本発明を完成した。すなわち本発明
は上記3知見を別個に、またはこれらの2以上を
組合せて実施することにより、従来の方法に比較
して格段に高い濃度の酢酸水溶液を得ることがで
きるため、酢酸回収のコストが大幅に低下し、結
果としてメタクリル酸製造コストの低減に大きく
寄与することが可能になつた。 以下に本発明を詳細に説明する。 イソブチレン、t―ブタノールを気相接触酸化
によりメタクリル酸を製造する方法は通常2段酸
化反応で次のようである。 イソブチレン,t―ブタノール→メタクロレイ
ン メタクロレイン→メタクリル酸 しかし中間で生成するメタクロレインを抜出す
ことなく原料から最終生成物のメタクリル酸まで
一気に行なうことも出来る。 イソブチレンおよび/またはt―ブタノールを
酸化してメタクロレインおよびメタクリル酸を製
造する触媒はMo,Bi,Feを含むものであれば本
発明に有効に適用できる。 メタクロレインおよび/またはイソブチルアル
デヒドおよび/またはイソ酪酸の酸化に用いる触
媒は少なくともMo及びPを含むものであれば本
発明に有効に適用でき、特に少なくともMo,
P,Vおよびアルカリ金属を含むものが好適に用
いられる。 またイソブチレンをMo及びPを含む触媒を用
い直接メタクリル酸にすることも可能であり、本
発明に適用できる。 触媒は常法で調製でき、例えば特開昭50−
4010、特開昭52−46016記載の方法が好適に用い
られる。 イソブチレン等に対する分子状酸素の使用量は
原料により異なるが、通常0.5〜20の範囲が好ま
しく、特に0.6〜10の範囲好ましい。供給原料ガ
スには他の不活性ガス、例えば窒素、炭酸ガス、
飽和炭化水素等を含んでいてもよい。 酸化反応温度は触媒により異なるが、通常200
〜500℃、好ましくは250〜450℃が用いられる。 原料ガスの供給量は空間速度(SV)にして
NTP基準で100〜8000hr-1が用いられ、より好ま
しくは300〜5000hr-1である。反応圧力は加圧下、
常圧下または減圧下で行なうことが可能である
が、過度の加圧または減圧は動力費上昇のためコ
スト的に不利となるので、0〜5Kg/cm2Gの範囲
で行なうのが一般的である。反応は固定床、流動
床、移動床いずれでもよい。 上記の如き酸化反応工程で副生する酢酸水溶液
は酸化工程、酸化工程で生成するガスの急冷工程
および急冷工程で高沸点化合物を凝縮分離した残
ガスからのメタクロレイン回収工程のいずれか1
つまたはこれらのうち2つ以上の組合せ工程に供
給するが、酢酸水溶液中の酢酸濃度は特に制約は
なく、酸化工程で副生する酢酸水溶液をそのまま
用いることができる。また必要に応じ経済性を損
なわない範囲で水で希釈することもできる。 酢酸水溶液を酸化工程に供給する場合上記2段
酸化反応のいずれにも供給可能であり、さらに前
段酸化工程にのみ供給し前段酸化の生成物を分離
精製せず、反応生成ガスをそのまま後段酸化工程
に供給し、後段酸化反応を行わせることもできる
し、またイソブチルアルデヒドからメタクロレイ
ン、メタクリル酸への酸化反応工程およびイソ酪
酸からメタクリル酸への酸化反応工程にも供給
し、生成物中の酢酸濃度を上げることもできる。
イソブチレン等に酢酸水溶液の供給量は酢酸水溶
液とイソブチレン等とのモル比で1〜30の範囲が
よく、特に1〜20の範囲が好ましい。 酢酸水溶液を急冷工程に供給する場合は、その
供給量は酸化反応生成ガスの組成にもよるが、通
常、酢酸水溶液と酸化反応生成ガスの重量比で、
0.001〜1.0の範囲が良く、特に0.01〜0.30が好ま
しい。過度の供給は急冷塔から得られるメタクリ
ル酸濃度を低下させるので好ましくない。 酢酸水溶液をメタクロレイン回収工程に供給す
る場合は、その供給量は吸収塔の操作圧力、温度
によるが、通常、メタクロレイン含有ガスに対す
る重量比で0.1〜10倍の範囲であり、経済性を考
慮して圧力、温度、吸収液量を決定する。 次に本発明を図によつて説明する。 第1図は本発明の一般的工程すなわち第1発明
および第2発明の工程を示す図である。メタクリ
ル酸の原料となるイソブチレン等の化合物と酸素
含有ガスは導管1より酸化反応工程2に送られ、
酸化反応工程からの生成ガスは重合しやすいメタ
クリル酸等を急冷して重合物の生成を最小限に抑
え、同時に液状で回収するため導管3により急冷
工程4に送られる。ここでメタクリル酸は水溶液
の形で回収されるが、得られたメタクリル酸水溶
液を冷却循環して反応生成ガスと直接接触する方
法が一般に採られている。この際急冷工程では反
応生成ガス中のメタクリル酸を実質的に全量回収
する必要があり、この場合メタクリル酸水溶液の
循環使用するだけでは排出ガス中にメタクリル酸
を実質的に含まぬ様にすることは不可能であり、
メタクリル酸を含まぬ水を更に使う必要がある。
このため従来ではこの結果として副生する酢酸を
希釈していた。さらに酸化反応を円滑に行なわせ
るために反応系には通常スチームが原料と同時に
供給されるが、このことも副生する酢酸の濃度を
低下させる原因になつていた。 しかるに本発明は循環使用するものとしてメタ
クリル酸水溶液ではなく、急冷工程4から導管7
によりメタクリル酸回収工程8に送られた生成物
中よりメタクリル酸を回収分離した残りの酢酸水
溶液であるために、導管11を通じ酸化工程に酢
酸水溶液をスチームの代りに循環することにより
酢酸回収工程13に高濃度の酢酸水溶液の供給が
可能になり、また導管5を通じ急冷工程に酢酸水
溶液をメタクリル酸水溶液の代りに循環すること
により酢酸回収工程13に高濃度の酢酸水溶液の
供給が可能になつた。 導管6を経て排出されるオフガス中には少量の
酢酸が混入して来るが、その量はわずかであり、
排ガス処理工程(図示せず)で処理したのち、大
気に放出されるが、一部は未処理のまま酸化工程
に循環させることもできる。 導管7を経て得られたメタクリル酸水溶液はメ
タクリル酸回収工程8へ送られる。ここでメタク
リル酸は導管9より得られ、導管10からは副生
酢酸を主体とした有機物を含む水溶液が得られ
る。この一部は上述の如く導管11を経て酸化反
応工程へおよび/または導管5を経て急冷工程へ
循環されるが、残りは導管12を経て酢酸回収工
程13に送られる。酢酸は導管14から得られ、
さらに必要に応じて精製工程に送られ氷酢酸が得
られる。一方導管15からは廃水が得られるが、
このものは微量の有機物を含んでいるので、通常
微生物処理工程(図示せず)等を経て系外に排出
される。 第2図は反応生成ガス中にメタクロレインが含
まれて来る場合、すなわち第3発明の工程を示す
図である。 急冷工程4から導管18を経てメタクロレイン
を含んだガス流が排出され、メタクロレイン回収
工程16へ送られる。メタクロレイン回収工程は
吸収溶剤によるメタクロレイン吸収塔および吸収
されたメタクロレインと吸収溶剤を分離するスト
リツパーを主体に構成されている。 メタクロレインの吸収溶剤としては軽油、灯
油、重油、クレオソート油、トルエン、キシレ
ン、アルキルナフタレン等の炭化水素類を用いる
方法が知られているが、オフガス中への溶剤の損
失を抑えるためには高沸点油を用いる必要があ
り、この場合メタクロレインと溶剤を分離するス
トリツパーの温度が高くなりすぎ、メタクロレイ
ンの重合による運転上の困難を来たす。また第2
の発明の如く酢酸水溶液を急冷工程に供給してい
る場合には、酢酸等が導管18を通るガス中に含
まれて来るため、これらが溶剤中に蓄積して除去
に困難を来たす。 メタクロレインの吸収溶剤として前記のほか水
が知られている。水はプロセスを簡略化する上で
好ましい溶剤であるが吸収効率が悪いという欠点
があり、大量の水を用いるか操作圧を上げるなど
の処置が必要となり必ずしも経済的とは言えな
い。 本発明ではメタクリル酸回収工程から得られる
酢酸水溶液を吸収溶剤として導管17より供給す
ることにより、水のもつプロセス上の簡便さを損
うことなく、吸収効率を高めることが出来た。こ
の場合メタクロレイン回収工程16から排出され
るオフガスは第1図のオフガスと同様、これに含
まれて失われる酢酸はわずかである。メタクロレ
インが回収された後のオフガスは導管6を経てさ
らに排ガス処理工程(図示せず)で残存有機物を
完全に除いた後大気中に放出される。一方回収さ
れたメタクロレインは導管19により酸化反応工
程2に循環供給される。この回収メタクロレイン
中には酢酸および/または水が含まれているが、
何ら支障なく酸化反応工程へ供給される。吸収溶
剤の一部は導管20により抜き出され酢酸回収工
程13に送ることもできる。 第3図はイソブチレンを原料に2段酸化反応で
メタクリル酸を製造する場合の一実施例を詳細に
図示したフローシートで、簡明にするために主要
機器のみが示してあり、熱交換器、ポンプ、容器
等は省略してある。 イソブチレン酸化反応器101には、イソブチ
レンをメタクロレインに変換するのに適した触媒
が充てんしてあり、メタクロレイン酸化反応器1
02にはメタクロレインをメタクリル酸に変換す
るのに適した触媒が充てんしてある。イソブチレ
ンは導管21を通じ、酸素含有ガスは導管22を
通じ、又メタクリル酸抽出塔105の抽残液であ
る酢酸水溶液は気化後導管23を通じイソブチレ
ン酸化反応器101に供給する。反応器101を
出た反応生成ガスは温度を後段の反応に適する様
に制御されたのち、導管26からの追加の酸素含
有ガスおよび導管27からの未反応で回収された
メタクロレインと共にメタクロレイン酸化反応器
102へ供給される。 反応器102を出た反応生成ガスは導管29を
通つて急冷塔103に供給されるが、急冷塔10
3の上部には導管30を通じ急冷塔塔底液を冷却
後供給して、反応生成ガスの急冷を行い、大部分
のメタクリル酸、酢酸、水等の高沸点物を凝縮せ
しめ、さらにメタクリル酸抽出塔105の抽残液
である酢酸水溶液を導管31を経て塔の最上部に
供給して、塔頂から排出するガス流中にメタクリ
ル酸が実質的に含まれぬ様吸収させる。急冷塔1
03では、メタクリル酸、アクリル酸、酢酸、水
等の高沸点化合物および少量のメタクロレインが
塔底液として得られ、その一部は前述の様に冷却
後急冷塔上部へ循環供給されるが、他の部分は導
管32によりメタクロレイン回収塔104に供給
される。メタクロレイン回収塔104塔頂からは
導管33によりメタクロレインが得られるが、通
常これは導管27を経てメタクロレイン酸化反応
器に循環されるが、メタクロレイン純度によつて
は急冷塔103の適当な場所に循環する事も可能
である。メタクロレイン回収塔104の塔底から
は実質上メタクロレインを含まないメタクリル酸
等の水溶液が得られるが、これは導管34により
メタクリル酸抽出塔105に供給される。メタク
リル酸抽出塔105で用いられる抽剤は種々の物
を用いる事が出来るが、酢酸は抽出せず、メタク
リル酸のみを抽出出来るものが好ましく、例えば
C4以上のパラフイン、オレフイン、脂環式化合
物、C6以上の芳香族炭化水素およびこれらのハ
ロゲン誘導体が好ましく用いられ、例えばペンタ
ン、ヘキサン、ヘプタン、オクタン、シクロヘキ
サン等が特に好適に用いられる。 図では抽剤としてペンタンを用いた場合につい
て説明するが、抽剤の性質(例えば比重、沸点、
凝固点等)によつて抽出塔の操作条件は若干異な
つてくるが、それは一般的な化学工学の知識を有
する者にとつては自明な事である。 抽剤としてペンタンを用いた場合、抽料である
メタクロレイン回収塔塔底液は導管34を経て抽
出塔105の塔頂に、抽剤であるペンタンは導管
35を経て抽出塔塔底に供給される。また、メタ
クリル酸抽出塔105での酢酸の抽出を押さえる
ため、抽出塔塔頂には導管38を経て少量の水を
供給する事も出来る。用いられる抽出塔は充てん
塔、多孔板塔、回転円板塔等通常用いられる抽出
塔で良く、又ミキサーセトラー型抽出装置も用い
る事が出来る。 図の場合、抽出塔105の塔頂からはメタクリ
ル酸のペンタン溶液が得られ、これは導管36に
より次の抽剤分離塔106へ供給され、抽剤はメ
タクリル酸から分離され、再びメタクリル酸抽出
塔105へ循環され、メタクリル酸は導管39を
経て次の精製工程へ送られるか、又は最終目的物
がメタクリル酸エステルの場合には、未精製のま
ま次のエステル化工程へ送る事も出来る。抽出塔
塔底からは抽残液として酢酸水溶液が導管37を
経て得られ、この一部は導管23を経てイソブチ
レン酸化反応器101へ循環され、又他の一部は
導管31を経て急冷塔103へ循環され、又他の
一部はメタクロレイン吸収塔109の吸収液の補
給51に用いられるが、他は導管40を経て酢酸
抽出塔107へ供給され、酢酸が抽出回収され
る。この時用いられる抽剤はエステル類、エーテ
ル類、芳香族炭化水素類、リン酸エステル類、又
はこれらの混合物等、酢酸の抽出効率の高い物が
好ましい。抽出塔は充てん塔、気孔板塔、回転円
板塔等通常用いられる抽出塔で良く、又ミキサー
セトラー型抽出装置も用いる事が出来る。図では
抽剤として酢酸エチルを用いた場合で説明する
が、抽剤の性質(例えば比重、沸点、凝固点等)
によつて塔出塔の操作条件は異なつてくるが、そ
れは一般的な化学工学の知識を有する者にとつて
は自明な事である。 抽剤として酢酸エチルを用いた場合、抽剤を導
管42から酢酸抽出塔107へ供給し、塔頂から
は酢酸の酢酸エチル溶液が得られ、これは導管4
1を経て抽剤分離塔108へ送られ、抽剤と酢酸
は分離され、抽剤は導管42を経て抽出塔107
へ循環され、又酢酸は導管44を経て酢酸精製工
程(図示していない)へ送られる。酢酸抽出塔か
ら導管43を経て排出された抽残液中には少量の
酢酸エチルが溶解しているので、酢酸エチル回収
工程(図示していない)を経て、更に必要に応じ
て微生物処理等の適当な廃水処理をほどこした後
廃水として廃棄される。 急冷塔103で凝縮、吸収されなかつたガスは
塔頂から導管45を経て排出され、メタクロレイ
ン吸収塔109の下部へ供給され、メタクロレイ
ンが吸収液に吸収、回収される。すなわち、メタ
クリル酸抽残液を吸収剤として導管46から、メ
タクロレイン含有ガスを導管45からメタクロレ
イン吸収塔109へ供給すれば、塔底からメタク
ロレインの酢酸水溶液が得られ、これはメタクロ
レインストリツパー110へ導管48を経て供給
し、メタクロレインを塔頂から回収する。塔頂よ
り導管49を経て回収されたメタクロレインは更
に導管27を経て酸化反応器102に循環供給さ
れる。この場合メタクロレイン中には吸収溶剤の
成分である酢酸水溶液を含んでいても全く支障が
なく、このことは重合しやすいメタクロレインの
分離のためのストリツパー110の運転条件を緩
和出来ることを意味し有利である。メタクロレイ
ンを分離した酢酸水溶液は導管46を経てメタク
ロレイン吸収塔へ循環されるが、高沸点不純物の
蓄積を避けるため、一部を導管50を経て酢酸抽
出塔へ供給し、また、それに見合う量のメタクリ
ル酸抽出塔抽残液を導管51から補給する事も出
来る。 メタクロレイン吸収塔塔頂からはN2,O2
CO,CO2を主成物とする排ガスが得られるが、
これは通常排ガス処理をして大気に放出される
が、必要に応じて、イソブチレン酸化反応器10
1、メタクロレイン酸化反応器102へ希釈ガス
として供給する事は可能である。 以下実施例について説明する。 実施例 1 第3図に示す装置を用いた。(但し、酢酸抽出
塔107、抽剤分離塔108の運転は行なわなか
つた。) 反応器101は内径18mmのSUS304製パイプか
らなり、内部に特開昭50−4010に従い調製したイ
ソブチレン酸化反応触媒(組成:
Mo10Bi1Co7Fe25Sb1Ox)450mlを充填し、熔融塩
浴にて350℃に加熱した。 反応器102は内径23mmのSUS304製パイプか
らなり、内部に特開昭52−46016に従い調製した
メタクロレイン酸化反応触媒(組成:Mo12P1.5
Zr1V0.25Cs2Mn0.125Ox)1550mlを充填し、熔融塩
浴にて320℃に加熱した。 導管21からイソブチレンを0.135Kg/Hの速
度で導管22から空気を0.834Kg/Hの速度で、
導管23から気化した後導管37から得たメタク
リル酸抽出塔塔底液を0.334Kg/Hの速度で反応
原料として供給した。反応原料の組成はモル比で
イソブチレン:空気:酢酸:水=5.0:60.0:
1.5:33.5であり供給速度はイソブチレン酸化触
媒に対しSV=2400hr-1(NTP)であつた。反応
器101を出たガスは導管26から空気を0.185
Kg/H導管27から反応生成物から回収したメタ
クロレインを0.037Kg/H追加し、反応器102
に供給した。反応器102を出た反応生成ガスは
内径5cm、高さ120cmで内部にラシヒリングを充
填した急冷塔103の下部に導入した。急冷塔上
部には導管31を通じ、0.075Kg/Hの供給速度
でメタクリル酸抽出塔塔底液を5℃に冷却して供
給すると共に、導管30を通じ急冷塔塔底液を5
℃に冷却して循環した。急冷塔塔底液は内径4
cm、高さ100cmでヘリパツクを充填したメタクロ
レイン回収塔104で脱メタクロレインした後導
管34を通じ、メタクリル酸抽出塔(塔径4cm、
高さ150cmの回転多翼板塔、段数40段)105の
上部に供給した。抽出塔には導管35を通じ
0.721Kg/Hの供給速度でn―ペンタンを又導管
38を通じ0.013Kg/Hの供給速度でH2Oを供給
し、メタクリル酸の抽出を行なつた(抽出塔は37
℃、塔頂圧1Kg/cm2Gで運転した)。抽出塔下部
の導管37からメタクリル酸抽出塔塔底液として
酢酸水溶液が得られ、この一部は反応器101お
よび急冷塔103へ循環した。 急冷塔103の塔頂から出たガスを導管45を
通じ、内径5cm、高さ120cm、ラシヒリングを充
填したメタクロレイン吸収塔109へ供給した。
吸収塔上部へは導管46を通じ3℃に冷却した酢
酸水溶液を2.89Kg/Hの速度で供給し、メタクロ
レイン吸収を行ない、排ガスは導管47から排出
した。吸収塔109の塔底液は内径5cm、高さ
120cm、ヘリパツクを充填したメタクロレインス
トリツパー110に供給し、メタクロレインを回
収し、これは導管33からのメタクロレインを加
えメタクロレイン酸化反応器102へ循環し、メ
タクロレインストリツパー塔底液はメタクロレイ
ン吸収塔109へ循環した。 全系が定常になつた時の各部分の組成、流量を
表―1に示した。 比較例 1 触媒および実験装置は実施例1と同じものを用
いた。導管23からは水を気化して0.304Kg/H
の速度で供給し、さらに導管31を通じ水を急冷
塔に0.072Kg/Hの速度で供給することにより、
メタクリル酸抽出塔塔底液は反応器および急冷塔
に循環しなかつた事、およびメタクロレイン吸収
塔109には酢酸水溶液にかえ、キシレン2.89
Kg/Hを用いた以外は実施例1と同じ実験を行な
つた。 尚メタクロレイン吸収塔109に供給するキシ
レンはメタクロレインストリツパー110の塔底
液を再蒸留(装置は第1図に示さず)し、酢酸、
メタクリル酸等を除いたものを用いた。 運転が定常状態になつた時の物質収支を表―2
に示した。 反応器102の出口ガス(導管29)中の酢酸
濃度およびメタクリル酸抽出塔塔底液(導管3
7)および酢酸抽出塔107への供給液(管4
0)の酢酸濃度が実施例1に比較し低い事がわか
る。また、メタクロレイン吸収塔109の塔頂導
管47から排出される排ガス中には多量のキシレ
ンが含まれ、メタクロレイン系からのロスとなつ
た。 実施例 2 触媒および実験装置は実施例1と同じものを用
いた。水を導管31を通し0.072Kg/Hの速度で
急冷塔103に供給し、メタクリル酸抽出塔10
5塔底液を急冷塔へ循環しなかつた事、又メタク
ロレイン吸収塔109には酢酸水溶液にかえキシ
レンを2.89Kg/Hの速度で供給した事以外は実施
例1と同じ実験を行なつた。 尚メタクロレイン吸収塔109に供給したキシ
レンは、メタクロレインストリツパー110の塔
底液を再蒸留(装置は第3図に示さず)し、酢
酸、メタクリル酸等の大部分を除いたものを用い
た。 運転が定常状態になつた時の物質収支を表―3
に示した。 比較例1と比較して反応器102出口ガス濃度
(導管29)およびメタクリル酸抽出塔105の
塔底液(導管37)および酢酸抽出塔への供給液
(導管40)の酢酸濃度が高い事がわかる。 実施例 3 触媒および実験装置は実施例1と同じものを用
いた。 メタクロレイン吸収塔109には酢酸水溶液に
かえ、キシレンを2.89Kg/Hの速度で供給した以
外は実施例1と同じ実験を行なつた。 尚メタクロレイン吸収塔109に供給したキシ
レンはメタクロレインストリツパー110の塔底
液を再蒸留(装置は第3図に示さず)し、酢酸、
メタクリル酸等の大部分を除いたものを用いた。 運転が定常状態になつた時の物質収支を表―4
に示した。 実施例 4 触媒および実験装置は実施例1と同じものを用
いた。導管23からは気化した水を0.304Kg/H
の速度で供給した事、およびメタクロレイン吸収
塔109には酢酸水溶液にかえ、キシレンを2.89
Kg/Hの速度で供給した事以外は実施例1と同じ
操作を行なつた。 尚メタクロレイン吸収塔109に供給したキシ
レンはメタクロレインストリツパー110の塔底
液を再蒸留(装置は第3図に示さず)し、酢酸、
メタクリル酸等の大部分を除いたものを用いた。 運転がほぼ定常状態になつた時の各部分の組
成、流量を表―5に示した。
The present invention relates to an industrially advantageous method for producing methacrylic acid, and more specifically to isobutylene, t-
When methacrylic acid is produced from butanol, methacrolein, isobutyraldehyde, isobutyric acid, or a mixture thereof by a gas phase oxidation method, the by-product aqueous acetic acid solution is used in the production process.
The present invention relates to an industrially advantageous method for producing methacrylic acid. Isobutylene, t-butanol, methacrolein, isobutyraldehyde, isobutyric acid, or a mixture thereof (hereinafter abbreviated as isobutylene, etc.)
It is well known that methacrylic acid is produced by a gas phase catalytic oxidation method using methacrylic acid as a raw material, and it is well known that the method of supplying water to the reaction system is effective in improving reaction selectivity and catalyst life. Are known. In recent years, research on methods for producing methacrylic acid from isobutylene and the like has made great progress, and catalysts and production methods for obtaining methacrylic acid in fairly good yields have been proposed. However, even with these improved catalysts, the selectivity to methacrylic acid is still 100
%, many by-products are generated. Among the by-products, acetic acid is produced in relatively large amounts. The amount of acetic acid produced depends on the performance of the catalyst, but it is
It reaches ~30% by weight. However, the acetic acid produced as a by-product of the reaction is (a) water supplied to the reaction system together with the reaction raw materials, (b) water produced in the reaction, and (c) reaction product gas containing highly polymerizable methacrylic acid and methacrolein. It is directly quenched and is significantly diluted with water added to recover methacrylic acid, and (d) water added in the process of purifying the absorption liquid used to recover methacrolein. The concentration of acetic acid in the stream after recovery is generally very low, below 5% by weight, although it depends on the performance of the oxidation reaction catalyst. There are broadly two methods for treating an aqueous solution containing diluted acetic acid. One method is to dispose of the acetic acid as waste water, and the other is to recover acetic acid as a useful substance. Naturally, the method of disposing of wastewater requires treatment to avoid wastewater pollution. A combustion method is considered as a treatment method, but since the concentration of acetic acid is low, self-combustion is impossible, and therefore a large amount of auxiliary fuel is required, resulting in a large processing cost. Microbial treatment is also known as another treatment method, but in this case as well, in addition to the cost required for microbial treatment, the generated activated sludge must be separated,
A large amount of energy is required for drying and cooling. The next method of recovering acetic acid is preferable from the standpoint of effective resource utilization, but the low concentration of acetic acid in the aqueous solution to be recovered increases the recovery cost and poses a major obstacle. The following methods are known as typical methods for recovering acetic acid from an aqueous acetic acid solution. (1) Distillation method (2) Azeotropic distillation method (3) Solvent extraction method In the distillation method (1), water, which is present in large quantities, becomes a light boiling point component, and moreover, water has a low relative volatility relative to acetic acid, so a large amount of water is extracted. The number of stages in the distillation column and the reflux ratio are required, and it cannot be said to be a good method for recovering from a dilute aqueous solution. In the azeotropic distillation method (2), a component that can form an azeotrope with water is added as an entrainer to make it easier for water to rise to the top of the column, but the number of plates in the acetic acid separation column and the reflux ratio can be reduced. However, equipment for recovering the entrainer is required.
After all, this is not a good method for recovery from dilute aqueous solutions. The solvent extraction method (3) is a method in which acetic acid is selectively extracted using esters, ethers, ketones, etc. as an extraction solvent.
Vol.59(10), page 65 states that of the three methods above, the solvent extraction method is superior in terms of both capital investment and operating costs.
It is said that it is particularly excellent in the low concentration range. However, even in this solvent extraction method, the above literature shows that as the acetic acid concentration in the raw material decreases, both the invested capital and operating costs increase rapidly (for example, the acetic acid concentration in the raw material decreases from 10% to 5% by weight). As a result, both invested capital and operating costs increased by approximately 1.8 times). The same thing is stated in the same magazine, vol. 73(5), p. 55. For example, it is said that when the acetic acid concentration reaches 1% by weight, the energy cost required for separation alone will reach the estimated value of acetic acid. However, this trend is expected to become even stronger as energy costs soar. Acetic acid, which is produced as a by-product in the gas phase catalytic oxidation reaction process for producing methacrylic acid, requires a high recovery cost due to its low concentration, which increases the production cost of methacrylic acid. A solution is desired. As a result of intensive studies to solve these problems, the present inventors focused on using the dilute aqueous acetic acid solution, which is a by-product of the oxidation reaction, in the methacrylic acid manufacturing process in the following way. Even if the aqueous acetic acid solution produced as a by-product in the acid manufacturing process is circulated and supplied to the oxidation reaction process, the oxidation reaction of isobutylene, etc. is not inhibited at all, and most of the supplied acetic acid does not react on the catalyst and flows out as it is. For this reason, the acetic acid concentration in the reaction product is significantly increased. High-boiling compounds such as acid, acrylic acid, acetic acid, and water can be condensed from the produced gas. By supplying water to the methacrolein recovery process as an absorbent when absorbing and recovering methacrolein from the residual gas after condensing and separating high-boiling point compounds such as The present invention was completed based on the discovery that methacrolein can be absorbed and recovered much more efficiently than water while taking advantage of the simplicity and advantages of using it. In other words, the present invention makes it possible to obtain an acetic acid aqueous solution with a much higher concentration than conventional methods by implementing the above three findings separately or in combination of two or more of them, thereby reducing the cost of acetic acid recovery. As a result, it has become possible to greatly contribute to reducing the production cost of methacrylic acid. The present invention will be explained in detail below. The method for producing methacrylic acid by vapor phase catalytic oxidation of isobutylene and t-butanol is usually a two-stage oxidation reaction as follows. Isobutylene, t-butanol → methacrolein Methacrolein → methacrylic acid However, it is also possible to process from the raw materials to the final product, methacrylic acid, all at once without extracting the methacrolein produced in the middle. A catalyst for producing methacrolein and methacrylic acid by oxidizing isobutylene and/or t-butanol can be effectively applied to the present invention as long as it contains Mo, Bi, and Fe. The catalyst used for oxidizing methacrolein and/or isobutyraldehyde and/or isobutyric acid can be effectively applied to the present invention as long as it contains at least Mo and P. In particular, it can be effectively applied to the present invention if it contains at least Mo and P.
Those containing P, V and alkali metals are preferably used. It is also possible to directly convert isobutylene into methacrylic acid using a catalyst containing Mo and P, which is applicable to the present invention. The catalyst can be prepared by conventional methods, for example, as described in
4010, the method described in JP-A-52-46016 is preferably used. The amount of molecular oxygen used relative to isobutylene etc. varies depending on the raw material, but is usually preferably in the range of 0.5 to 20, particularly preferably in the range of 0.6 to 10. The feed gas may include other inert gases such as nitrogen, carbon dioxide,
It may also contain saturated hydrocarbons and the like. The oxidation reaction temperature varies depending on the catalyst, but is usually 200
~500°C, preferably 250-450°C is used. The supply amount of raw material gas is expressed as space velocity (SV).
Based on the NTP standard, 100 to 8000 hr -1 is used, more preferably 300 to 5000 hr -1 . The reaction pressure is under pressure,
It is possible to carry out the process under normal pressure or reduced pressure, but excessive pressurization or depressurization increases the power cost and is disadvantageous in terms of cost, so it is generally carried out in the range of 0 to 5 kg/cm 2 G. be. The reaction may be carried out in a fixed bed, fluidized bed or moving bed. The acetic acid aqueous solution produced as a by-product in the oxidation reaction process as described above can be used in any one of the oxidation process, the quenching process of the gas produced in the oxidation process, and the process of recovering methacrolein from the residual gas after condensing and separating high-boiling compounds in the quenching process.
The acetic acid concentration in the acetic acid aqueous solution is not particularly limited, and the acetic acid aqueous solution produced as a by-product in the oxidation step can be used as it is. It can also be diluted with water if necessary within a range that does not impair economic efficiency. When an acetic acid aqueous solution is supplied to the oxidation process, it can be supplied to either of the two-stage oxidation reactions described above, and furthermore, it can be supplied only to the first-stage oxidation process, without separating and purifying the products of the first-stage oxidation, and the reaction product gas can be directly used in the second-stage oxidation process. It can also be supplied to the oxidation reaction process of isobutyraldehyde to methacrolein and methacrylic acid and the oxidation reaction process of isobutyric acid to methacrylic acid to perform the subsequent oxidation reaction. It is also possible to increase the concentration.
The amount of acetic acid aqueous solution supplied to isobutylene, etc. is preferably in the range of 1 to 30, particularly preferably in the range of 1 to 20, based on the molar ratio of acetic acid aqueous solution to isobutylene, etc. When an acetic acid aqueous solution is supplied to the quenching process, the amount supplied depends on the composition of the oxidation reaction product gas, but is usually the weight ratio of the acetic acid aqueous solution to the oxidation reaction product gas.
A range of 0.001 to 1.0 is preferable, and a range of 0.01 to 0.30 is particularly preferable. Excessive supply is undesirable because it reduces the concentration of methacrylic acid obtained from the quenching tower. When an acetic acid aqueous solution is supplied to the methacrolein recovery process, the amount supplied depends on the operating pressure and temperature of the absorption tower, but is usually in the range of 0.1 to 10 times the weight ratio of the methacrolein-containing gas, taking economic efficiency into consideration. to determine the pressure, temperature, and amount of absorbed liquid. Next, the present invention will be explained with reference to the drawings. FIG. 1 is a diagram showing the general steps of the present invention, that is, the steps of the first invention and the second invention. Compounds such as isobutylene, which are raw materials for methacrylic acid, and oxygen-containing gas are sent to the oxidation reaction step 2 through conduit 1.
The generated gas from the oxidation reaction step is sent to a quenching step 4 through a conduit 3 in order to quench easily polymerizable methacrylic acid and the like to minimize the production of polymers, and at the same time to recover it in liquid form. Here, methacrylic acid is recovered in the form of an aqueous solution, and a method generally employed is to cool and circulate the obtained methacrylic acid aqueous solution and bring it into direct contact with the reaction product gas. At this time, it is necessary to recover substantially all of the methacrylic acid in the reaction product gas in the quenching step, and in this case, it is not possible to substantially eliminate methacrylic acid from being contained in the exhaust gas by simply recycling the methacrylic acid aqueous solution. is not possible,
It is necessary to use more water that does not contain methacrylic acid.
For this reason, in the past, acetic acid produced as a by-product as a result of this was diluted. Furthermore, in order to facilitate the oxidation reaction, steam is usually supplied to the reaction system at the same time as the raw materials, but this also causes a decrease in the concentration of by-product acetic acid. However, in the present invention, the methacrylic acid aqueous solution is not used as a circulating solution, but the conduit 7 is used from the quenching step 4.
Since this is the remaining acetic acid aqueous solution after recovering and separating methacrylic acid from the product sent to the methacrylic acid recovery step 8, the acetic acid recovery step 13 is circulated through the conduit 11 to the oxidation step by circulating the acetic acid aqueous solution instead of steam. It became possible to supply a highly concentrated acetic acid aqueous solution to the acetic acid recovery process 13, and by circulating the acetic acid aqueous solution instead of the methacrylic acid aqueous solution to the quenching process through the conduit 5, it became possible to supply a highly concentrated acetic acid aqueous solution to the acetic acid recovery process 13. . Although a small amount of acetic acid is mixed into the off-gas discharged through the conduit 6, the amount is small;
After being treated in an exhaust gas treatment process (not shown), it is released into the atmosphere, but a portion can also be recycled untreated to the oxidation process. The aqueous methacrylic acid solution obtained through conduit 7 is sent to methacrylic acid recovery step 8 . Here, methacrylic acid is obtained from conduit 9, and an aqueous solution containing organic matter mainly consisting of by-product acetic acid is obtained from conduit 10. A portion of this is recycled via conduit 11 to the oxidation reaction step and/or via conduit 5 to the quenching step as described above, while the remainder is sent via conduit 12 to the acetic acid recovery step 13. Acetic acid is obtained from conduit 14;
Furthermore, if necessary, it is sent to a purification step to obtain glacial acetic acid. On the other hand, wastewater is obtained from the conduit 15,
Since this material contains a trace amount of organic matter, it is normally discharged from the system through a microbial treatment process (not shown). FIG. 2 is a diagram showing the case where methacrolein is contained in the reaction product gas, that is, the process of the third invention. A gas stream containing methacrolein is discharged from the quenching stage 4 via conduit 18 and sent to a methacrolein recovery stage 16. The methacrolein recovery process mainly consists of a methacrolein absorption tower using an absorption solvent and a stripper that separates the absorbed methacrolein from the absorption solvent. Methods using hydrocarbons such as light oil, kerosene, heavy oil, creosote oil, toluene, xylene, and alkylnaphthalene are known as absorption solvents for methacrolein, but in order to suppress the loss of the solvent into offgas, It is necessary to use high-boiling oils, in which case the temperature of the stripper separating methacrolein and solvent becomes too high, leading to operational difficulties due to polymerization of methacrolein. Also the second
When an acetic acid aqueous solution is supplied to the quenching step as in the invention described in 2007, acetic acid and the like are included in the gas passing through the conduit 18, so that they accumulate in the solvent and are difficult to remove. In addition to the above, water is also known as an absorption solvent for methacrolein. Although water is a preferable solvent in terms of simplifying the process, it has the disadvantage of poor absorption efficiency, and requires measures such as using a large amount of water or increasing the operating pressure, which is not necessarily economical. In the present invention, by supplying the acetic acid aqueous solution obtained from the methacrylic acid recovery process as an absorption solvent through the conduit 17, the absorption efficiency can be increased without sacrificing the process simplicity of water. In this case, the off-gas discharged from the methacrolein recovery step 16 is similar to the off-gas shown in FIG. 1, and only a small amount of acetic acid is contained therein and lost. After the methacrolein has been recovered, the off-gas passes through the conduit 6 and is further discharged into the atmosphere after residual organic matter is completely removed in an exhaust gas treatment step (not shown). On the other hand, the recovered methacrolein is circulated and supplied to the oxidation reaction step 2 through a conduit 19. This recovered methacrolein contains acetic acid and/or water, but
It is supplied to the oxidation reaction process without any problem. A portion of the absorption solvent can also be withdrawn via conduit 20 and sent to acetic acid recovery step 13. Figure 3 is a flow sheet illustrating in detail an example of producing methacrylic acid by a two-stage oxidation reaction using isobutylene as a raw material.For the sake of clarity, only the main equipment is shown, including the heat exchanger, pump, etc. , containers, etc. are omitted. The isobutylene oxidation reactor 101 is filled with a catalyst suitable for converting isobutylene to methacrolein, and the methacrolein oxidation reactor 1
02 is filled with a catalyst suitable for converting methacrolein to methacrylic acid. Isobutylene is passed through a conduit 21, oxygen-containing gas is passed through a conduit 22, and an acetic acid aqueous solution, which is the raffinate of the methacrylic acid extraction column 105, is supplied to the isobutylene oxidation reactor 101 through a conduit 23 after vaporization. The temperature of the reaction product gas exiting the reactor 101 is controlled to suit the subsequent reaction, and then oxidizes methacrolein together with additional oxygen-containing gas from conduit 26 and unreacted methacrolein recovered from conduit 27. Supplied to reactor 102. The reaction product gas leaving the reactor 102 is supplied to the quenching tower 103 through the conduit 29, but the quenching tower 10
The bottom liquid of the quenching tower is supplied after cooling through a conduit 30 to the upper part of 3 to rapidly cool the reaction product gas, condense most of the high-boiling substances such as methacrylic acid, acetic acid, and water, and further extract methacrylic acid. The raffinate of column 105, aqueous acetic acid, is fed via conduit 31 to the top of the column to absorb substantially no methacrylic acid in the gas stream exiting the top of the column. Quenching tower 1
In 03, high-boiling compounds such as methacrylic acid, acrylic acid, acetic acid, and water and a small amount of methacrolein are obtained as a bottom liquid, a part of which is circulated and supplied to the upper part of the quenching tower after cooling as described above. The other portion is supplied via conduit 32 to methacrolein recovery column 104 . Methacrolein is obtained from the top of the methacrolein recovery column 104 through a conduit 33, and normally it is recycled to the methacrolein oxidation reactor via a conduit 27, but depending on the purity of methacrolein, it can be transferred to an appropriate quenching column 103. It is also possible to circulate to different places. An aqueous solution of methacrylic acid or the like substantially free of methacrolein is obtained from the bottom of the methacrolein recovery column 104, and is supplied to the methacrylic acid extraction column 105 through a conduit 34. Various extractants can be used in the methacrylic acid extraction tower 105, but it is preferable to use one that can extract only methacrylic acid without extracting acetic acid.
Paraffins, olefins, alicyclic compounds of C 4 or more, aromatic hydrocarbons of C 6 or more, and halogen derivatives thereof are preferably used, and for example, pentane, hexane, heptane, octane, cyclohexane, etc. are particularly preferably used. The figure explains the case where pentane is used as the extractant, but the properties of the extractant (e.g. specific gravity, boiling point,
The operating conditions of the extraction column differ slightly depending on the freezing point, etc.), but this is obvious to those with general knowledge of chemical engineering. When pentane is used as the extraction agent, the methacrolein recovery tower bottom liquid, which is the extraction material, is supplied to the top of the extraction tower 105 through the conduit 34, and the pentane, which is the extraction agent, is supplied to the bottom of the extraction tower through the conduit 35. Ru. Further, in order to suppress the extraction of acetic acid in the methacrylic acid extraction tower 105, a small amount of water can be supplied to the top of the extraction tower via a conduit 38. The extraction column used may be a commonly used extraction column such as a packed column, perforated plate column, or rotating disk column, and a mixer-settler type extraction device may also be used. In the case shown in the figure, a pentane solution of methacrylic acid is obtained from the top of the extraction column 105, which is supplied to the next extractant separation column 106 through a conduit 36, where the extractant is separated from the methacrylic acid and extracted again with methacrylic acid. The methacrylic acid is recycled to column 105 and sent via conduit 39 to the next purification step, or, if the end product is a methacrylic acid ester, it can be sent unpurified to the next esterification step. An acetic acid aqueous solution is obtained as a raffinate from the bottom of the extraction column via a conduit 37, a part of which is circulated to the isobutylene oxidation reactor 101 via a conduit 23, and the other part is sent to a quenching tower 103 via a conduit 31. The other part is used for replenishment 51 of the absorption liquid in the methacrolein absorption tower 109, while the other part is supplied to the acetic acid extraction tower 107 via the conduit 40, where acetic acid is extracted and recovered. The extracting agent used at this time is preferably one having high extraction efficiency for acetic acid, such as esters, ethers, aromatic hydrocarbons, phosphoric acid esters, or mixtures thereof. The extraction column may be a commonly used extraction column such as a packed column, a perforated plate column, or a rotating disk column, and a mixer-settler type extraction device may also be used. The figure explains the case where ethyl acetate is used as the extracting agent, but the properties of the extracting agent (e.g. specific gravity, boiling point, freezing point, etc.)
The operating conditions of the extraction column will vary depending on the conditions, which is obvious to those with general knowledge of chemical engineering. When ethyl acetate is used as the extraction agent, the extraction agent is supplied from conduit 42 to acetic acid extraction column 107, and an ethyl acetate solution of acetic acid is obtained from the top of the column.
1 to the extraction column 108, where the extractant and acetic acid are separated, and the extractant passes through the conduit 42 to the extraction column 107.
The acetic acid is also sent via conduit 44 to an acetic acid purification process (not shown). Since a small amount of ethyl acetate is dissolved in the raffinate discharged from the acetic acid extraction tower through conduit 43, it undergoes an ethyl acetate recovery step (not shown) and is further subjected to microbial treatment, etc., as necessary. After proper wastewater treatment, it is disposed of as wastewater. The gas that has not been condensed and absorbed in the quenching tower 103 is discharged from the top of the tower through a conduit 45 and is supplied to the lower part of the methacrolein absorption tower 109, where methacrolein is absorbed and recovered by an absorption liquid. That is, if a methacrolein-containing gas is supplied from the conduit 45 to the methacrolein absorption tower 109 using the methacrylic acid raffinate as an absorbent, an acetic acid aqueous solution of methacrolein is obtained from the bottom of the tower. Ripper 110 is fed via conduit 48 and methacrolein is recovered overhead. The methacrolein recovered from the top of the column via conduit 49 is further circulated and supplied to oxidation reactor 102 via conduit 27. In this case, there is no problem even if methacrolein contains acetic acid aqueous solution, which is a component of the absorption solvent, and this means that the operating conditions of the stripper 110 for separating methacrolein, which is easy to polymerize, can be relaxed. It's advantageous. The aqueous acetic acid solution from which methacrolein has been separated is circulated to the methacrolein absorption tower through conduit 46, but in order to avoid accumulation of high-boiling point impurities, a portion is supplied to the acetic acid extraction tower through conduit 50, and a proportionate amount is also supplied to the acetic acid extraction tower through conduit 50. It is also possible to supply the raffinate from the methacrylic acid extraction column through the conduit 51. From the top of the methacrolein absorption tower, N 2 , O 2 ,
Exhaust gas containing CO and CO 2 as main components is obtained, but
This is normally treated as exhaust gas and released into the atmosphere, but if necessary, it can be
1. It is possible to supply the methacrolein oxidation reactor 102 as a diluent gas. Examples will be described below. Example 1 The apparatus shown in FIG. 3 was used. (However, the acetic acid extraction column 107 and the extractant separation column 108 were not operated.) The reactor 101 consists of a SUS304 pipe with an inner diameter of 18 mm, and an isobutylene oxidation catalyst ( composition:
450 ml of Mo 10 Bi 1 Co 7 Fe 25 Sb 1 Ox) was filled and heated to 350°C in a molten salt bath. The reactor 102 consists of a SUS304 pipe with an inner diameter of 23 mm, and a methacrolein oxidation catalyst (composition: Mo 12 P 1.5
Zr 1 V 0.25 Cs 2 Mn 0.125 Ox) 1550 ml was filled and heated to 320°C in a molten salt bath. Isobutylene from conduit 21 at a rate of 0.135 Kg/H, air from conduit 22 at a rate of 0.834 Kg/H,
The bottom liquid of the methacrylic acid extraction column obtained from the conduit 37 after being vaporized through the conduit 23 was supplied as a reaction raw material at a rate of 0.334 kg/H. The composition of the reaction raw materials is in molar ratio: isobutylene: air: acetic acid: water = 5.0: 60.0:
1.5:33.5, and the feed rate was SV = 2400 hr -1 (NTP) for the isobutylene oxidation catalyst. The gas leaving the reactor 101 is pumped with air through the conduit 26 at a rate of 0.185
0.037 Kg/H of methacrolein recovered from the reaction product was added to the reactor 102 through the Kg/H conduit 27.
supplied. The reaction product gas exiting the reactor 102 was introduced into the lower part of a quenching tower 103, which had an inner diameter of 5 cm and a height of 120 cm and was filled with a Raschig ring. The bottom liquid of the methacrylic acid extraction tower is cooled to 5°C and supplied to the upper part of the quenching tower through a conduit 31 at a supply rate of 0.075 Kg/H.
It was cooled to ℃ and circulated. The inner diameter of the liquid at the bottom of the quenching tower is 4.
After removing methacrolein in a methacrolein recovery column 104 packed with a helipad and having a height of 100 cm, it is passed through a conduit 34 to a methacrylic acid extraction column (column diameter 4 cm,
It was supplied to the upper part of a rotating multi-blade tower (40 stages) 105 with a height of 150 cm. The extraction column is connected through conduit 35.
Methacrylic acid was extracted by feeding n-pentane at a feed rate of 0.721 Kg/H and H 2 O at a feed rate of 0.013 Kg/H through conduit 38 (the extraction column was
℃ and an overhead pressure of 1 Kg/cm 2 G). An acetic acid aqueous solution was obtained as the bottom liquid of the methacrylic acid extraction column from the conduit 37 at the bottom of the extraction column, and a portion of this was circulated to the reactor 101 and the quenching column 103. The gas discharged from the top of the quenching tower 103 was supplied through a conduit 45 to a methacrolein absorption tower 109, which had an inner diameter of 5 cm, a height of 120 cm, and was filled with a Raschig ring.
An acetic acid aqueous solution cooled to 3° C. was supplied to the upper part of the absorption tower through a conduit 46 at a rate of 2.89 kg/H to absorb methacrolein, and exhaust gas was discharged through a conduit 47. The bottom liquid of absorption tower 109 has an inner diameter of 5 cm and a height of
The methacrolein stripper 110 filled with a 120 cm helipack is fed to recover methacrolein, which is added with methacrolein from conduit 33 and circulated to the methacrolein oxidation reactor 102, where it is recycled to the methacrolein stripper bottom liquid. was circulated to the methacrolein absorption tower 109. Table 1 shows the composition and flow rate of each part when the entire system becomes steady. Comparative Example 1 The same catalyst and experimental equipment as in Example 1 were used. Water is vaporized from conduit 23 to 0.304Kg/H.
By supplying water at a rate of 0.072 kg/h and further supplying water to the quenching tower through conduit 31 at a rate of 0.072 kg/H,
The bottom liquid of the methacrylic acid extraction tower was not circulated to the reactor and the quenching tower, and the methacrolein absorption tower 109 was filled with xylene 2.89% instead of an acetic acid aqueous solution.
The same experiment as in Example 1 was conducted except that Kg/H was used. The xylene supplied to the methacrolein absorption tower 109 is obtained by redistilling the bottom liquid of the methacrolein stripper 110 (the apparatus is not shown in FIG. 1), and then extracting acetic acid,
The one from which methacrylic acid and the like were removed was used. Table 2 shows the material balance when operation reaches steady state.
It was shown to. The concentration of acetic acid in the outlet gas of reactor 102 (conduit 29) and the bottom liquid of the methacrylic acid extraction column (conduit 3)
7) and the feed liquid to the acetic acid extraction column 107 (tube 4
It can be seen that the acetic acid concentration of Example 0) is lower than that of Example 1. Furthermore, the exhaust gas discharged from the top conduit 47 of the methacrolein absorption tower 109 contained a large amount of xylene, which was lost from the methacrolein system. Example 2 The same catalyst and experimental equipment as in Example 1 were used. Water is supplied to the quenching tower 103 through the conduit 31 at a rate of 0.072 Kg/H, and the methacrylic acid extraction tower 10
5 The same experiment as in Example 1 was conducted except that the bottom liquid was not circulated to the quenching tower and xylene was supplied to the methacrolein absorption tower 109 at a rate of 2.89 Kg/H instead of an acetic acid aqueous solution. . The xylene supplied to the methacrolein absorption tower 109 is obtained by redistilling the bottom liquid of the methacrolein stripper 110 (the equipment is not shown in FIG. 3) and removing most of acetic acid, methacrylic acid, etc. Using. Table 3 shows the material balance when operation reaches steady state.
It was shown to. Compared to Comparative Example 1, the acetic acid concentration in the reactor 102 outlet gas concentration (conduit 29), the bottom liquid of the methacrylic acid extraction column 105 (conduit 37), and the liquid supplied to the acetic acid extraction column (conduit 40) is higher. Recognize. Example 3 The same catalyst and experimental equipment as in Example 1 were used. The same experiment as in Example 1 was conducted except that xylene was supplied to the methacrolein absorption tower 109 at a rate of 2.89 kg/H instead of an acetic acid aqueous solution. The xylene supplied to the methacrolein absorption tower 109 is obtained by redistilling the bottom liquid of the methacrolein stripper 110 (the apparatus is not shown in FIG. 3), and then converting it into acetic acid,
A product with most of the methacrylic acid etc. removed was used. Table 4 shows the material balance when operation reaches steady state.
It was shown to. Example 4 The same catalyst and experimental equipment as in Example 1 were used. 0.304Kg/H of vaporized water from conduit 23
2.89 xylene was supplied to the methacrolein absorption tower 109 instead of acetic acid aqueous solution.
The same procedure as in Example 1 was carried out except that the feed was carried out at a rate of Kg/H. The xylene supplied to the methacrolein absorption tower 109 is obtained by redistilling the tower bottom liquid of the methacrolein stripper 110 (the apparatus is not shown in FIG. 3), and converting it into acetic acid,
A product with most of the methacrylic acid etc. removed was used. Table 5 shows the composition and flow rate of each part when the operation reaches a nearly steady state.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1発明および第2発明の概
略のフローシートであり、第2図は本発明の第3
発明の概略フローシートである。第3図はこれら
を加味した2段酸化反応法によるフローシートで
ある。 2……酸化反応工程、4……急冷工程、8……
メタクリル酸回収工程、13……酢酸回収工程、
16……メタクロレイン回収工程、1,3,5,
7,9,10,11,12,14,15,17,
18,20……導管、101……イソブチレン酸
化反応器、102……メタクロレイン酸化反応
器、103……急冷塔、104……メタクロレイ
ン回収塔、105……メタクリル酸抽出塔、10
6……抽剤分離塔、107……酢酸抽出塔、10
8……抽剤分離塔、109……メタクロレイン吸
収塔、110……ストリツパー。
FIG. 1 is a schematic flow sheet of the first and second inventions of the present invention, and FIG. 2 is a flow sheet of the third invention of the present invention.
1 is a schematic flow sheet of the invention. FIG. 3 is a flow sheet for a two-stage oxidation reaction method that takes these into consideration. 2... Oxidation reaction step, 4... Rapid cooling step, 8...
Methacrylic acid recovery step, 13...acetic acid recovery step,
16... methacrolein recovery step, 1, 3, 5,
7, 9, 10, 11, 12, 14, 15, 17,
18, 20... Conduit, 101... Isobutylene oxidation reactor, 102... Methacrolein oxidation reactor, 103... Quenching tower, 104... Methacrolein recovery tower, 105... Methacrylic acid extraction tower, 10
6... Extractant separation column, 107... Acetic acid extraction column, 10
8... Extractant separation tower, 109... Methacrolein absorption tower, 110... Stripper.

Claims (1)

【特許請求の範囲】 1 イソブチレン、t―ブタノール、メタクロレ
イン、イソブチルアルデヒドまたはイソ酪酸ある
いはこれらの混合物を原料に分子状酸素を含むガ
スによる気相接触酸化法にてメタクリル酸を製造
するにあたり、副生する酢酸水溶液の一部を該酸
化反応工程に循環供給することを特徴とするメタ
クリル酸の製造方法。 2 イソブチレン、t―ブタノール、メタクロレ
イン、イソブチルアルデヒドまたはイソ酪酸ある
いはこれらの混合物を原料に分子状酸素を含むガ
スによる気相接触酸化法にてメタクリル酸を製造
するにあたり、副生する酢酸水溶液の一部を酸化
反応生成ガスを急冷するための急冷工程に循環供
給し、生成ガス中に含まれる高沸点化合物と少量
のメタクロレインを含有する水溶液部分とガス部
分に分離することを特徴とするメタクリル酸の製
造方法。 3 イソブチレン、t―ブタノール、メタクロレ
イン、イソブチルアルデヒドまたはイソ酪酸ある
いはこれらの混合物を原料に分子状酸素を含むガ
スによる気相接触酸化法にてメタクリル酸を製造
するにあたり、副生する酢酸水溶液の一部を生成
ガスを急冷して高沸点化合物を除去した残ガスか
らメタクロレイン回収工程に循環供給し、メタク
ロレインを吸収分離して、少なくともその一部を
該酸化工程にもどすことを特徴とするメタクリル
酸の製造方法。
[Claims] 1. In producing methacrylic acid using isobutylene, t-butanol, methacrolein, isobutyraldehyde, isobutyric acid, or a mixture thereof as a raw material by a gas phase catalytic oxidation method using a gas containing molecular oxygen, A method for producing methacrylic acid, characterized in that a part of the acetic acid aqueous solution produced is recycled and supplied to the oxidation reaction step. 2. When producing methacrylic acid using a gas phase catalytic oxidation method using a gas containing molecular oxygen using isobutylene, t-butanol, methacrolein, isobutyraldehyde, isobutyric acid, or a mixture thereof as a raw material, one of the acetic acid aqueous solutions produced as a by-product. Methacrylic acid characterized in that part of the oxidation reaction product gas is circulated and supplied to a quenching step for rapidly cooling the product gas, and the product gas is separated into an aqueous solution part containing a high boiling point compound and a small amount of methacrolein and a gas part. manufacturing method. 3. When producing methacrylic acid using a gas phase catalytic oxidation method using a gas containing molecular oxygen using isobutylene, t-butanol, methacrolein, isobutyraldehyde, isobutyric acid, or a mixture thereof as a raw material, one of the acetic acid aqueous solutions produced as a by-product. Methacrolein is recycled from the residual gas obtained by rapidly cooling the produced gas and removing high-boiling point compounds to a methacrolein recovery process, absorbing and separating methacrolein, and returning at least a part of it to the oxidation process. Acid production method.
JP2994081A 1981-03-04 1981-03-04 Preparation of methacrylic acid Granted JPS57144237A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2994081A JPS57144237A (en) 1981-03-04 1981-03-04 Preparation of methacrylic acid
GB8206428A GB2096601B (en) 1981-03-04 1982-03-04 Process for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2994081A JPS57144237A (en) 1981-03-04 1981-03-04 Preparation of methacrylic acid

Publications (2)

Publication Number Publication Date
JPS57144237A JPS57144237A (en) 1982-09-06
JPS6312458B2 true JPS6312458B2 (en) 1988-03-18

Family

ID=12289981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2994081A Granted JPS57144237A (en) 1981-03-04 1981-03-04 Preparation of methacrylic acid

Country Status (2)

Country Link
JP (1) JPS57144237A (en)
GB (1) GB2096601B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142357U (en) * 1988-03-25 1989-09-29

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1308737C (en) * 1987-04-16 1992-10-13 Syoichi Matsumoto Process for producing methacrylic ester
DE19814421A1 (en) * 1998-03-31 1999-10-07 Basf Ag Process for the production of acrylic acid and acrylic acid esters
JP5691252B2 (en) * 2010-06-10 2015-04-01 三菱レイヨン株式会社 Method for producing heteropolyacid catalyst for production of methacrylic acid, and method for producing methacrylic acid
KR20140064861A (en) * 2011-09-16 2014-05-28 에보니크 룀 게엠베하 Process for preparation of methacrylic acid and methacrylic acid esters
KR20140060529A (en) * 2011-09-16 2014-05-20 에보니크 룀 게엠베하 Process for preparation of methacrylic acid and methacrylic acid ester
JP6611391B1 (en) * 2018-11-14 2019-11-27 住友化学株式会社 Methacrylic acid production equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103664A (en) * 1975-03-10 1976-09-13 Nippon Catalytic Chem Ind Haisuino ryohoho
JPS5353613A (en) * 1976-10-26 1978-05-16 Nippon Zeon Co Ltd Preparation of methacrylic acid
JPS5448706A (en) * 1977-09-06 1979-04-17 Halcon Res & Dev Method of recovering methacrolein from isobutylene contact oxidation reaction gas mixture
JPS5821896A (en) * 1981-07-31 1983-02-08 ソニー株式会社 Method of mounting electronic part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51103664A (en) * 1975-03-10 1976-09-13 Nippon Catalytic Chem Ind Haisuino ryohoho
JPS5353613A (en) * 1976-10-26 1978-05-16 Nippon Zeon Co Ltd Preparation of methacrylic acid
JPS5448706A (en) * 1977-09-06 1979-04-17 Halcon Res & Dev Method of recovering methacrolein from isobutylene contact oxidation reaction gas mixture
JPS5821896A (en) * 1981-07-31 1983-02-08 ソニー株式会社 Method of mounting electronic part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01142357U (en) * 1988-03-25 1989-09-29

Also Published As

Publication number Publication date
JPS57144237A (en) 1982-09-06
GB2096601B (en) 1985-03-20
GB2096601A (en) 1982-10-20

Similar Documents

Publication Publication Date Title
JP4732366B2 (en) Method for producing (meth) acrylic acid
JP5358582B2 (en) (Meth) acrylic acid recovery method and (meth) acrylic acid recovery device
US4618709A (en) Waste water treatment in the production of methacrylic acid
US6639106B1 (en) Process for preparing and purifying acrylic acid from propylene having improved capacity
JP2000290221A (en) Purification of (meth)acrylic acid
JP2007518736A (en) Method for purifying olefinically unsaturated nitriles
EP1716095B1 (en) Method for producing (meth)acrylic acid
JP4222815B2 (en) Extraction method for recovering acrylic acid
JPH0276835A (en) Method for recovering methacrolein
KR101052710B1 (en) (Meth) acrylic acid purification method obtained by oxidation of base material
JPS6312458B2 (en)
JPS6310691B2 (en)
JP4091766B2 (en) Method for producing methacrolein
JPS6056127B2 (en) Acetic acid recovery method
JPH062700B2 (en) Method for separating methacrolein
JPS6160061B2 (en)
JPS6296447A (en) Recovery of methacrylic acid
JPH0834757A (en) Purification of acrylic acid
JPH0372209B2 (en)
JPH03176439A (en) Recovering of isobutane and methacrolein
JPS5993028A (en) Recovery of methacrylic acid
JPH03176438A (en) Recovering of isobutane and methacrolein
JPH03190831A (en) Method for recovering isobutane and methacrolein
JPH0859543A (en) Method for separating acrylic acid
JPH0615496B2 (en) Method for producing acrylic acid