JPH0372209B2 - - Google Patents

Info

Publication number
JPH0372209B2
JPH0372209B2 JP59140105A JP14010584A JPH0372209B2 JP H0372209 B2 JPH0372209 B2 JP H0372209B2 JP 59140105 A JP59140105 A JP 59140105A JP 14010584 A JP14010584 A JP 14010584A JP H0372209 B2 JPH0372209 B2 JP H0372209B2
Authority
JP
Japan
Prior art keywords
absorption tower
tower
supplied
absorption
decarbonylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59140105A
Other languages
Japanese (ja)
Other versions
JPS6118733A (en
Inventor
Katsumi Ito
Yoshitaka Kawahara
Masatoshi Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP59140105A priority Critical patent/JPS6118733A/en
Publication of JPS6118733A publication Critical patent/JPS6118733A/en
Publication of JPH0372209B2 publication Critical patent/JPH0372209B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(発明の利用分野) 本発明は、1,3−ブタジエンの回収方法に関
し、さらに詳しくはオレフインの酸化脱水素反応
により得られる反応生成ガス中に含まれるカルボ
ニル化合物を水に吸収し、主生成物の回収を容易
にする、1,3−ブタジエンの回収方法に関する
ものである。 (発明の背景) オレフイン類を酸化脱水素反応すると、微量の
カルボニル化合物(アセトアルデヒド・アクロレ
イン、ベンズアルデヒド等)が発生することが知
られている。従来、これらのカルボニル化合物を
主生成物から分離、回収する方法として、水によ
り吸収除去する方法が行なわれている(例えば特
公昭45−17647号公報)。 しかしながら、この方法は、高純度の製品を得
る場合には、多量の水を用いる必要があり、また
カルボニル化合物を吸収した水溶液は、1000〜
10000ppm程度のカルボニル化合物を含んでいる
ため、廃水処理が必要であり、この結果、多大の
費用を要するという欠点がある。 (発明の目的) 本発明の目的は、上記従来技術の欠点を除去
し、カルボニル化合物を含む廃水の量を大幅に低
減せしめ、効率よく1,3−ブタジエンを回収す
ることができる方法を提供することにある。 (発明の概要) 本発明者らは、上記目的を達成するため種々研
究の結果、カルボニル化合物を吸収した水溶液を
脱カルボニル処理して得られる水溶液の一部を、
再度、吸収塔に戻し、反応ガス中のカルボニル化
合物の除去に用いることにより、カルボニル化合
物を含んだ廃水の量を大幅に削減せしめ、廃水処
理にかかる費用をも大幅に低減せしめうることを
見出し、本発明に到達した。 本発明は、(a)n−ブテンまたはこれを含有する
C4留分を、酸化脱水素反応させて得られる反応
生成ガスを圧縮した後、第1吸収塔に供給し、副
生成物を水に吸収させる第1吸収工程と、(b)第1
吸収塔で吸収されない副生成物を含む反応生成ガ
スを、さらに圧縮した後、第2吸収塔に供給し、
その中段から第1吸収塔の塔底液を、その上段か
ら後記脱カルボニル工程で得られる水溶液を、さ
らに必要に応じてその塔頂付近から新鮮な水を供
給して副生成物を吸収させ、塔頂から実質的にカ
ルボニル化合物を含まない1,3−ブタジエンを
回収する第2吸収工程と、および(c)第2吸収塔の
塔底から得られる、副生成物を含む水溶液を脱カ
ルボニル処理する脱カルボニル工程と、該脱カル
ボニル工程で得られる水溶液の一部を、第1吸収
塔および/または第2吸収塔に吸収液として供給
する工程とを含むことを特徴とする1,3−ブタ
ジエンの回収方法である。 本発明方法において、n−ブテンとはブテン−
1および/またはブテン−2を意味する。また、
脱カルボニル処理の方法としては、例えばエアレ
ーシヨン、蒸留等の方法が挙げられる。 以下、図面により本発明を詳細に説明する。第
1図は本発明方法の一実施例を示す工程図であ
る。 本発明方法は、酸化脱水素反応後のガスからカ
ルボニル化合物を吸収除去する第1吸収塔工程、
第2吸収塔工程および脱カルボニル工程から主と
して構成される。図において、まずn−ブテンま
たはn−ブテンを含有するC4留分、酸素または
空気等の酸素源、水蒸気および窒素または二酸化
炭素等の反応に不活性な希釈ガスは、例えばMo
−Bi系の固形触媒を充填した反応器1に供給さ
れ、酸化脱水素反応が行なわれる。得られた反応
生成ガスは、急冷塔2で冷却され、スクラバー3
でヒユーム等の微粉の副生成物を除去した後、圧
縮機4に導入される。圧縮機としては、2段また
は多段の圧縮機が用いられる。第1段目で0.1〜
5Kg/cm2Gに圧縮されたガスは、第1吸収塔5の
塔底部に供給され、反応ガス中のカルボニル化合
物等が吸収除去される。第1吸収塔における吸収
液としては、後記脱カルボニル塔7の塔底液が使
用される。すなわち、該塔底液を第1吸収塔5で
反応生成ガスと接触させ、反応生成ガス中の一部
カルボニル化合物が吸収される。次いでカルボニ
ル化合物が一部除去された反応生成ガスは、第1
吸収塔5の塔頂から再度圧縮機4に導入され、3
〜9Kg/cm2Gに圧縮された後、第2吸収塔6の塔
底部に供給され、さらにカルボニル化合物が吸収
除去される。第2吸収塔6における吸収液として
は、(1)第1吸収塔の塔底液(全量)、(2)後記脱カ
ルボニル塔7の塔底液(全量の30〜70%)および
(3)追加供給する新鮮な水(第2吸収塔6に供給さ
れる液全量の0〜50%)が使用される。これらの
吸収液の供給場所としては、第2吸収塔のより低
い段から、順次(1)第1吸収塔の塔底液、(2)脱カル
ボニル塔の塔底液および塔頂付近に追加供給する
新鮮な水の順で供給されることが好ましい。な
お、第1吸収塔の塔底液を第2吸収塔の吸収液と
して使用できるのは、第2吸収塔の操作圧力が第
1吸収塔の操作圧力の2〜10倍であるためであ
る。 第2吸収塔6では、反応生成ガス中のカルボニ
ル化合物が大部分吸収除去され、塔頂からは主生
成物ある1,3−ブタジエンが得られ、これは回
収工程(図示せず)へと送られる。 一方、第2吸収塔6の塔底から得られるカルボ
ニル化合物を含んだ水溶液は、脱カルボニル塔7
の上部へ供給され、脱カルボニル工程、すなわち
エアーレシヨンおよび/または蒸留等の脱カルボ
ニル処理手段によりカルボニル化合物が塔頂から
除去される。一方、脱カルボニル塔7の塔底液の
一部は、第1および/または第2吸収塔に吸収液
として供給循環される。脱カルボニル塔7の塔底
液の残部は気化器8に導入され、その一部はは気
化されてほとんど純粋な水となつて反応ガスの希
釈剤として使用され、濃縮液(高沸カルボニルを
含む水)は廃水処理工程(図示せず)に送られ
る。 (発明の効果) 本発明方法によれば、反応ガス中のカルボニル
化合物を脱カルボニル工程からの回収水によつて
除去するようにしたので、カルボニル化合物を含
む廃水の処理量が、従来の方法に比べて大幅に低
減することができる。また本発明においては、多
段で反応生成ガスが圧縮されるため、反応生成ガ
ス中に含まれるカルボニル化合物、またはその重
合物による圧縮機および関連配管内での閉塞を防
止する利点も得られる。 (発明の実施例) 以下、本発明を実施例によりさらに詳細に説明
する。 実施例 第1図に示す工程図に従つて本発明を実施し
た。 n−ブテン、空気および気化器8で発生した水
蒸気を混合して反応器1に供給し、Mo−Bi系固
形触媒を用いて、350℃で酸化脱水素反応を行な
つた。次いで反応生成ガスを急冷塔2で急冷し、
有機酸、水等を除去した後、スクラバー3でヒユ
ーム等の副生成物を除去した。 次いでカルボニル化合物0.6544mol%を含む反
応生成ガス18.84Nm3/Hrを圧縮機4に導入して、
3Kg/cm2Gに圧縮し、100℃まで昇温した後、第
1吸収塔5(塔径78.1mm、多孔板段数15)の塔底
部に供給した。 第1吸収塔5においては、導管Dを経て塔上部
からカルボニル化合物を含水溶液
(COD350ppm)が40℃、10/Hrで供給され、
これを前記反応生成ガスと接触させて、反応生成
ガス中のカルボニル化合物を吸収させた。カルボ
ニル化合物が一部除去された反応生成ガスは、塔
頂から50℃で排出されるが、このガスは再度、圧
縮機4に導入され、9Kg/cm2Gまで圧縮され、
100℃に昇温した状態で第2吸収塔6(塔径78.1
mm、多孔板段数40段)の塔底部に供給される。 第2吸収塔6においては、反応生成ガスは、第
2吸収塔のより低い段から供給される、第1吸収
塔塔底液(70℃)を40℃まで冷却した液10.3/
Hrと接触され、さらにこれより上部の段から供
給される、脱カルボニル塔7(塔径78.1mm、多孔
板段数40段)の塔底液(40℃)10/Hrと接触
され、さらにその上部の塔頂付近の段から導管L
により追加供給される水(25℃)3/Hrと接
触され、カルボニル化合物がほぼ完全に除去され
る。 第2吸収塔6の塔頂から50℃で1,3−ブタジ
エンを主成分とする反応生成ガスが排出され、
1,3−ブタジエン回収工程(図示せず)に送ら
れる。 一方、第2吸収塔6の塔底から導管Fを経て排
出されるカルボニル化合物を1.35wt%含む水溶液
(700℃)23/Hrは、脱カルボニル塔7の上部
へ供給される。脱カルボニル塔7では、塔底部か
ら空気(25℃)を600N/Hr供給することによ
り、大部分のカルボニル化合物が空気と共に塔頂
部から排出され(60℃)、カルボニル化合物回収
工程(図示せず)へ送られる。 一方、脱カルボニル塔7の塔底部より排出され
る、カルボニル化合物を含む水溶液
(COD350ppm)23/Hrのうち、大部分は第1
吸収塔5および/または第2吸収塔6に吸収液と
して、それぞれ導管DおよびMを経て供給され、
残部の3/Hrは、気化器8(120℃)に供給さ
れる。120℃で気化された水溶液のうち2.5/
Hrは、その高沸カルボニル化合物が除去され、
ほとんど純粋な水となつて希釈剤として反応器1
に供給される。一方、気化器8の底部より抜き出
された沸カルボニル化合物(COD2,100ppm)
を含水(120℃)0.5/Hrは、廃水処理工程
(図示せず)に送られる。 第1表に上記本発明方法の工程における各導管
中の成分組成を示す。
(Field of Application of the Invention) The present invention relates to a method for recovering 1,3-butadiene, and more specifically, the present invention relates to a method for recovering 1,3-butadiene, and more specifically, the carbonyl compound contained in the reaction product gas obtained by the oxidative dehydrogenation reaction of olefin is absorbed into water, and the main product is recovered. The present invention relates to a method for recovering 1,3-butadiene that facilitates the recovery of 1,3-butadiene. (Background of the Invention) It is known that when olefins undergo an oxidative dehydrogenation reaction, trace amounts of carbonyl compounds (acetaldehyde, acrolein, benzaldehyde, etc.) are generated. Conventionally, as a method of separating and recovering these carbonyl compounds from the main product, a method of absorbing and removing them with water has been carried out (for example, Japanese Patent Publication No. 17647/1983). However, this method requires the use of a large amount of water in order to obtain a high-purity product, and the aqueous solution that has absorbed the carbonyl compound is
Since it contains approximately 10,000 ppm of carbonyl compounds, it requires wastewater treatment, which has the disadvantage of requiring a large amount of cost. (Object of the Invention) The object of the present invention is to provide a method that eliminates the drawbacks of the above-mentioned conventional techniques, significantly reduces the amount of wastewater containing carbonyl compounds, and can efficiently recover 1,3-butadiene. There is a particular thing. (Summary of the Invention) In order to achieve the above object, the present inventors have conducted various studies and found that a part of the aqueous solution obtained by decarbonylating an aqueous solution that has absorbed a carbonyl compound,
We have discovered that by returning it to the absorption tower again and using it to remove carbonyl compounds in the reaction gas, the amount of wastewater containing carbonyl compounds can be significantly reduced, and the cost of wastewater treatment can also be significantly reduced. We have arrived at the present invention. The present invention provides (a) n-butene or
(b) a first absorption step in which the reaction product gas obtained by subjecting the C4 fraction to an oxidative dehydrogenation reaction is compressed and then supplied to a first absorption tower to absorb by-products in water;
After further compressing the reaction product gas containing byproducts that are not absorbed in the absorption tower, supplying it to a second absorption tower,
The bottom liquid of the first absorption tower is supplied from the middle stage, the aqueous solution obtained in the decarbonylation step described later is supplied from the upper stage, and fresh water is supplied from near the top of the tower as necessary to absorb by-products, a second absorption step of recovering 1,3-butadiene substantially free of carbonyl compounds from the top of the column, and (c) decarbonylating the aqueous solution containing by-products obtained from the bottom of the second absorption column. and a step of supplying a part of the aqueous solution obtained in the decarbonylation step to a first absorption tower and/or a second absorption tower as an absorption liquid. This is the collection method. In the method of the present invention, n-butene means butene-
1 and/or butene-2. Also,
Examples of the decarbonylation treatment include methods such as aeration and distillation. Hereinafter, the present invention will be explained in detail with reference to the drawings. FIG. 1 is a process diagram showing an embodiment of the method of the present invention. The method of the present invention includes a first absorption tower step in which carbonyl compounds are absorbed and removed from the gas after the oxidative dehydrogenation reaction;
It mainly consists of a second absorption tower step and a decarbonylation step. In the figure, first, n-butene or a C4 fraction containing n-butene, an oxygen source such as oxygen or air, water vapor and a diluent gas inert to the reaction such as nitrogen or carbon dioxide are used, for example, Mo
-It is supplied to a reactor 1 filled with a Bi-based solid catalyst, and an oxidative dehydrogenation reaction is carried out. The obtained reaction product gas is cooled in a quenching tower 2, and then passed through a scrubber 3.
After removing fine powder by-products such as fume, it is introduced into the compressor 4. As the compressor, a two-stage or multi-stage compressor is used. 0.1 to 1st stage
The gas compressed to 5 kg/cm 2 G is supplied to the bottom of the first absorption tower 5, where carbonyl compounds and the like in the reaction gas are absorbed and removed. As the absorption liquid in the first absorption tower, the bottom liquid of the decarbonylation tower 7 described later is used. That is, the bottom liquid is brought into contact with the reaction product gas in the first absorption tower 5, and a portion of the carbonyl compound in the reaction product gas is absorbed. Next, the reaction product gas from which the carbonyl compound has been partially removed is transferred to the first
It is introduced into the compressor 4 again from the top of the absorption tower 5, and the 3
After being compressed to ~9 Kg/cm 2 G, it is supplied to the bottom of the second absorption tower 6, where carbonyl compounds are further absorbed and removed. The absorption liquid in the second absorption tower 6 includes (1) the bottom liquid of the first absorption tower (total amount), (2) the bottom liquid of the decarbonylation tower 7 (described later) (30 to 70% of the total amount), and
(3) Additional fresh water (0 to 50% of the total amount of liquid supplied to the second absorption tower 6) is used. These absorption liquids are supplied from the lower stages of the second absorption tower, to (1) the bottom liquid of the first absorption tower, (2) the bottom liquid of the decarbonylation tower and additional supply near the top of the tower. Preferably, fresh water is provided in the following order: The bottom liquid of the first absorption tower can be used as the absorption liquid of the second absorption tower because the operating pressure of the second absorption tower is 2 to 10 times the operating pressure of the first absorption tower. In the second absorption tower 6, most of the carbonyl compounds in the reaction product gas are absorbed and removed, and the main product, 1,3-butadiene, is obtained from the top of the tower, which is sent to a recovery step (not shown). It will be done. On the other hand, the aqueous solution containing the carbonyl compound obtained from the bottom of the second absorption tower 6 is transferred to the decarbonylation tower 7.
The carbonyl compound is removed from the top of the column by a decarbonylation step, that is, a decarbonylation treatment means such as air fractionation and/or distillation. On the other hand, a part of the bottom liquid of the decarbonylation tower 7 is supplied and recycled to the first and/or second absorption tower as an absorption liquid. The remainder of the bottom liquid of the decarbonylation column 7 is introduced into the vaporizer 8, and a portion of it is vaporized to become almost pure water, which is used as a diluent for the reaction gas, and a concentrated liquid (containing high-boiling carbonyls). water) is sent to a wastewater treatment process (not shown). (Effects of the Invention) According to the method of the present invention, the carbonyl compounds in the reaction gas are removed by the recovered water from the decarbonylation process, so the amount of wastewater containing carbonyl compounds to be treated is lower than that of the conventional method. can be significantly reduced compared to Further, in the present invention, since the reaction product gas is compressed in multiple stages, there is also the advantage of preventing clogging in the compressor and related piping due to the carbonyl compound or its polymer contained in the reaction product gas. (Examples of the Invention) Hereinafter, the present invention will be explained in more detail with reference to Examples. Example The present invention was carried out according to the process diagram shown in FIG. N-butene, air, and steam generated in vaporizer 8 were mixed and supplied to reactor 1, and an oxidative dehydrogenation reaction was carried out at 350°C using a Mo-Bi solid catalyst. Next, the reaction product gas is quenched in a quenching tower 2,
After removing organic acids, water, etc., by-products such as hume were removed using a scrubber 3. Next, 18.84 Nm 3 /Hr of reaction product gas containing 0.6544 mol% of carbonyl compound was introduced into the compressor 4,
After compressing to 3 kg/cm 2 G and raising the temperature to 100° C., it was supplied to the bottom of the first absorption tower 5 (column diameter: 78.1 mm, number of perforated plates: 15). In the first absorption tower 5, a carbonyl compound aqueous solution (COD 350 ppm) is supplied from the top of the tower via conduit D at 40°C and at a rate of 10/Hr.
This was brought into contact with the reaction product gas to absorb the carbonyl compound in the reaction product gas. The reaction product gas from which carbonyl compounds have been partially removed is discharged from the top of the column at 50°C, but this gas is again introduced into the compressor 4 and compressed to 9 kg/cm 2 G.
With the temperature raised to 100°C, the second absorption tower 6 (column diameter 78.1
mm, the number of perforated plates is 40) at the bottom of the column. In the second absorption tower 6, the reaction product gas is supplied from the lower stage of the second absorption tower, and is a liquid 10.3/10.3/2, which is obtained by cooling the bottom liquid (70°C) of the first absorption tower to 40°C.
The bottom liquid (40°C) 10/Hr of the decarbonylation column 7 (column diameter 78.1 mm, number of perforated plates 40) supplied from the upper stage is contacted with Hr, and then the upper Conduit L from the stage near the top of the tower
The carbonyl compound is almost completely removed by contacting with water (25° C.) 3/Hr which is additionally supplied. A reaction product gas containing 1,3-butadiene as a main component is discharged from the top of the second absorption tower 6 at 50°C,
It is sent to a 1,3-butadiene recovery step (not shown). On the other hand, an aqueous solution (700° C.) 23/Hr containing 1.35 wt% of a carbonyl compound discharged from the bottom of the second absorption tower 6 via conduit F is supplied to the upper part of the decarbonylation tower 7. In the decarbonylation tower 7, by supplying air (25°C) at 600N/Hr from the bottom of the tower, most of the carbonyl compounds are discharged from the top of the tower together with air (60°C), and a carbonyl compound recovery step (not shown) is carried out. sent to. On the other hand, most of the aqueous solution containing carbonyl compounds (COD350ppm) 23/Hr discharged from the bottom of the decarbonylation tower 7
supplied as absorption liquid to the absorption tower 5 and/or the second absorption tower 6 via conduits D and M, respectively;
The remaining 3/Hr is supplied to the vaporizer 8 (120°C). 2.5/ of the aqueous solution vaporized at 120℃
Hr has its high-boiling carbonyl compounds removed,
Almost pure water is used as diluent in reactor 1
is supplied to On the other hand, boiling carbonyl compound (COD2, 100ppm) extracted from the bottom of vaporizer 8
The water containing water (120℃) 0.5/Hr is sent to a wastewater treatment process (not shown). Table 1 shows the composition of components in each conduit in the process of the method of the present invention.

【表】【table】

【表】 上記実施例によれば、廃水処理工程に入る水溶
液の量は、従来の1段吸収で、かつ脱カルボニル
塔を使用しない場合と比較して、例えば約97%減
少させることができた。また圧縮機およびその関
連配管でのカルボニル化合物およびその重合物等
による塞はほとんどみられず、例えば3カ月間の
連続運転が可能であつた。
[Table] According to the above example, the amount of aqueous solution entering the wastewater treatment process could be reduced, for example, by about 97% compared to the conventional one-stage absorption without using a decarbonylation tower. . In addition, there was almost no clogging of the compressor and related piping due to carbonyl compounds and their polymers, and continuous operation for, for example, three months was possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す工程図であ
る。 1……反応器、2……急冷塔、4……圧縮機、
5……第1吸収塔、6……第2吸収塔、7……脱
カルボニル塔、8……気化器。
FIG. 1 is a process diagram showing one embodiment of the present invention. 1... Reactor, 2... Quenching tower, 4... Compressor,
5... First absorption tower, 6... Second absorption tower, 7... Decarbonylation tower, 8... Vaporizer.

Claims (1)

【特許請求の範囲】[Claims] 1 (a)n−ブテンまたはこれを含有するC4留分
を、酸化脱水素反応させて得られる反応生成ガス
を圧縮した後、第1吸収塔に供給し、副生成物を
水に吸収させる第1吸収工程と、(b)第1吸収塔で
吸収されない副生成物を含む反応生成ガスを、さ
らに圧縮した後、第2吸収塔に供給し、その中段
から第1吸収塔の塔底液を、その上段から後記脱
カルボニル工程で得られる水溶液を供給して副生
成物を吸収させ、塔頂から実質的にカルボニル化
合物を含まない1,3−ブタジエンを回収する第
2吸収塔工程と、および(c)第2吸収塔の塔底から
得られる、副生成物を含む水溶液を脱カルボニル
処理する脱カルボニル工程と、該脱カルボニル工
程で得られる水溶液の一部を、第1吸収塔およ
び/または第2吸収塔に吸収液として供給する工
程とを有することを特徴とする1,3−ブタジエ
ンの回収方法。
1 (a) After compressing the reaction product gas obtained by subjecting n-butene or a C4 fraction containing it to an oxidative dehydrogenation reaction, it is supplied to the first absorption tower, and the by-products are absorbed into water. (b) After further compressing the reaction product gas containing byproducts that are not absorbed in the first absorption tower, the gas is supplied to the second absorption tower, and from the middle stage, the bottom liquid of the first absorption tower is a second absorption tower step in which the aqueous solution obtained in the decarbonylation step described below is supplied from the upper stage to absorb the by-products, and 1,3-butadiene substantially free of carbonyl compounds is recovered from the top of the tower; and (c) a decarbonylation step in which an aqueous solution containing by-products obtained from the bottom of the second absorption tower is decarbonylated, and a part of the aqueous solution obtained in the decarbonylation step is transferred to the first absorption tower and/or or a step of supplying it as an absorption liquid to a second absorption tower.
JP59140105A 1984-07-06 1984-07-06 Recovery of 1,3-butadiene Granted JPS6118733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59140105A JPS6118733A (en) 1984-07-06 1984-07-06 Recovery of 1,3-butadiene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59140105A JPS6118733A (en) 1984-07-06 1984-07-06 Recovery of 1,3-butadiene

Publications (2)

Publication Number Publication Date
JPS6118733A JPS6118733A (en) 1986-01-27
JPH0372209B2 true JPH0372209B2 (en) 1991-11-18

Family

ID=15261052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59140105A Granted JPS6118733A (en) 1984-07-06 1984-07-06 Recovery of 1,3-butadiene

Country Status (1)

Country Link
JP (1) JPS6118733A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5717393B2 (en) * 2010-10-08 2015-05-13 旭化成ケミカルズ株式会社 Butadiene manufacturing process
JP2013213028A (en) * 2012-03-07 2013-10-17 Mitsubishi Chemicals Corp Method for producing conjugated diene
JP5687800B2 (en) 2012-03-13 2015-03-18 旭化成ケミカルズ株式会社 Method for producing conjugated diolefin
JP2019123676A (en) * 2018-01-12 2019-07-25 三菱ケミカル株式会社 Production method of conjugated diene

Also Published As

Publication number Publication date
JPS6118733A (en) 1986-01-27

Similar Documents

Publication Publication Date Title
JP2665849B2 (en) Improved hydroformylation process
JP5393713B2 (en) Method for producing (meth) acrylic acid
US6646141B2 (en) Process for the epoxidation of olefins
US4033617A (en) Process for the purification of ethylene oxide
RU2639872C2 (en) Method for purifying propylenoxide
KR20160105370A (en) Process for producing methyl methacrylate
JP2008507469A (en) An improved method for recovering and recycling ammonia from a vapor stream.
JP2000351749A (en) Production of (meth)acrylic acid
JPS60115532A (en) Production of butadiene
JPS60126235A (en) Production of butadiene
US5248819A (en) Process for recovering methacrolein
JP2979232B2 (en) Production method of hydrogen peroxide
EP1293505A1 (en) Process for the epoxidation of olefins
KR101052710B1 (en) (Meth) acrylic acid purification method obtained by oxidation of base material
CS213394B2 (en) Method of gaining the acrylic acid,acrolein,water and impurities
JPH0414108B2 (en)
JPH0372209B2 (en)
JPS6312458B2 (en)
JPS6296447A (en) Recovery of methacrylic acid
JP4440773B2 (en) Removal of peroxide impurities
JPH0834757A (en) Purification of acrylic acid
US4092132A (en) Recovery of methacrolein
JP2004359614A (en) Method for preparing acrylic acid
JP4483156B2 (en) Method for purifying gamma-butyrolactone
JPS60174733A (en) Preparation of 1,3-butadiene