JPS63121110A - Manufacture of thin film magnetic head - Google Patents

Manufacture of thin film magnetic head

Info

Publication number
JPS63121110A
JPS63121110A JP26602586A JP26602586A JPS63121110A JP S63121110 A JPS63121110 A JP S63121110A JP 26602586 A JP26602586 A JP 26602586A JP 26602586 A JP26602586 A JP 26602586A JP S63121110 A JPS63121110 A JP S63121110A
Authority
JP
Japan
Prior art keywords
coil
thin film
insulating layer
photoresist
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26602586A
Other languages
Japanese (ja)
Inventor
Yuji Nagata
裕二 永田
Toshio Fukazawa
深沢 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26602586A priority Critical patent/JPS63121110A/en
Publication of JPS63121110A publication Critical patent/JPS63121110A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To form a second coil in a first coil, to simultaneously flatten the upper part of coils and to prevent a step in the coil from being generated, by removing photoresist and a conductor thin film with their equal etching rates. CONSTITUTION:After the first coil 24 is formed, the conductor thin film 26 is formed over entire plane of a substrate setting a second insulating layer 25 as an intermediate layer, and after that, the photoresist 27 is coated. The photoresist is fluid having viscosity of 30-200cp, and a coating film absorbs the step of a lower part less than that, and its surface is almost flattened uniformly. After heat curing is applied on it, etching is applied on the conductor film 26 and the photoresist 27 with their equal etching condition. In such a way, the second coil 28 is formed in such structure that the conductor thin film is embedded in the recessed part of a coil space in the first coil 24, and the step is scarcely formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高記録密度化に対応した薄膜磁気ヘッドの製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a thin film magnetic head compatible with higher recording densities.

従来の技術 最近の磁気記録技術分野においてトラック密度の向上に
伴うトラック幅の短縮化とマルチトラック化に対応する
磁気ヘッドとして、薄膜形成技術及びフォ) IJソゲ
ラフイー技術を駆使した薄膜型の磁気ヘッドが広く使用
されつつある。第4図(&)は従来のリング型薄膜ヘッ
ドを示す平面図で、第4図(b)は第4図(IL)のI
L −&’断面図であり、空隙を有するリング状コアに
コイルを多数回巻装した構造となっている。従来の薄膜
磁気ヘッドの製造方法を第4図e) 、 (b)を用い
て説明すると以下の如くである。即ち、鏡面研磨された
磁性基板41上に第1の絶縁層42を形成する。次いで
、ム!またはOr下地のムUなどの金属薄膜を蒸着しフ
ォトリングラフィ技術によってコイル43にパターン化
される。この後、第2絶縁層44を形成し、フロントギ
ャップ部46及びバックギツプ部46をパターン化する
Conventional technology In recent years in the field of magnetic recording technology, thin-film magnetic heads that make full use of thin-film formation technology and IJ sogelafy technology have been developed as magnetic heads that can accommodate the shortening of track widths and multi-tracking as track densities have improved. It is becoming widely used. Figure 4 (&) is a plan view showing a conventional ring-type thin film head, and Figure 4 (b) is the I of Figure 4 (IL).
This is a sectional view taken along the line L-&', and has a structure in which a coil is wound many times around a ring-shaped core having a gap. The conventional method for manufacturing a thin film magnetic head will be explained below using FIGS. 4e) and 4(b). That is, the first insulating layer 42 is formed on the mirror-polished magnetic substrate 41. Next, Mu! Alternatively, a metal thin film such as an Or base layer is deposited and patterned into the coil 43 by photolithography. After this, a second insulating layer 44 is formed, and a front gap portion 46 and a back gap portion 46 are patterned.

この後、上部磁性コア47となるNi−Fe。After this, Ni-Fe becomes the upper magnetic core 47.

Fe−ム2−81などのような強磁性金属薄膜を蒸着し
、所定の形状にされる。最後に保護層(図示せず)、保
護基板(図示せず)が形成され、テープ摺動面48が研
磨加工され薄膜磁気ヘッドが完成される。49.50は
外部回路との接続端子であり、上部に形成された絶縁層
は取り除かれる。
A ferromagnetic metal thin film such as Fe-me 2-81 is deposited and formed into a predetermined shape. Finally, a protective layer (not shown) and a protective substrate (not shown) are formed, and the tape sliding surface 48 is polished to complete the thin film magnetic head. Reference numerals 49 and 50 are connection terminals for connection with an external circuit, and the insulating layer formed thereon is removed.

発明が解決しようとする問題点 前記した従来の薄膜磁気ヘッド製造方法において、コイ
ル形成以後に形成される薄膜は、下部のコイル形状をそ
のまま反映し、第4図(b)に示すような段差のある薄
膜となる。特に、上部磁性コア47に生じる段差は、上
部磁性コアの磁気特性を大きく劣化させる要因となって
いた。即ち、段差部付近で、表面磁荷が発生し、これに
起因する反磁界効果により、透磁率が低下する現象や、
段差の斜め部分は強磁性薄膜の膜厚が薄く、記録時にお
いて、この段差斜め部が磁気飽和する現象などがあった
、このため、フロントギャップ部45で洩漏する信号磁
界は磁性媒体を飽和レベルまで記録できる強度に達する
ことができず極めて磁気効率の悪いものとなる欠点があ
った。
Problems to be Solved by the Invention In the conventional thin film magnetic head manufacturing method described above, the thin film formed after the coil formation directly reflects the shape of the lower coil, and has a step difference as shown in FIG. 4(b). It becomes a thin film. In particular, the level difference that occurs in the upper magnetic core 47 has been a factor that greatly deteriorates the magnetic properties of the upper magnetic core. In other words, surface magnetic charges are generated near the stepped portion, and the resulting demagnetizing field effect causes a decrease in magnetic permeability.
The thickness of the ferromagnetic thin film is thin in the diagonal portion of the step, and during recording, there is a phenomenon where the diagonal portion of the step becomes magnetically saturated.For this reason, the signal magnetic field leaking at the front gap portion 45 causes the magnetic medium to reach the saturation level. This had the disadvantage that it could not reach the strength that would allow recording up to 1000 yen, resulting in extremely poor magnetic efficiency.

また、コイルをフォトリングラフィ技術によってパター
ン化する際、コイル間のショートを防止するためにコイ
ル間隔を3〜6μm以上にする必要があった。このため
コイルに流す記録電流を低下させ、低消費電流化を図ろ
うとして、コイルの巻装数を増加させると、コイル上部
に形成される上部磁性コアの磁路が長くなり、記録磁界
がフロントギャップ部に到達する以前に他に洩漏するた
め、初期の目的が達せられない欠点があった。この問題
を避けるために、コイルを2層、3層と多層にして形成
する試みもなされているが、前述したコイルに起因する
段差がますます大きくなシ、さらに磁気効率の悪いもの
となる欠点があった。
Further, when patterning the coils by photolithography technology, it is necessary to set the coil spacing to 3 to 6 μm or more in order to prevent short circuits between the coils. Therefore, if the number of windings of the coil is increased in an attempt to reduce the recording current flowing through the coil and reduce current consumption, the magnetic path of the upper magnetic core formed at the top of the coil becomes longer, and the recording magnetic field is shifted to the front. There was a drawback that the initial purpose could not be achieved because it leaked to other places before reaching the gap. In order to avoid this problem, attempts have been made to form coils in multiple layers, such as two or three layers, but these have the drawbacks of increasing the step difference caused by the coils mentioned above, and further decreasing magnetic efficiency. was there.

本発明は上記した従来の薄膜磁気ヘッド製造法に鑑みコ
イル段差形状を上部磁性コアに生じさせず、また、コイ
ル間゛隔を1μm以下にしてコイルの多数回巻きを可能
にした、記録効率の高い薄膜磁気ヘッドを提供するため
の薄膜磁気ヘッド製造方法に関するものである。
In view of the above-mentioned conventional thin film magnetic head manufacturing method, the present invention eliminates the step shape of the coil in the upper magnetic core, and also improves recording efficiency by making it possible to wind the coil multiple times by setting the coil interval to 1 μm or less. The present invention relates to a thin film magnetic head manufacturing method for providing a high quality thin film magnetic head.

問題点を解決するための手段 前記の目的を達成するために、本発明の磁気ヘッド製造
方法においては、まず磁性基板上に第1の絶縁層と第1
のコイルを形成し、次いで第2の絶縁層を中間層として
、導体薄膜を基板全面に蒸着あるいはスパッタリング法
により形成する。次に、導体薄膜上にフォトレジストを
塗布し、フォトレジストと前記導体薄膜とをこれらの等
エツチングレートで除去し、丁度第1のコイル間に第2
のコイルを形成し、しかも同時にコイル上部を平坦にし
、コイル段差を発生させないことを特徴としている。
Means for Solving the Problems In order to achieve the above object, in the magnetic head manufacturing method of the present invention, a first insulating layer and a first insulating layer are first formed on a magnetic substrate.
A conductive thin film is then formed on the entire surface of the substrate by vapor deposition or sputtering, using the second insulating layer as an intermediate layer. Next, a photoresist is applied on the conductor thin film, and the photoresist and the conductor thin film are removed at the same etching rate, and a second coil is formed just between the first coil and the second conductor thin film.
It is characterized by the fact that the upper part of the coil is flat, and there is no step difference in the coil.

作用 前記したように本発明の薄膜磁気ヘッド製造方法におい
ては、第1のコイルを形成した後、第2の絶縁層を中間
層として基板全面に導体薄膜を形成し、この後、フォト
レジストを塗布する。フォトレジストは粘度s o c
p〜2000pの流体で、塗布膜は、それより下部の段
差を吸収し、その表面はほぼ均一な平面になる。これを
熱硬化させた後導体薄膜とフォトレジストとを、これら
の等エツチングレート条件でエツチングすることにより
、導体薄膜は第1のコイルにおけるコイル間隔凹部に埋
め込まれたような構造で第2のコイルが形成され、段差
はほとんど生じないものとなる。
As described above, in the thin film magnetic head manufacturing method of the present invention, after forming the first coil, a conductive thin film is formed on the entire surface of the substrate using the second insulating layer as an intermediate layer, and then a photoresist is applied. do. Photoresist has a viscosity so c
With a fluid of p~2000p, the coating film absorbs the level difference below it, and the surface becomes a substantially uniform plane. After thermally curing the conductor thin film and the photoresist, the conductor thin film and the photoresist are etched under these same etching rate conditions, so that the conductor thin film is embedded in the recessed portion between the coils in the first coil, and the second coil is recessed. is formed, and there are almost no steps.

従って、コイル上部に形成される上部磁性コアにも段差
は生じず段差に起因する反磁界効果による透磁率の低下
の問題は解消する。また、コイル上部の上部磁性コアの
膜厚は一定で、特に薄くなる部分が存在せず、上部磁性
コアの中途部で磁気飽和せず、効率良く、記録磁束がフ
ロントギャップ部まで導かれることになる。
Therefore, no step is formed in the upper magnetic core formed above the coil, and the problem of decrease in magnetic permeability due to the demagnetizing field effect caused by the step is solved. In addition, the film thickness of the upper magnetic core at the top of the coil is constant, and there is no particularly thin part, so there is no magnetic saturation in the middle of the upper magnetic core, and the recording magnetic flux is efficiently guided to the front gap. Become.

また第1のコイルと第2コイルとを電気的に絶縁する第
2の絶縁層は、その膜厚は1μm以下で十分であり、コ
イル間隔は従来のものに比較して極めて小さく密となり
、コイルを多数回巻装することによって、記録効率を低
下させずに、低消費電力化を図ることが可能となる。
In addition, the second insulating layer that electrically insulates the first coil and the second coil has a thickness of 1 μm or less, and the coil spacing is extremely small and dense compared to conventional ones. By winding a large number of turns, it is possible to reduce power consumption without reducing recording efficiency.

実施例 以下、本発明の薄膜磁気ヘッド製造方法の一実施例につ
いて第1図および第2図(IL)〜(e)を用いて述べ
る。第1図および第2図(2L)〜(6)は第4図(b
)と同じように薄膜磁気ヘッドの要概部断面を示してい
る。
EXAMPLE Hereinafter, an example of the method for manufacturing a thin film magnetic head of the present invention will be described with reference to FIGS. 1 and 2 (IL) to (e). Figures 1 and 2 (2L) to (6) are shown in Figure 4 (b).
) shows a cross-section of the main part of the thin-film magnetic head.

まず、第2図(a)のように鏡面研磨された強磁性基板
21上に、第1の絶縁層として、ムe205絶縁膜22
が形成される。この時バックギャップ部23のムE20
3絶縁膜22はリフトオフ法により取り除かれる。また
ムE203絶縁膜22の膜厚は丁度ギャップ長になるよ
うに形成される。次いて第2図(b)に示すように、コ
イル導体となるOr下地のムU薄膜などの導体薄膜が形
成され、フォトリソグラフィ技術によってパターン化さ
れ、第1のコイル24が形成される。この後、第2図(
0)の如く第2の絶縁層として膜厚0.5μm程度のS
iO□絶縁膜26が形成され所定の形状にパターン化さ
れる。次いで、第2図(d)に示すように、第」のコイ
ル材料と同じような導体薄膜26が基板全面に蒸着され
る。
First, as shown in FIG. 2(a), a mu e205 insulating film 22 is formed as a first insulating layer on a mirror-polished ferromagnetic substrate 21.
is formed. At this time, the back gap portion 23 is
The third insulating film 22 is removed by a lift-off method. Further, the film thickness of the mu E203 insulating film 22 is formed to be exactly equal to the gap length. Next, as shown in FIG. 2(b), a conductor thin film such as a MuU thin film on an Or base is formed to serve as a coil conductor, and is patterned by photolithography to form the first coil 24. After this, Figure 2 (
As shown in 0), S with a film thickness of about 0.5 μm is used as the second insulating layer.
An iO□ insulating film 26 is formed and patterned into a predetermined shape. Next, as shown in FIG. 2(d), a conductive thin film 26 similar to the material of the second coil is deposited over the entire surface of the substrate.

導体薄膜2e上には環化ゴム−ビスアミド系のフォトレ
ジスト27がスピンコードされ、熱硬化される。熱硬化
後のフォトレジスト27は第1のコイルの凹凸を吸収し
、コイル上のフォトレジストはほぼ均一な表面となる。
A cyclized rubber-bisamide photoresist 27 is spin-coded on the conductor thin film 2e and then thermally cured. The photoresist 27 after thermosetting absorbs the irregularities of the first coil, and the photoresist on the coil has a substantially uniform surface.

コイル上のフォトレジストは、その粘度が小さい程、ま
た、第1のコイルのピッチ間隔が小さい程、均一な表面
となる傾向があった。そして、これを、フォトレジスト
とムU薄膜とを同じエツチングレートで、前記第2絶縁
層25の凸部が露出するまでエツチングすることにより
、第2図(6)のように第1のコイルのコイル間凹部に
埋め込まれたような構造で第2のコイル2Bを形成する
The lower the viscosity of the photoresist on the coil, and the smaller the pitch interval of the first coil, the more uniform the surface tended to be. Then, by etching the photoresist and the MuU thin film at the same etching rate until the convex portion of the second insulating layer 25 is exposed, the first coil is etched as shown in FIG. 2(6). The second coil 2B is formed to have a structure embedded in the recess between the coils.

埋め込んだような形状にして、コイル27を形成する。The coil 27 is formed into a buried shape.

エツチング法としては、イオン化されたムrイオンなど
を加速して基板にぶつけエツチングを行うイオンシリン
グ法を用いた。イオンシリング法は、加速されたムrイ
オンの基板に対する入射角によって、エツチングレート
が異なりイオン入射角度を適当に選ぶことによって異種
材料を等エツチングレートでエツチングできる。
As the etching method, an ion scilling method was used in which ionized chromium ions are accelerated and etched by hitting the substrate. In the ion scilling method, the etching rate varies depending on the angle of incidence of accelerated MR ions on the substrate, and by appropriately selecting the ion incidence angle, different materials can be etched at the same etching rate.

第3図において、ムは金薄膜、Bは環化ゴム−ビスアジ
ド系フォトレジストのエツチングレートと、ムrイオン
入射角度との関係を示しており、この場合の等エツチン
グレートの入射角は75度である。
In Figure 3, M shows the relationship between the etching rate of the gold thin film and B the cyclized rubber-bisazide photoresist and the M r ion incidence angle. In this case, the incident angle of the equal etching rate is 75 degrees. It is.

この後、第1のコイル24と、第2コイル28とを直列
に接続させるように、第1コイル24の前記接続部(図
示せず)上の第2の絶縁層26をフォトリングラフィ技
術で除去した後、第1のコイル24と第2のコイル28
を接続する導体薄膜(図示せず)を形成する。
Thereafter, the second insulating layer 26 on the connecting portion (not shown) of the first coil 24 is formed using photolithography technology so that the first coil 24 and the second coil 28 are connected in series. After removal, the first coil 24 and the second coil 28
A conductive thin film (not shown) is formed to connect the two.

この後、第2のコイル28上部に第3絶縁層3゜として
SiO□絶縁膜30を形成し、フロントギャップ部29
、バックギツプ部23上の余分5in2絶縁膜をエツチ
ングして取り除き、この上部に上部磁性コア31を形成
し、最後に保護層(図示せず)を形成し、保護基板(図
示せず)接着され、テープ摺動面20が研磨加工され、
第1図に示すような薄膜磁気ヘッドが完成される。
Thereafter, a SiO□ insulating film 30 is formed as a third insulating layer 3° on the second coil 28, and the front gap portion 29
, the excess 5in2 insulating film on the back gap part 23 is removed by etching, the upper magnetic core 31 is formed on top of this, and finally a protective layer (not shown) is formed, and a protective substrate (not shown) is bonded. The tape sliding surface 20 is polished,
A thin film magnetic head as shown in FIG. 1 is completed.

エツチングによってコイル段差を解消する方法として本
実施例においてはイオンシリング法を用いたが、この他
ムrガスのプラズマ中にサンプルを設置してエツチング
を行うプラズマエツチング法、あるいは反応性ガスのプ
ラズマ中にサンプルを設置してエツチングを行う反応性
プラズマエツチング法などを用いることができる。
In this example, the ion silling method was used to eliminate the coil step difference by etching, but there are also plasma etching methods in which the sample is placed in a plasma of a reactive gas, and etching is performed in a plasma of a reactive gas. A reactive plasma etching method, in which a sample is placed on the substrate and etched, can be used.

また、本発明は、第1コイルおよび第2コイルを基本単
位として、これを複数以上形成してもよいことは明らか
である。
Further, in the present invention, it is clear that a plurality of the first coil and the second coil may be formed as basic units.

発明の効果 本発明の薄膜磁気ヘッド製造方法によれば、上部磁性コ
アにはコイルに起因する段差が生じることはなく、コア
の膜厚は一定となる。従って前述したような反磁界効果
による透磁率低下の現象や、磁性コアの膜厚が極端に薄
くなる部分はなく、コイルによって生じた信号磁束がフ
ロントギャップに到達する以前に、磁気飽和することは
なく磁気効率の極めて高い薄膜磁気ヘッドを安価に提供
できる効果を有するものである。
Effects of the Invention According to the method for manufacturing a thin film magnetic head of the present invention, there is no step caused by the coil in the upper magnetic core, and the thickness of the core is constant. Therefore, there is no phenomenon of decrease in magnetic permeability due to the demagnetizing field effect mentioned above, there is no part where the film thickness of the magnetic core becomes extremely thin, and the signal magnetic flux generated by the coil does not reach magnetic saturation before reaching the front gap. This has the effect of providing a thin film magnetic head with extremely high magnetic efficiency at a low cost.

また、第1のコイルと第2のコイルを電気的に絶縁する
第2の絶縁層としてのSio2絶縁膜の膜厚は0.5μ
m程度で十分であり、従来のものに比較して、コイルを
極めて密に形成できる。このため、コイルを多数回巻装
しても、上部磁性コアの磁路長が長くならず、従って、
洩漏する記録磁界は少なく極めて、磁気効率の高い薄膜
磁気ヘッドを安価に提供できる効果を有するものである
Further, the film thickness of the Sio2 insulating film as the second insulating layer that electrically insulates the first coil and the second coil is 0.5 μm.
m is sufficient, and the coil can be formed extremely densely compared to conventional ones. For this reason, even if the coil is wound many times, the magnetic path length of the upper magnetic core does not increase, and therefore,
The leakage of recording magnetic field is extremely small and has the effect of providing a thin film magnetic head with high magnetic efficiency at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による薄膜磁気ヘッドの製造方法によっ
て製造された薄膜磁気ヘッドの要概部断面図を示す。第
2図は本発明による薄膜磁気ヘッドの製造方法の一実施
例を説明するための断面図である。第3図は、イオンシ
リング法による金と、環化ゴム−ビスアジド系フォトレ
ジストのエツチングレートとムrイオン入射角度の関係
を示す線21・・・・・・強磁性基板、22・・・・・
・第1の絶縁層、24・・・・・・第1のコイル、26
・・・・・・第2絶縁層、28・・・・・・第2のコイ
ル、30・・・・・・第3の絶縁層、31・・・・・・
上部磁性コア。 22−  第1の絶縁層 23−  バッグギイップ部 24−  第1ty)フィル 25−  第2の絶縁層 3I−ヱ部硫性コア 第1図 第2図 第3図 0102030 # 50667148ρAビ入肘角7
jj(膚ン
FIG. 1 shows a cross-sectional view of a main part of a thin film magnetic head manufactured by the method for manufacturing a thin film magnetic head according to the present invention. FIG. 2 is a cross-sectional view for explaining one embodiment of the method for manufacturing a thin film magnetic head according to the present invention. FIG. 3 shows the relationship between the etching rate of gold and cyclized rubber-bisazide photoresists by the ion shilling method and the incident angle of the ion ferromagnetic substrate, 22...・
・First insulating layer, 24...First coil, 26
...Second insulating layer, 28...Second coil, 30...Third insulating layer, 31...
Upper magnetic core. 22- First insulating layer 23- Bag gap part 24- 1st ty) Fill 25- Second insulating layer 3I- Part Sulfuric core Figure 1 Figure 2 Figure 3 0102030 #50667148ρA Bi-in elbow angle 7
jj (skin)

Claims (1)

【特許請求の範囲】[Claims] 磁性基板上に第1の絶縁層を形成し、第1の絶縁層上に
第1の導体材料を形成し、コイル状にパターン化して第
1のコイルを形成し、前記第1のコイル上に第2絶縁層
を形成し、第2絶縁層上に第2の導体材料を形成した後
、フォトレジストを塗布し、フォトレジストと第2の導
体材料とを等しいエッチングレートで除去し、第2の絶
縁層の下部コイル間隔部による凹部に第2のコイルを形
成し、第1のコイルと第2コイルを直列に接続させて、
しかる後に、第3の絶縁層、および上部磁性コアを形成
したことを特徴とする薄膜磁気ヘッドの製造方法。
forming a first insulating layer on a magnetic substrate, forming a first conductive material on the first insulating layer, patterning it into a coil shape to form a first coil, and forming a first conductive material on the first coil; After forming a second insulating layer and forming a second conductive material on the second insulating layer, a photoresist is applied, the photoresist and the second conductive material are removed at an equal etching rate, and a second conductive material is formed on the second insulating layer. A second coil is formed in the recess formed by the lower coil spacing part of the insulating layer, and the first coil and the second coil are connected in series,
A method for manufacturing a thin-film magnetic head, characterized in that a third insulating layer and an upper magnetic core are then formed.
JP26602586A 1986-11-07 1986-11-07 Manufacture of thin film magnetic head Pending JPS63121110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26602586A JPS63121110A (en) 1986-11-07 1986-11-07 Manufacture of thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26602586A JPS63121110A (en) 1986-11-07 1986-11-07 Manufacture of thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS63121110A true JPS63121110A (en) 1988-05-25

Family

ID=17425338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26602586A Pending JPS63121110A (en) 1986-11-07 1986-11-07 Manufacture of thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS63121110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338939B1 (en) * 1998-10-23 2002-01-15 International Business Machines Corporation Embedded dual coil fabrication process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6338939B1 (en) * 1998-10-23 2002-01-15 International Business Machines Corporation Embedded dual coil fabrication process

Similar Documents

Publication Publication Date Title
US5173826A (en) Thin film head with coils of varying thickness
US3662119A (en) Thin film magnetic transducer head
JPS5819716A (en) Thin film magnetic head and its production
KR910000302B1 (en) Thin film magnetic head and method of manufacture
JPS63121110A (en) Manufacture of thin film magnetic head
JPS58128017A (en) Thin film magnetic head and its manufacture
JP2747099B2 (en) Thin film magnetic head
JPH07210821A (en) Thin-film magnetic head and its production
JPH064829A (en) Thin-film magnetic head and its production
JPH087222A (en) Thin film magnetic head and its production
JPS63138513A (en) Thin film magnetic head and its production
JPS5880117A (en) Production of thin film magnetic head
JPS62170011A (en) Manufacture of thin film magnetic head
JPS6247812A (en) Thin film magnetic head
JPH06176318A (en) Coil formation of thin-film magnetic head
JPS60177418A (en) Thin film head for vertical magnetic recording and reproduction and its production
JPS63102010A (en) Manufacture of thin film magnetic head
KR100256064B1 (en) Thin magnetic head
JPH07182620A (en) Horizontal type thin film magnetic head and its manufacture
JPS63201908A (en) Production of thin film magnetic head
JPH04129016A (en) Thin film magnetic head
JPS60111313A (en) Manufacture of thin film magnetic head
JPH0316686B2 (en)
JPH0354711A (en) Thin film magnetic head
JPS585448B2 (en) Magnetic head manufacturing method