JPS63138513A - Thin film magnetic head and its production - Google Patents

Thin film magnetic head and its production

Info

Publication number
JPS63138513A
JPS63138513A JP28478386A JP28478386A JPS63138513A JP S63138513 A JPS63138513 A JP S63138513A JP 28478386 A JP28478386 A JP 28478386A JP 28478386 A JP28478386 A JP 28478386A JP S63138513 A JPS63138513 A JP S63138513A
Authority
JP
Japan
Prior art keywords
thin film
film
pattern
gap
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28478386A
Other languages
Japanese (ja)
Other versions
JP2613876B2 (en
Inventor
Kazuhiko Yamada
一彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61284783A priority Critical patent/JP2613876B2/en
Publication of JPS63138513A publication Critical patent/JPS63138513A/en
Application granted granted Critical
Publication of JP2613876B2 publication Critical patent/JP2613876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3176Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps
    • G11B5/3179Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps the films being mainly disposed in parallel planes
    • G11B5/3183Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps the films being mainly disposed in parallel planes intersecting the gap plane, e.g. "horizontal head structure"
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/187Structure or manufacture of the surface of the head in physical contact with, or immediately adjacent to the recording medium; Pole pieces; Gap features
    • G11B5/23Gap features
    • G11B5/232Manufacture of gap
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/3116Shaping of layers, poles or gaps for improving the form of the electrical signal transduced, e.g. for shielding, contour effect, equalizing, side flux fringing, cross talk reduction between heads or between heads and information tracks
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3967Composite structural arrangements of transducers, e.g. inductive write and magnetoresistive read

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To eliminate the depletion region of a gap part by etching a silicon oxide film to form a gap consisting of a pattern of a prescribed shape, then forming the film of yokes. CONSTITUTION:The silicon oxide film having the film thickness equal to a track width Tw is formed by a sputtering method on a substrate 9 consisting of Al2O3-TiC, etc., and is then subjected to reactive ion etching by which the film is worked to the pattern 10 having the width equal to a gap length G.L. A Co90Zr10 film having the film thickness Tw is then formed over the entire surface of the substrate 9 and the pattern 10 and the CoZr film on the pattern 10 is removed to form the yokes 2. Then, the generation of the depletion region in the gap part is obviated and the chipping of the gap and the deformation of the yokes 2 at the time of working a head are suppressed, by which the magnetical short-circuiting in the gap part is prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁気ディスク装置、磁気テープ装置等に使用さ
れる、集積化薄膜技術を用いて作製される薄膜磁気ヘッ
ドに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thin film magnetic head manufactured using integrated thin film technology and used in magnetic disk devices, magnetic tape devices, etc.

(従来の技術) 周知のとおり、近年磁気記録の分野においては、高記録
密度化が増々進み記録媒体と共に磁気記録を支える薄膜
磁気ヘッドにおいても前述の高記録密度化に対応するこ
とが強く求められている。
(Prior Art) As is well known, in recent years in the field of magnetic recording, recording densities have been increasing rapidly, and there is a strong demand for thin film magnetic heads that support magnetic recording as well as recording media to support the above-mentioned higher recording densities. ing.

この様な高記録密度化、特に狭トラツク幅化に対応した
薄膜磁気ヘッドとしては、例えば第3図A。
An example of a thin film magnetic head suitable for such higher recording densities, particularly narrower track widths, is shown in FIG. 3A.

B、Cに示した如き構造を有するヘッドが特開昭51−
150315中に提案されている。すなわち、第3図A
においてA1203−Tic等のセラミックスより成る
基板(図示せず)上に軟磁性薄膜より成る一対のヨーク
2が集積化薄膜技術を用いて形成されている。ここでヨ
ーク2はその媒体対向面側で絞り込まれ、所定のギャッ
プ長(G、L、)に相当する間隙が形成されている。更
に、ヨーク2の他端側には一方のヨークから他のヨーク
へ磁束を還流させる機能を有する、軟磁性薄膜からなる
リターン・パス3が形成されている。このリターン・パ
ス3には導電性薄膜からなるコイル4が形成され、記録
媒体に情報を書き込む電磁誘導型のエレメント部が構成
されている。又、ヨーク2とリターン・パス3との間に
は、NiFe合金よりなる磁気抵抗効果素子(MR素子
)1が、前記ヨーク2及びリターン・パス3と磁気的連
続性を保持し且つ電気的には絶縁されて配置され情報を
読み出す磁気抵抗効果型のエレメント部が構成されて、
電磁誘導型と磁気抵抗効果型とを複合化したトランスデ
ユーサ−が形成されている。同様に、第3図B及びCは
各々電磁誘導型、磁気抵抗効果型のエレメント部のみを
持つトランスデユーサ−を示している。
A head having a structure as shown in B and C was published in Japanese Patent Application Laid-Open No. 1986-
150315. That is, Figure 3A
A pair of yokes 2 made of a soft magnetic thin film are formed on a substrate (not shown) made of ceramic such as A1203-Tic using integrated thin film technology. Here, the yoke 2 is narrowed on its medium facing surface side, and a gap corresponding to a predetermined gap length (G, L,) is formed. Further, on the other end side of the yoke 2, a return path 3 made of a soft magnetic thin film is formed, which has the function of circulating magnetic flux from one yoke to the other yoke. A coil 4 made of a conductive thin film is formed on this return path 3, and constitutes an electromagnetic induction type element portion for writing information on a recording medium. Further, between the yoke 2 and the return path 3, a magnetoresistive element (MR element) 1 made of NiFe alloy maintains magnetic continuity with the yoke 2 and the return path 3 and is electrically connected to the yoke 2 and the return path 3. consists of a magnetoresistive element section that is insulated and reads out information.
A transducer is formed that is a combination of an electromagnetic induction type and a magnetoresistive type. Similarly, FIGS. 3B and 3C show transducers having only electromagnetic induction type and magnetoresistive type element portions, respectively.

以上の様な第3図A、B、Cに示した薄膜磁気ヘッドに
おいては、トラック幅Twはヨーク2の膜厚で規定され
る。従って、狭トラツク幅化はヨーク2を成す軟磁性薄
膜の膜厚を薄くすることにより成されるので、本質的に
狭トラツク幅化が容易であるという利点がある。
In the thin film magnetic heads shown in FIGS. 3A, B, and C as described above, the track width Tw is defined by the film thickness of the yoke 2. Therefore, since narrowing the track width is achieved by reducing the thickness of the soft magnetic thin film forming the yoke 2, there is an advantage that it is essentially easy to narrow the track width.

(発明が解決しようとする問題点) しかしながら第3図A、B、Cに示した如き薄膜磁気ヘ
ッドにおいては、ギャップ、特にギャップ長G、L。
(Problems to be Solved by the Invention) However, in thin film magnetic heads such as those shown in FIGS. 3A, B, and C, gaps, particularly gap lengths G and L.

が0.5pm程度以下の微小ギャップの形成が困難であ
るという欠点を有していた。すなわち、NiFe合金あ
るいはCo−メタル系非晶質等の軟磁性薄膜よりなる一
対のヨークパターンを形成後、前記ヨークにもうけられ
たギャップと成る微小な間隙を、スパッタリング法ある
いは蒸着法等の薄膜形成方法を用いて、例えば酸化硅素
あるいは酸化アルミニウム等の非磁性材料で充填する場
合、前記間隙は最近の高記録密度化を反映して極めて大
きなアスペクト比(例えば、トラック幅3pm、ギャッ
プ長0.5μmの場合、この間隙の寸法は高さ3pm、
幅0.5pmでありアスペクト比は6となる。)を持つ
ことになり、第4図に示した、第3図AのA−A部断面
図のように非磁性材料6で前記間隙を十分に埋め込むこ
とが出来ず空乏域7が存在していた。
However, it has the disadvantage that it is difficult to form a minute gap of about 0.5 pm or less. That is, after forming a pair of yoke patterns made of soft magnetic thin films such as NiFe alloy or Co-metal amorphous, a minute gap formed in the yokes is formed by thin film formation using sputtering or vapor deposition. When filling the gap with a non-magnetic material such as silicon oxide or aluminum oxide, the gap has a very large aspect ratio (for example, track width 3 pm, gap length 0.5 μm) reflecting the recent increase in recording density. In the case of , the dimensions of this gap are height 3pm,
The width is 0.5 pm and the aspect ratio is 6. ), and as shown in the cross-sectional view taken along line A-A in FIG. 3A shown in FIG. Ta.

この空乏域は前記間隙が小さく成ればなる程、つまりギ
ャップ長を小さくして記録密度を上げれば上げる程著し
く間隙が全く充填されない場合もあった。
The smaller the gap becomes, that is, the smaller the gap length and the higher the recording density, the more this depletion region becomes noticeable, and in some cases the gap is not filled at all.

このことは、トランスデユーサ形成後の機械加工時、特
に浮揚面の研磨時にギャップ部のカケあるいはヨークを
成す、軟磁性体の変形の誘因となり、ギャップ部に磁気
的な短絡を発生させヘッド加工プロセス上の大きな問題
点となっていた。又上述した如き問題点の発生しなかっ
たヘッドにおいても、ギャップ部に空乏域が存在する為
、ヘッドを使用している際の磁気記録媒体との接触・摺
動によりギャップ部に損傷が発生し信頼性に問題があっ
た。
This causes deformation of the soft magnetic material that forms the chip or yoke in the gap during machining after forming the transducer, especially during polishing of the floating surface, causing a magnetic short circuit in the gap and machining the head. This was a major problem in the process. Furthermore, even in heads that do not have the above-mentioned problems, since there is a depletion region in the gap, damage can occur in the gap due to contact and sliding with the magnetic recording medium when the head is in use. There were reliability issues.

本発明は以上述べてきた従来の問題点を解決した薄膜磁
気ヘッドを提供することを目的とするものである。
An object of the present invention is to provide a thin film magnetic head that solves the conventional problems described above.

(問題点を解決するための手段) 本発明によれば、電磁誘導型、磁気抵抗効果型あるいは
この両者を複合化したエレメント部と、このエレメント
部と磁気的連続性を損なうことなく形成されたリターン
・パス部及びヨーク部とよりなるトランスデユーサ−を
有し、且つトラック幅が前記ヨークの厚みで規定される
薄膜磁気ヘッドにおいて、該薄膜磁気ヘッドのギャップ
が矩形状の断面を有する非磁性材料より成るパターンよ
りなり、しかも該パターンの幅が所定のギャップ長に等
しく、且つ該パターンの高さが前記ヨークの膜厚に等し
いことを特徴とする薄膜磁気ヘッドかえられる。ここで
、本発明による薄膜磁気ヘッドのギャップ及びヨークは
所定のトラック幅と実質的に等しい膜厚を有する非磁性
材料を成膜する工程、所定ギャップ幅に実質的に等しい
幅を有するマスクパターンの形成工程、非磁性材料の反
応性イオンエツチング工程、軟磁性薄膜を形成し、この
上に有機物を塗布しエッチバックによりヨークを形成す
る工程、とを行うことにより作製される。
(Means for Solving the Problems) According to the present invention, an element portion is formed of an electromagnetic induction type, a magnetoresistive type, or a combination of both, and an element portion formed without impairing magnetic continuity with the element portion. A thin film magnetic head having a transducer including a return path part and a yoke part, and a track width defined by the thickness of the yoke, wherein a gap of the thin film magnetic head has a rectangular cross section. The thin film magnetic head is replaced by a pattern made of a material, the width of the pattern is equal to a predetermined gap length, and the height of the pattern is equal to the thickness of the yoke. Here, the gap and yoke of the thin film magnetic head according to the present invention are formed by a process of forming a non-magnetic material having a film thickness substantially equal to a predetermined track width, and a mask pattern having a width substantially equal to a predetermined gap width. It is manufactured by performing a forming step, a reactive ion etching step of a non-magnetic material, and a step of forming a soft magnetic thin film, applying an organic substance thereon, and forming a yoke by etching back.

(作用) 本発明による薄膜磁気ヘッドは、ヨーク形成工程に先立
って、酸化硅素を成膜しマスクパターン形成した後、た
とえばCF4ガス雰囲気中での反応性イオンエツチング
によりこの酸化硅素膜を輻及び高さが各々所定のギャッ
プ長、トラック幅に等しい矩形断面を有するパターンに
加工し、この酸化硅素パターンをギャップとする構造を
有している。従って、従来の薄膜磁気ヘッドのように非
磁性体の埋め込みが必要でなく、原理的にヨーク部間隙
での空乏域は存在せずヘッド加工プロセスでの歩留りが
向上し、信頼性の高い薄膜磁気ヘッドが実現される。
(Function) In the thin-film magnetic head according to the present invention, prior to the yoke forming process, a silicon oxide film is formed and a mask pattern is formed, and then the silicon oxide film is etched and etched by reactive ion etching in a CF4 gas atmosphere. It has a structure in which each of the silicon oxide patterns is processed into a pattern having a rectangular cross section equal to a predetermined gap length and track width, and this silicon oxide pattern is used as a gap. Therefore, unlike conventional thin-film magnetic heads, it is not necessary to embed non-magnetic material, and in principle there is no depletion region in the gap between the yoke parts, improving the yield in the head manufacturing process and achieving highly reliable thin-film magnetic heads. The head is realized.

(実施例) 以下図面を用いて本発明を説明する。(Example) The present invention will be explained below using the drawings.

第1図は本発明による薄膜磁気ヘッドのギャップ部近傍
(第3図AでのA−A部断面に相当する箇所)の概略断
面構造を示す図である。
FIG. 1 is a diagram showing a schematic cross-sectional structure of a thin-film magnetic head according to the present invention in the vicinity of a gap portion (corresponding to the section A--A in FIG. 3A).

第1図においてAl2O3−TiC基板9上に酸化硅素
膜をスパッタ法により成膜した。この酸化硅素膜の膜厚
は3pmであり、これは所定のトラック幅と等しい厚さ
である。ついで前記酸化硅素膜を反応性イオンエツチン
グにより、矩形断面状の酸化硅素パターン10に形成し
た。ここで該酸化硅素パターン10の幅は所定のギャッ
プ幅と等しくなるようにパターン化した。その後、膜厚
3pmのC09Q、Zr1s(重量比)膜をスパッタ法
で前記基板9及び酸化硅素パターン10上に成膜した。
In FIG. 1, a silicon oxide film was formed on an Al2O3-TiC substrate 9 by sputtering. The thickness of this silicon oxide film is 3 pm, which is equal to the predetermined track width. Next, the silicon oxide film was formed into a silicon oxide pattern 10 having a rectangular cross section by reactive ion etching. Here, the width of the silicon oxide pattern 10 was patterned to be equal to the predetermined gap width. Thereafter, a C09Q, Zr1s (weight ratio) film having a thickness of 3 pm was formed on the substrate 9 and the silicon oxide pattern 10 by sputtering.

ついで酸化硅素パターン10上のCo9.21zr12
1(重量比)膜をエツチングバックにより除去しヨーク
2を形成した。そののち、トランスデユーサ−の他の構
成要素、例えばコイル、リターン・パス等を形成し薄膜
磁気ヘッドのトランスデユーサ−を試作した。
Then Co9.21zr12 on the silicon oxide pattern 10
1 (weight ratio) film was removed by etching back to form a yoke 2. Thereafter, other components of the transducer, such as coils, return paths, etc., were formed, and a thin-film magnetic head transducer was prototyped.

以下、酸化硅素パターン10の作製方法について第2図
を用いて更に説明する。
Hereinafter, the method for manufacturing the silicon oxide pattern 10 will be further explained using FIG. 2.

前述した様にA1203−TiC基板9上に膜厚3pm
の酸化硅素膜11をスパッタ法により成膜する(第2図
−a)。ついで第2図−bに示したとおり、膜厚的lp
mのノボラック樹脂系のフォトレジスト層12を酸化硅
素膜11上に回転塗布し、約120°Cの温度で焼成す
る。その後フォトレジスト層12上に、膜厚的0.2p
mのTi膜13を蒸着法により形成する(第2図−C)
。次に、Ti膜13上にフォトレジストを塗布して露光
現像を行い、Tiマスク形成用のフォトレジストパター
ン14を形成する(第2図−d)。フォトレジストパタ
ーン14形成後、イオンエツチング法あるいは化学エツ
チング法によりTi膜13をエツチングしパターン化す
る。この状態を第2図−eに示す。このパターン化され
たTi膜13をマスクパ、ターンとして酸素雰囲気中で
フォトレジスト層12のイオンエツチングを行い、酸化
硅素膜11に対するマスクパターンを形成する。エツチ
ング条件は、酸素圧カニ2X10−’Torr、加速電
圧:500Voltである。第2図−rにこの状態を示
す。ついで、CF4ガス雰囲気中での反応性イオンエツ
チングにより酸化硅素膜11をエツチング加工し、輻0
.4pmの酸化硅素パターン10を形成する(第2図−
g)。尚、この場合のエツチング条件は、CF4ガス0
.3Torr、印加型カニ100Wである。フォトレジ
ネト層12除去後、膜厚4pmのCog。Zrtc(重
量比)膜15をスパッタ法で前記基板9及び酸化硅素パ
ターン10上に成膜した(第2図−h)。その後、Co
9゜zrl、(重量比)膜15上に有機物16(本実施
例では膜厚Qmのノボラック樹脂系の)オドレジストを
用いた。)を用いて平坦化し、Mガス雰囲気中でエッチ
バック(第2図−1)シ、酸化硅素パターン10上のC
ogg、Zr1゜(重量比)膜15除去して平坦化しヨ
ーク2を形成した(第2国利)。
As mentioned above, a film with a thickness of 3 pm was deposited on the A1203-TiC substrate 9.
A silicon oxide film 11 is formed by sputtering (FIG. 2-a). Next, as shown in Figure 2-b, the film thickness lp
A photoresist layer 12 made of novolac resin of m is spin-coated on the silicon oxide film 11 and baked at a temperature of about 120°C. After that, on the photoresist layer 12, a film with a thickness of 0.2p is applied.
A Ti film 13 of m thickness is formed by a vapor deposition method (Fig. 2-C).
. Next, a photoresist is applied onto the Ti film 13 and exposed and developed to form a photoresist pattern 14 for forming a Ti mask (FIG. 2-d). After forming the photoresist pattern 14, the Ti film 13 is etched and patterned by ion etching or chemical etching. This state is shown in FIG. 2-e. Using this patterned Ti film 13 as a mask pattern, ion etching of the photoresist layer 12 is performed in an oxygen atmosphere to form a mask pattern for the silicon oxide film 11. The etching conditions were an oxygen pressure of 2×10 Torr and an acceleration voltage of 500 Volt. This state is shown in FIG. 2-r. Next, the silicon oxide film 11 is etched by reactive ion etching in a CF4 gas atmosphere to achieve zero radiation.
.. A 4 pm silicon oxide pattern 10 is formed (Fig. 2-
g). Note that the etching conditions in this case are CF4 gas 0
.. It is 3 Torr and an application type crab 100W. After removing the photoresine layer 12, the Cog film has a thickness of 4 pm. A Zrtc (weight ratio) film 15 was formed on the substrate 9 and silicon oxide pattern 10 by sputtering (FIG. 2-h). After that, Co
9°zrl, (weight ratio) An organic material 16 (in this example, a novolac resin based film having a film thickness of Qm) was used on the film 15. ) and etched back in an M gas atmosphere (Fig. 2-1).
ogg, Zr1° (weight ratio) film 15 was removed and flattened to form a yoke 2 (Second National Interest).

尚、エッチバックの条件は使用する有機物16とヨーク
2となる軟磁性膜(本実施例では、膜厚4pmのC09
12,Zr1e(重量比)膜15との種類によって決定
されるべきもので本発明を規定するものではないが、本
実施例ではMガス圧カニ2X10−’Torr、加速電
圧=500Volt、入射角=45度である。
The etch-back conditions are as follows: The organic material 16 used and the soft magnetic film that will become the yoke 2 (in this example, the C09 film thickness is 4 pm).
12, Zr1e (weight ratio) Although it should be determined by the type of film 15 and does not define the present invention, in this example, M gas pressure is 2X10-' Torr, acceleration voltage = 500 Volt, incident angle = It is 45 degrees.

以上の方法を用いて作製された本発明による薄膜磁気ヘ
ッドにおいては、前述した様にCF4ガス雰囲気中での
反応性イオンエツチングにより酸化硅素膜を、幅及び高
さが各々所定のギャップ長、トラック幅に等しく、且つ
その断面形状が矩形状に加工された酸化硅素パターンが
ギャップとなる構造を有している。
In the thin-film magnetic head according to the present invention manufactured using the above method, the silicon oxide film is etched by reactive ion etching in a CF4 gas atmosphere as described above, so that the width and height are set to a predetermined gap length and track. It has a structure in which a silicon oxide pattern, which is equal in width and processed into a rectangular cross-sectional shape, serves as a gap.

従って、本発明による薄膜磁気ヘッドにおいては、従来
の薄膜磁気ヘッドと異なり、ギャップ部に空乏域が原理
的に存在せず前述した如き問題点、つまりヘッド加工プ
ロセスの諸問題が根本的に解決され歩留りが向上した。
Therefore, in the thin-film magnetic head according to the present invention, unlike conventional thin-film magnetic heads, there is no depletion region in the gap in principle, and the above-mentioned problems, that is, various problems in the head manufacturing process, are fundamentally solved. Yield has improved.

又、磁気記録媒体との接触・摺動に対して高い信頼性を
もつ薄膜磁気ヘッドが実現された。
Furthermore, a thin film magnetic head with high reliability in contact and sliding with a magnetic recording medium has been realized.

なお、非磁性材料は本発明の製法が適用可能ならば酸化
硅素に限られない。
Note that the nonmagnetic material is not limited to silicon oxide as long as the manufacturing method of the present invention is applicable.

(発明の効果) 以上述べてきた様に、本発明による薄膜磁気ヘッドにお
いては幅、及び高さが各々所定のギャップ長、トラック
幅に実質的に等しい、矩形断面を有する非磁性材料より
成るパターンを形成してこれをギャップとなし、その後
ヨークを形成する構造であるため、ギャップ部に空乏域
が発生せず、薄膜磁気ヘッド加工時のギャップのカケあ
るいはヨークを成す軟磁性体の変形が抑制され、ギャッ
プ部での磁気的短絡が防止できヘッド加工プロセスの良
品率が大幅に改善される。又、ヘッド使用時の磁気記録
媒体との接触、摺動にたいしても空乏域が無いため、ギ
ャップ部の損傷が発生せず、高い信頼性を有する薄膜磁
気ヘッドが実現された。従って、本発明が持つ工業的価
値は高いと言える。
(Effects of the Invention) As described above, in the thin film magnetic head according to the present invention, a pattern made of a nonmagnetic material having a rectangular cross section and whose width and height are substantially equal to a predetermined gap length and track width, respectively. This structure forms a gap and then forms a yoke, so no depletion region is generated in the gap, which suppresses chipping of the gap or deformation of the soft magnetic material forming the yoke during processing of the thin-film magnetic head. As a result, magnetic short circuits at the gap can be prevented, and the yield rate in the head manufacturing process can be greatly improved. Furthermore, since there is no depletion region when the head contacts or slides with the magnetic recording medium during use, damage to the gap portion does not occur, and a highly reliable thin-film magnetic head has been realized. Therefore, it can be said that the industrial value of the present invention is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による薄膜磁気ヘッドのギャップ部近傍
の概略断面図、第2図(a)〜(j)は本発明による薄
膜磁気ヘッドのギャップ部の形成方法を示す図、第3図
(A)〜(C)は本発明が適用される薄膜磁気ヘッドの
概略構造を説明するための図、第4図は従来例の問題点
を示す図である。 図において、・ 1・・・MR1子、 2・・・ヨーク、3・・・リター
ン・パス、4・・・コイル、  5・・・端子、  6
・・・非磁性材料、7・・・空乏域、 9−Al2O2
−Tic基板、10・・・酸化硅素パターン、    
11・・・酸化硅素膜、12・・・フォトレジスト層、
   13・・−Ti膜、第2図 第2図 0□ 第3図A 第3図C 第4図
FIG. 1 is a schematic sectional view of the vicinity of the gap portion of the thin film magnetic head according to the present invention, FIGS. 2(a) to (j) are diagrams showing a method of forming the gap portion of the thin film magnetic head according to the present invention, and FIG. A) to (C) are diagrams for explaining the schematic structure of a thin film magnetic head to which the present invention is applied, and FIG. 4 is a diagram showing problems in the conventional example. In the figure, 1...MR1 child, 2...Yoke, 3...Return path, 4...Coil, 5...Terminal, 6
...Nonmagnetic material, 7...Depletion region, 9-Al2O2
-Tic substrate, 10... silicon oxide pattern,
11... Silicon oxide film, 12... Photoresist layer,
13...-Ti film, Fig. 2 Fig. 2 0□ Fig. 3 A Fig. 3 C Fig. 4

Claims (4)

【特許請求の範囲】[Claims] (1)電磁誘導型、磁気抵抗効果型あるいはこの両者を
複合化したエレメント部と、このエレメント部と磁気的
連続性を損なうことなく形成されたリターン・パス部及
びヨーク部とより成るトランスデューサーを有し、且つ
トラック幅が前記ヨークの厚みで規定される薄膜磁気ヘ
ッドにおいて、該薄膜磁気ヘッドのギャップが非磁性材
料より成る矩形状の断面を有するパターンより成り、し
かも該パターンの幅が所定のギャップ長に等しく、且つ
該パターンの高さが前記ヨークの膜厚と等しいことを特
徴とする薄膜磁気ヘッド。
(1) A transducer consisting of an element section that is electromagnetic induction type, magnetoresistive type, or a combination of both, and a return path section and yoke section that are formed without impairing magnetic continuity with this element section. and the track width is defined by the thickness of the yoke, the gap of the thin film magnetic head is made of a pattern made of a non-magnetic material and has a rectangular cross section, and the width of the pattern is defined by a predetermined width. A thin film magnetic head characterized in that the gap length is equal to the height of the pattern, and the height of the pattern is equal to the film thickness of the yoke.
(2)非磁性材料より成るパターンが酸化硅素よりなる
ことを特徴とする特許請求の範囲第1項記載の薄膜磁気
ヘッド。
(2) A thin film magnetic head according to claim 1, wherein the pattern made of nonmagnetic material is made of silicon oxide.
(3)薄膜磁気ヘッドの製造方法において、所定のトラ
ック幅と実質的に等しい膜厚の非磁性材料より成る薄膜
を成膜する工程、有機物層の塗布工程、該有機物層上へ
金属層を成膜する工程、前記金属層を所定のギャップ長
に実質的に等しい幅にパターン化する工程、前記有機物
層と、非磁性材料より成る薄膜とをそれぞれイオンエッ
チングする工程、軟磁性薄膜を成膜する工程、該薄膜を
ヨークに形成する工程、とを含むことを特徴とする薄膜
磁気 ヘッドの製造方法。
(3) A method for manufacturing a thin film magnetic head, including a step of forming a thin film made of a non-magnetic material with a thickness substantially equal to a predetermined track width, a step of coating an organic layer, and a step of forming a metal layer on the organic layer. forming a film, patterning the metal layer to have a width substantially equal to a predetermined gap length, ion-etching the organic layer and the thin film made of a non-magnetic material, respectively, forming a soft magnetic thin film. 1. A method of manufacturing a thin film magnetic head, comprising: a step of forming the thin film on a yoke.
(4)酸化硅素により非磁性材料を成膜し、該非磁性材
料をイオンエッチングする工程が、 CF_4ガス雰囲気中での反応性イオンエッチング工程
であることを特徴とする特許請求の範囲第3項記載の薄
膜磁気ヘッド。
(4) The step of forming a film of a non-magnetic material using silicon oxide and ion-etching the non-magnetic material is a reactive ion etching step in a CF_4 gas atmosphere, according to claim 3. thin film magnetic head.
JP61284783A 1986-11-28 1986-11-28 Method for manufacturing thin-film magnetic head Expired - Lifetime JP2613876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61284783A JP2613876B2 (en) 1986-11-28 1986-11-28 Method for manufacturing thin-film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61284783A JP2613876B2 (en) 1986-11-28 1986-11-28 Method for manufacturing thin-film magnetic head

Publications (2)

Publication Number Publication Date
JPS63138513A true JPS63138513A (en) 1988-06-10
JP2613876B2 JP2613876B2 (en) 1997-05-28

Family

ID=17682957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61284783A Expired - Lifetime JP2613876B2 (en) 1986-11-28 1986-11-28 Method for manufacturing thin-film magnetic head

Country Status (1)

Country Link
JP (1) JP2613876B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284495A2 (en) * 1987-03-19 1988-09-28 Commissariat A L'energie Atomique Magnetic head for reading of very small width tracks and fabrication method
JPH0341609A (en) * 1989-06-30 1991-02-22 Ampex Corp Thin-film magnetic converter and manufacture thereof
WO2001071714A1 (en) * 2000-03-22 2001-09-27 Commissariat A L'energie Atomique Integrated magnetic head for helical magnetic recording on tape and method for making same
EP1143419A2 (en) * 2000-03-30 2001-10-10 Kabushiki Kaisha Toshiba Magnetic head, method for producing same, and magnetic recording and/or reproducing system
US6650598B2 (en) 1999-06-24 2003-11-18 Matsushita Electric Industrial Co., Ltd. Magnetic head having magnetoresistance device and recording/reproducing apparatus incorporating the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212814A (en) * 1975-07-17 1977-01-31 Philips Nv Thin film magnetic head
JPS57141008A (en) * 1981-02-23 1982-09-01 Hitachi Ltd Thin film double azimuth magnetic head
JPS6043210A (en) * 1983-08-18 1985-03-07 Tdk Corp Magnetic head and its manufacture
JPS61110311A (en) * 1984-11-05 1986-05-28 Sharp Corp Production of magnetic head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212814A (en) * 1975-07-17 1977-01-31 Philips Nv Thin film magnetic head
JPS57141008A (en) * 1981-02-23 1982-09-01 Hitachi Ltd Thin film double azimuth magnetic head
JPS6043210A (en) * 1983-08-18 1985-03-07 Tdk Corp Magnetic head and its manufacture
JPS61110311A (en) * 1984-11-05 1986-05-28 Sharp Corp Production of magnetic head

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284495A2 (en) * 1987-03-19 1988-09-28 Commissariat A L'energie Atomique Magnetic head for reading of very small width tracks and fabrication method
JPH0341609A (en) * 1989-06-30 1991-02-22 Ampex Corp Thin-film magnetic converter and manufacture thereof
US6650598B2 (en) 1999-06-24 2003-11-18 Matsushita Electric Industrial Co., Ltd. Magnetic head having magnetoresistance device and recording/reproducing apparatus incorporating the same
US6982932B2 (en) 1999-06-24 2006-01-03 Matsushita Electric Industrial Co., Ltd. Recording/reproducing head and recording/reproducing apparatus incorporating the same
WO2001071714A1 (en) * 2000-03-22 2001-09-27 Commissariat A L'energie Atomique Integrated magnetic head for helical magnetic recording on tape and method for making same
FR2806826A1 (en) * 2000-03-22 2001-09-28 Commissariat Energie Atomique INTEGRATED MAGNETIC HEAD FOR HELICOIDAL MAGNETIC RECORDING ON TAPE AND ITS MANUFACTURING METHOD
US6885520B2 (en) 2000-03-22 2005-04-26 Commissariat A L'energie Atomique Integrated magnetic head comprising a thin layer structure
EP1143419A2 (en) * 2000-03-30 2001-10-10 Kabushiki Kaisha Toshiba Magnetic head, method for producing same, and magnetic recording and/or reproducing system
EP1143419A3 (en) * 2000-03-30 2004-05-06 Kabushiki Kaisha Toshiba Magnetic head, method for producing same, and magnetic recording and/or reproducing system

Also Published As

Publication number Publication date
JP2613876B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
US4195323A (en) Thin film magnetic recording heads
KR100218755B1 (en) Upper pole structure for pole tip trimming and method for it
US4321641A (en) Thin film magnetic recording heads
US4489484A (en) Method of making thin film magnetic recording heads
EP0269129A2 (en) Thin film magnetic head
JPS63138513A (en) Thin film magnetic head and its production
US5084957A (en) Method for aligning thin film head pole tips
JP2000099914A (en) Production of thin-film magnetic head
JPH09161230A (en) Magnetoresistance effect heat and its production
JP2567221B2 (en) Thin film magnetic head and method of manufacturing the same
JPH0594603A (en) Perpendicular magnetic head
JPS6045922A (en) Magneto-resistance effect type magnetic head
JPH07210821A (en) Thin-film magnetic head and its production
WO2001093268A2 (en) Magnetic recording head with dielectric layer
JP2000020914A (en) Formation of metallic film and formation of pole for thin-film magnetic head
JP3603739B2 (en) Thin film magnetic head and method of manufacturing thin film magnetic head
JP2861080B2 (en) Method for forming pattern of amorphous alloy magnetic film
JP3593214B2 (en) Marker for detecting processing amount of magnetoresistive thin film magnetic head and method of manufacturing the same
JPH05303719A (en) Thin-film magnetic head and its production
KR100198864B1 (en) Process for producing a thin film magnetic tape head
US20020057525A1 (en) Method of manufacturing a magnetic element
JPS63138516A (en) Thin film magnetic head
JPH02247808A (en) Thin film magnetic head and its production
JPH0721533A (en) Production of thin-film magnetic head
JPH05325138A (en) Floating thin film magnetic head and manufacture thereof