JPS63110523A - Treatment of electron gun - Google Patents

Treatment of electron gun

Info

Publication number
JPS63110523A
JPS63110523A JP25649686A JP25649686A JPS63110523A JP S63110523 A JPS63110523 A JP S63110523A JP 25649686 A JP25649686 A JP 25649686A JP 25649686 A JP25649686 A JP 25649686A JP S63110523 A JPS63110523 A JP S63110523A
Authority
JP
Japan
Prior art keywords
electrostatic
convergence
electrode
electron gun
electrode plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25649686A
Other languages
Japanese (ja)
Other versions
JPH0744001B2 (en
Inventor
Haruo Ito
伊藤 治男
Toshio Ohashi
大橋 寿男
Toshiaki Yamaguchi
利明 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP61256496A priority Critical patent/JPH0744001B2/en
Publication of JPS63110523A publication Critical patent/JPS63110523A/en
Publication of JPH0744001B2 publication Critical patent/JPH0744001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PURPOSE:To prevent potential fluctuation caused by current leakage by irradiating electron beams from a cathode of an electron gun to an electrostatic convergence electrode and the periphery thereof so as to eliminate the source of current leakage in the periphery of the electrostatic convergence electrode. CONSTITUTION:The irradiation of electron beams from a cathode of an electron gun 2 to the periphery of an electrostatic convergence electrode 3 causes electrons to collide with electrostatic convergence electrode plates 3c and 3d, resulting in decreased potential of the electrostatic convergence electrode plates 3c and 3d, and increased potential difference, i.e. convergence potential difference Econv, between the electrostatic convergence electrode plates 3c and 3d and high tension electrode plates 3a and 3b. The increased convergence potential difference Econv provides actual knocking effect, eliminating dusts and hurrs. At the same time, the irradiation of electron beams causes the electrostatic convergence electrode 3 and peripheral electrodes to generate heat and discharge the gas absorbed to the electrodes, and the electron collision, too, causes the gas absorbed to the electrodes to discharge, with the discharge gas absorbed to a getter.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、陰極線管の静電集中特性を安定化させるため
の電子銃の処理法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of processing an electron gun to stabilize the electrostatic concentration characteristics of a cathode ray tube.

〔発明の概要〕[Summary of the invention]

本発明は、陰極線管の静電集中型電子銃において、静電
集中電極及びその周辺電極に電子銃のカソードからの電
子ビームを照射することによって、静電集中電圧の昇圧
、電極の発熱等の相互作用で静電集中電極周辺における
電気漏洩源を消滅させて静電集中電極における電圧変動
を防止し、陰極線管の静電集中特性を安定化させるよう
にしだものである。
The present invention provides an electrostatic concentration type electron gun for a cathode ray tube, in which the electrostatic concentration electrode and its surrounding electrodes are irradiated with an electron beam from the cathode of the electron gun, thereby increasing the electrostatic concentration voltage and reducing heat generation of the electrode. This interaction eliminates electrical leakage sources around the electrostatic concentrating electrode, prevents voltage fluctuations at the electrostatic concentrating electrode, and stabilizes the electrostatic concentrating characteristics of the cathode ray tube.

〔従来の技術〕[Conventional technology]

カラー陰極線管においては電子ビームを螢光面上に集中
させる手段として電磁集中方式と静電集中方式がある。
In color cathode ray tubes, there are two methods for concentrating the electron beam on the fluorescent surface: an electromagnetic concentration method and an electrostatic concentration method.

トリニトロン(登録商標)方式によるカラー陰極線管に
おいては、後者の静電集中方式がとられている。その−
例を第9図に示す。
The latter electrostatic concentration method is used in color cathode ray tubes based on the Trinitron (registered trademark) method. That-
An example is shown in FIG.

同図中、(1)は管体、(2)は管体(1)のネック部
(1a)内に配された電子銃を示す。電子銃(2)は例
えば赤、緑及び青に対応する3本のカソードK RI 
 K a +Ksに対して共通に第1グリツドG1、第
2グリツドG2、第3グリツドG3、第4グリツドG4
及び第5グリツドG5が順次配列されたユニポテンシャ
ル型、又はパイポテンシャル型をなし、第5グリツドG
5の後段に静電コンバージェンス手段(いわゆる静電集
中電極)(3)が配置されて成る。
In the figure, (1) shows a tube, and (2) shows an electron gun disposed inside the neck (1a) of the tube (1). The electron gun (2) has, for example, three cathodes KRI corresponding to red, green and blue.
The first grid G1, the second grid G2, the third grid G3, and the fourth grid G4 are commonly used for Ka + Ks.
and a fifth grid G5 are arranged in unipotential type or pi potential type, and the fifth grid G5
Electrostatic convergence means (so-called electrostatic concentration electrode) (3) is arranged after the electrostatic convergence means (5).

静電コンバージェンス手段(3)は相対向する内側偏向
電極(いわゆる高圧電極板)  (3a)及び(3b)
と、その外側の外側偏向電極板(いわゆる静電集牛用電
極板)  (3c)及び(3d)とを有して成る。
The electrostatic convergence means (3) includes opposing inner deflection electrodes (so-called high voltage electrode plates) (3a) and (3b).
and outer deflection electrode plates (so-called electrostatic collecting electrode plates) (3c) and (3d) on the outside thereof.

内側偏向電極板(3a)及び(3b)は第5グリツドG
5に接続され、これにアノード電圧HVが与えられ、ま
た外側偏向電極板(3C)及び(3d)にアノード電圧
HVより低いコンバージェンス電圧CVが与えられる。
The inner deflection electrode plates (3a) and (3b) are the fifth grid G.
5, to which an anode voltage HV is applied, and a convergence voltage CV lower than the anode voltage HV to the outer deflection electrode plates (3C) and (3d).

内側偏向電極板(3a)  (3b)と外側偏向電極板
(3c)  (3a)間の電位としては1.5〜2.O
K Vの電位差が与えられる。アノード電圧HVとコン
バージェンス電圧C■の印加方法としては、アノード電
圧HV及びコンバージェンス電圧C■共にアノードボタ
ン(図示せず)より同軸ケーブルにより供給する方法と
、アノード電圧HVは7ノードボタンより供給し、コン
バージェンス電圧CVは陰極線管内部に内蔵させた分割
抵抗板によって供給する方法とがある。
The potential between the inner deflection electrode plates (3a) (3b) and the outer deflection electrode plates (3c) (3a) is 1.5 to 2. O
A potential difference of KV is given. The anode voltage HV and the convergence voltage C■ can be applied by supplying both the anode voltage HV and the convergence voltage C■ from an anode button (not shown) using a coaxial cable, and by supplying the anode voltage HV from a 7-node button. There is a method in which the convergence voltage CV is supplied by a dividing resistor plate built inside the cathode ray tube.

第9図は前者の同軸ケーブルにより供給する方法であり
、同図に示すように同軸ケーブル(6)の中心導体(7
)が外側偏向電極板(3C)に接続されてコンバージェ
ンス電圧CVが与えられ、また外側導体(8)に連結さ
れたC字状の金属板ばね(9)がファンネル部(1b)
からネック部(1a)に渡って被着形成された内部導電
膜(4)に接触し、且つ第5グリツドG5よりの導電性
接触子(10)がネック部の内部導電膜(4)の端部に
弾性的に接触してアノード電圧II Vが与えられる。
Figure 9 shows the former method of supplying by coaxial cable.As shown in the figure, the center conductor (7) of the coaxial cable (6)
) is connected to the outer deflection electrode plate (3C) to give a convergence voltage CV, and a C-shaped metal plate spring (9) connected to the outer conductor (8) is connected to the funnel part (1b).
The conductive contact (10) from the fifth grid G5 contacts the end of the internal conductive film (4) in the neck part (1a). The anode voltage II V is applied by elastically contacting the part.

第10図は後者の分割抵抗板でコンバージェンス電圧C
Vを供給する方法である。同図において、第9図と対応
する部分は同一符号を付して重複説明を省略するも、(
11)は分割抵抗板を示し、これはセラミック等の絶縁
基板(12)の−面に抵抗路(13)をプリントし、そ
の抵抗路(13)の両端と所定の中間部に夫々端子jl
+  t2及びL3を形成して構成される。(14)は
必要に応じて被着される保護被膜である。この分割抵抗
板(11)は第1グリツドG1〜第5グリツドG5の側
面に配置され、その端子t2がアース電位の端子ビン(
15)に、端子t1がアノード電圧の第5グリツドG5
に夫々接続され、中間の端子t3がコンバージェンス手
段(3)の外側偏向電極板(3c) 、  (3d)に
接続され、これよりコンバージェンス電圧C■が与えら
れる。
Figure 10 shows the convergence voltage C at the latter dividing resistor plate.
This is a method of supplying V. In the same figure, parts corresponding to those in FIG.
11) shows a divided resistance plate, in which a resistance path (13) is printed on the - side of an insulating substrate (12) made of ceramic or the like, and terminals jl are connected to both ends of the resistance path (13) and a predetermined intermediate part, respectively.
+ Constructed by forming t2 and L3. (14) is a protective coating that is applied as necessary. This divided resistance plate (11) is arranged on the side surface of the first grid G1 to the fifth grid G5, and its terminal t2 is a terminal bin (
15), the terminal t1 is connected to the fifth grid G5 of the anode voltage.
The intermediate terminal t3 is connected to the outer deflection electrode plates (3c) and (3d) of the convergence means (3), from which a convergence voltage C■ is applied.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したように静電集中方式の陰極線管においては、水
平方向に関して電子ビームを集中させる為に偏向電極板
(3a)〜(3d)が電子銃電極の一部として組込まれ
、その内側偏向電極板(3a)(3b)と外側偏向電極
板(3c)  (3d)間で1.5〜2.0K Vの電
位差をもっている。この為に、偏向電極板まわりで何ら
かの原因が作用し電気漏洩が存在すると内側及び外側偏
向電極板間の電位変化の原因となり、電子ビームの螢光
面での集中特性の品質劣化要因となる。完成した陰極線
管においては水平スタティックコンバージェンス変化症
状となり陰極線管として重大欠点となる。
As mentioned above, in the electrostatic concentration type cathode ray tube, the deflection electrode plates (3a) to (3d) are incorporated as part of the electron gun electrode in order to concentrate the electron beam in the horizontal direction, and the inner deflection electrode plate There is a potential difference of 1.5 to 2.0 KV between the outer deflection electrode plates (3a) and (3b) and the outer deflection electrode plates (3c and 3d). For this reason, if some cause acts around the deflection electrode plate and there is electrical leakage, it causes a potential change between the inner and outer deflection electrode plates, which causes a quality deterioration of the concentration characteristics of the electron beam on the fluorescent surface. In the completed cathode ray tube, horizontal static convergence change occurs, which is a serious drawback as a cathode ray tube.

この欠点を取り除く手段として、第9図のコンバージェ
ンス電圧C■をアノードボタンを通じて印加する方式の
陰極線管に対しては、アノードボタンを通じて管体外部
より高電圧を印加してノンキング処理する手段がとられ
る。しかし、第10図の管体内部に分割抵抗板(11)
を内蔵してコンバージェンス電圧CVを印加する方式の
陰極線管においては改善の手段がなかった。
As a means to eliminate this drawback, for cathode ray tubes in which the convergence voltage C■ shown in Fig. 9 is applied through the anode button, a method is taken to apply a high voltage from outside the tube body through the anode button to perform non-king processing. . However, there is a divided resistance plate (11) inside the tube in Figure 10.
There has been no improvement in cathode ray tubes that incorporate a convergence voltage CV and apply a convergence voltage CV.

本発明は、上述の点に鑑み、静電集中電極への電圧印加
方式に関係なく、陰極線管における静電集中特性を安定
化できる電子銃の処理法を提供するものである。
In view of the above-mentioned points, the present invention provides an electron gun processing method that can stabilize the electrostatic concentration characteristics in a cathode ray tube regardless of the voltage application method to the electrostatic concentration electrode.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、陰極線管に組込まれた静電集中電極(3)を
一体に有する静電集中型電子銃(2)に対し、この電子
銃(2)のカソードKから出る電子ビームを静電集中電
極(3)及びその周辺電極に照射せしめる。
The present invention provides an electrostatic concentrating electron gun (2) that integrally has an electrostatic concentrating electrode (3) built into a cathode ray tube. The electrode (3) and its surrounding electrodes are irradiated.

この場合、電子銃(2)のカソードKから取り出された
電子ビームは、垂直、水平両方向への同時交番偏向、或
いは一方向(例えば垂直方向)への交番偏向によって第
5グリツドG5から静電集中電極周辺に一定時間照射す
る。カソードから取り出す電流量としては、後述のノッ
キング効果及び電極の発熱効果を1与る必要から、総計
でΣlk=0.5〜2.OmAの範囲が好ましく、カソ
ード特性に対して副作用(内部導電膜に電子ビームが当
たって放出されたガスがカソードに吸着されることによ
るエミッション減)の出ない電流量及び照射時間を設定
する。またΣIkが0 、9mA以上であれば短時間照
射(20秒〜30秒)で上記効果が得られる。電子ビー
ムを静電集中電極(3)及びその周辺電極に照射するた
めのビーム偏向手段としては、電磁偏向手段(21)又
は四重極コイル(22)を用いることができる。このビ
ーム偏向手段は静電集中電極(3)と電子銃のカソード
にの間に配され、例えば電磁偏向手段(21)の場合に
は正規の位置よりカソード側に後退した位置に配される
。又、拳法では偏向動作時の静電集中電極電界(即ちコ
ンバージェンス電位差)が陰極線管の定常動作状態より
も高(なるような条件のところで電子ビーム照射がなさ
れる。
In this case, the electron beam taken out from the cathode K of the electron gun (2) is electrostatically concentrated from the fifth grid G5 by simultaneous alternating deflection in both vertical and horizontal directions, or by alternating deflection in one direction (for example, vertical direction). Irradiates the area around the electrode for a certain period of time. The amount of current taken out from the cathode needs to take into account the knocking effect and the heating effect of the electrode, which will be described later, so the total amount of current is Σlk=0.5 to 2. A range of OmA is preferable, and the current amount and irradiation time are set so as not to cause side effects on the cathode characteristics (emission reduction due to adsorption of gas released by the electron beam on the internal conductive film to the cathode). Further, if ΣIk is 0.9 mA or more, the above effect can be obtained with short-time irradiation (20 seconds to 30 seconds). An electromagnetic deflection means (21) or a quadrupole coil (22) can be used as a beam deflection means for irradiating the electrostatic concentration electrode (3) and its surrounding electrodes with an electron beam. This beam deflection means is disposed between the electrostatic concentrating electrode (3) and the cathode of the electron gun, and for example, in the case of the electromagnetic deflection means (21), it is disposed at a position retreated from its normal position toward the cathode. Furthermore, in Kenpo, electron beam irradiation is performed under conditions such that the electrostatic concentrated electrode electric field (i.e., convergence potential difference) during the deflection operation is higher than the steady operating state of the cathode ray tube.

〔作用〕[Effect]

静電集中型電子銃において、静電集中電極周辺での電気
漏洩には、電極のパリ、電極に付着したごみの他、電極
に吸着されているガスも影當していると考えられる。
In an electrostatic concentrating electron gun, electric leakage around the electrostatic concentrating electrode is thought to be caused by the particles of the electrode, dust attached to the electrode, and gas adsorbed by the electrode.

拳法において、電子銃(2)のカソードよりの電子ビー
ムを静電集中電極周辺に照射することによって、静電集
中用電極板(3c) 、  (3d)に電子が衝突する
結果、静電集中用電極板(3c) 、  (3d)の電
位が低くなり、静電集中用電極板(3c) 、  (3
d)と高圧電極板(3a) 、  (3b)間の電位差
即ち所謂コンバージェンス電位差E convが大きく
なる。これは第8図の等価回路図によって証明される(
Ri。
In Kenpo, by irradiating the electron beam from the cathode of the electron gun (2) around the electrostatic concentration electrode, the electrons collide with the electrostatic concentration electrode plates (3c) and (3d), resulting in electrostatic concentration. The potential of the electrode plates (3c), (3d) becomes low, and the electrostatic concentration electrode plates (3c), (3
d) and the high-voltage electrode plates (3a) and (3b), that is, the so-called convergence potential difference Econv increases. This is proven by the equivalent circuit diagram in Figure 8 (
Ri.

R2,R3は電子ビームが流れることによる径路の抵抗
値である)。このコンバージェンス電位差E conv
が大きくなることによって実質的なノッキング効果が得
られごみ、パリが除去される。同時に、電子ビームの照
射で静電集中電極(3)及び周辺電極が発熱し、電極に
吸着されていたガスが放出され、また電子ビームが衝突
することによっても電極に吸着されていたガスが放出さ
れる。放出されたガスはゲッタに吸着される。このよう
に、電子ビームの照射で生ずるコンバージェンス電位差
の昇圧、電極の発熱、電子の衝突等の相互作用によって
、静電集中電極(3)及びその周辺に於ける電気漏洩源
の消滅がより確実に達成される。従って、静電集中電極
周辺での電気漏洩に起因する電位変動が防止され、静電
集中特性が安定する。
R2 and R3 are the resistance values of the path through which the electron beam flows). This convergence potential difference E conv
By increasing the size, a substantial knocking effect is obtained and dirt and debris are removed. At the same time, the electrostatic concentrating electrode (3) and the surrounding electrodes generate heat due to electron beam irradiation, and the gas adsorbed on the electrodes is released, and the gas adsorbed on the electrodes is also released due to the collision with the electron beam. be done. The released gas is adsorbed by the getter. In this way, the interaction of the increase in convergence potential difference caused by electron beam irradiation, the heat generation of the electrode, and the collision of electrons ensures that the source of electrical leakage in and around the electrostatic concentration electrode (3) disappears more reliably. achieved. Therefore, potential fluctuations caused by electrical leakage around the electrostatic concentration electrode are prevented, and the electrostatic concentration characteristics are stabilized.

〔実施例〕 実施例1 本実施例は電子ビーム偏向手段として電磁偏向手段を用
いた場合である。第10図に示す分割抵抗板(11)を
内蔵してコンバージェンス電圧を印加する方式の陰極線
管において、その電磁偏向手段(21)  (第3図参
照)の設定位置を正規の設定位置より後退させて電子銃
(2)のカソードよりの電子ビームをコンバージェンス
手段(3)及びその周辺電極(例えば第5グリツドG5
、第5グリツドG5と内側偏向電極(3a) 、  (
3b)間のポールピース(16) ’)に照射せしめる
[Example] Example 1 This example is a case where electromagnetic deflection means is used as the electron beam deflection means. In a cathode ray tube of the type shown in Fig. 10 that incorporates a dividing resistor plate (11) and applies a convergence voltage, the setting position of the electromagnetic deflection means (21) (see Fig. 3) is set back from the normal setting position. The electron beam from the cathode of the electron gun (2) is transferred to the convergence means (3) and its surrounding electrodes (for example, the fifth grid G5).
, fifth grid G5 and inner deflection electrode (3a), (
The pole piece (16)') between 3b) is irradiated.

第1図に電磁偏向手段(21)の設定位置を変えたとき
の内側偏向電極板(3a) 、  (3b)と外側偏向
電極板(3c) 、  (3d)間のコンバージェンス
電位、1Econvの変化を示す、このテスト条件は、
アノード電圧HV = 25.5K V、、第2グリツ
ドG2の電圧EC2=EC2CO%第4グリッドG4の
電圧EC4= 133V、カソードから取り出す電流量
の総計ΣIk=ABL(オートマチックビームリミッタ
:平均電流の最大のもの)条件〔赤=540IIA。
Figure 1 shows the change in convergence potential, 1Econv, between the inner deflection electrode plates (3a), (3b) and the outer deflection electrode plates (3c), (3d) when the setting position of the electromagnetic deflection means (21) is changed. As shown, this test condition is
Anode voltage HV = 25.5K V, second grid G2 voltage EC2 = EC2CO%, fourth grid G4 voltage EC4 = 133V, total amount of current taken out from the cathode ΣIk = ABL (automatic beam limiter: maximum average current Item) Conditions [Red = 540IIA.

緑=410μ八、青=350μA〕、ビーム照射時間3
0秒、電磁偏向手段への投入電流は通常の陰極線管動作
条件と同じとした。この第1図によれば、電磁偏向手段
(21)の設定位置に応じてそのコンバージェンス電位
差E convが正規の動作位置でのコンバージェンス
電位差B conv−1,97より大きくなるのが認め
られる。又、電磁偏向手段(21)を第3図に示すよう
に正規の位置から65mm後退した位置に設定、したと
きのコンバージェンス電位差E convと電流量の総
計ΣIk  (ここでは赤、緑、青の電流量を等しくし
た)の関係を第2図に示す。
Green = 410 μA, Blue = 350 μA], beam irradiation time 3
0 seconds, and the current applied to the electromagnetic deflection means was the same as the normal cathode ray tube operating conditions. According to FIG. 1, it can be seen that the convergence potential difference E conv becomes larger than the convergence potential difference B conv-1,97 at the normal operating position depending on the set position of the electromagnetic deflection means (21). Furthermore, as shown in Fig. 3, the electromagnetic deflection means (21) is set to a position 65 mm backward from the normal position, and the convergence potential difference E conv and the total amount of current ΣIk (here, the red, green, and blue currents are Figure 2 shows the relationship between (with equal amounts).

第4図は電磁偏向手段(21)後退時の偏向中心移動位
置を示すもので、正規の電磁偏向手段位置におけるビー
ムの偏向中心x1に対して電磁偏向手段を65mm後退
したときのビームの偏向中心x2は第5グリツドG5内
に移る。
Figure 4 shows the movement position of the deflection center when the electromagnetic deflection means (21) is retracted, and shows the deflection center of the beam when the electromagnetic deflection means is moved back 65 mm from the beam deflection center x1 at the regular electromagnetic deflection means position. x2 moves into the fifth grid G5.

第2図によればΣIkが太き(なるにつれてコンバージ
ェンス電位1Econνが大きくなることが認められる
According to FIG. 2, it is recognized that as ΣIk becomes thicker, the convergence potential 1Econν becomes larger.

表1に電磁偏向手段(21)の移動量dを65mmとし
たときのコンバージェンス電位差E con4の例を示
す。
Table 1 shows an example of the convergence potential difference E con4 when the moving amount d of the electromagnetic deflection means (21) is 65 mm.

表1 実施例2 本実施例は電子ビーム照射手段として四重極コイルを用
いた場合である。実施例1と同様に第10図の分割抵抗
板(11)を内蔵してコンバージェンス電圧を印加する
方式の陰極線管に対して第6図に示すようにその第4グ
リツドG4に対応するネック部外側に四重極コイル(2
2)を配置し、電子銃(2)のカソードよりの電子ビー
ムをコンバージェンス手段(3)及びその周辺電極に照
射せしめる。第5図は四正極コイルの外観を示す。
Table 1 Example 2 This example is a case where a quadrupole coil is used as the electron beam irradiation means. As in Embodiment 1, for a cathode ray tube that incorporates the dividing resistor plate (11) shown in FIG. 10 and applies a convergence voltage, as shown in FIG. quadrupole coil (2
2), and the convergence means (3) and its surrounding electrodes are irradiated with an electron beam from the cathode of the electron gun (2). FIG. 5 shows the appearance of the four positive pole coil.

この四正極コイル(22)を用いた場合、ΣIk及び四
正極コイル(22)への投入電流によってコンバージェ
ンス電位差E C0nVは変化する。
When this four-positive coil (22) is used, the convergence potential difference E C0nV changes depending on ΣIk and the current applied to the four-positive coil (22).

第7図はその状態を示すもので、曲線(1)はΣIk−
540μA (赤のみ)の場合、曲線(I[)はΣI 
k = 600μA (赤、緑、青各200μA)の場
合、曲線(III)はΣIk=ABL条件(赤=540
μA、緑=410μA、青=350μA)の場合、曲線
(IV)はΣlk=410μ^ (緑のみ)の場合であ
る。このテスト条件はアノード電圧HV=25.5K 
V 、第2グ’JツFGz電圧EC2=EC2CO%第
4グリッドG4電圧Ec4= 133V、ビーム照射時
間30秒とした。第7図の実測値は四重極コイル(22
)の水平方向偏向コイルのみに電流を投入したときのも
のである。コイルの巻数は200ターンであった。
Figure 7 shows this situation, where curve (1) is ΣIk-
For 540μA (red only), the curve (I[) is ΣI
When k = 600 μA (200 μA each for red, green, and blue), the curve (III) corresponds to the ΣIk = ABL condition (red = 540 μA).
Curve (IV) is for Σlk=410μ^ (green only). This test condition is anode voltage HV=25.5K
V, the second grid G4 voltage EC2=EC2CO%, the fourth grid G4 voltage Ec4=133 V, and the beam irradiation time was 30 seconds. The actual measured values in Figure 7 are quadrupole coil (22
) when current is applied only to the horizontal deflection coil. The number of turns of the coil was 200 turns.

表2にΣIk=ABL条件(赤−540μA、緑=41
0μA、青=350μ^)とし、四正極コイルへの投入
電流を500mAとしたときのコイバージエンスミ位差
E conv値の例を示す。
Table 2 shows ΣIk=ABL conditions (red - 540 μA, green = 41
0 μA, blue = 350 μ^) and the current applied to the four positive electrode coils is 500 mA.

表2 四重極コイル投入電流についてみた場合、垂直方向偏向
コイルに60(fiz)の交流電流を投入し、水平方向
偏向コイルの投入電流が0の場合、静電コンージェンス
手段の偏向電極板周辺での電気的漏洩改善率は30%前
後であったが、水平方向偏向コイルへ矩形波又は直流電
流を投入することによって改善率100%が確保された
Table 2 Looking at the quadrupole coil input current, when an alternating current of 60 (fiz) is applied to the vertical deflection coil and the horizontal deflection coil input current is 0, around the deflection electrode plate of the electrostatic convergence means, The electrical leakage improvement rate was around 30%, but the improvement rate of 100% was ensured by injecting a rectangular wave or direct current to the horizontal deflection coil.

実施例のテスト結果から実施例1及び2で示す電子銃の
処理法によって静電コンバージェンス手段周辺での電気
漏洩は100%の改善率となった。
From the test results of Examples, the electron gun processing method shown in Examples 1 and 2 showed a 100% improvement in electrical leakage around the electrostatic convergence means.

尚、上側では分割抵抗板内蔵の陰極線管に適用したが、
その他同軸ケーブルを通してアノードボタンからアノー
ド電圧HV及びコンバージェンス電圧C■を供給する方
式の陰極線管に対しても本性は通用できるものである。
In addition, the upper part was applied to a cathode ray tube with a built-in dividing resistor plate,
The present invention is also applicable to other cathode ray tubes in which the anode voltage HV and convergence voltage C■ are supplied from the anode button through a coaxial cable.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、静電集中型電子銃において、電子銃の
カソードから出る電子ビームを静電集中電極及びその周
辺に照射することによって、静電集中電極周辺での電気
漏洩源が消滅し、電気漏洩に起因する電位変動を防止す
ることができる。従って、従来のノッキング法より確実
に静電集中特性を安定化させることができる。
According to the present invention, in an electrostatic concentrating electron gun, by irradiating the electrostatic concentrating electrode and its surroundings with an electron beam emitted from the cathode of the electron gun, the source of electric leakage around the electrostatic concentrating electrode disappears. Potential fluctuations caused by electrical leakage can be prevented. Therefore, the electrostatic concentration characteristics can be stabilized more reliably than the conventional knocking method.

カラー陰極線管において、水平スタティックコンバージ
ェンス変化特性が改善され、画質の向上が得られる。
In color cathode ray tubes, horizontal static convergence change characteristics are improved, resulting in improved image quality.

また本性は製造工程を複雑にすることなく容易に出来、
静電集中電極への電圧印加方式に関係なく、静電集中方
式の陰極線管への応用が可能となる。
In addition, the true nature is that it can be easily made without complicating the manufacturing process,
It becomes possible to apply the electrostatic concentration method to cathode ray tubes regardless of the voltage application method to the electrostatic concentration electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の説明に供する電磁偏向手段の移動量と
コンバージェンス電位差の関係を示すグラフ、第2図は
電流量ΣIkとコンバージェンス電位差の関係を示すグ
ラフ、第3図は本発明の実施例において電磁偏向手段の
後退位置を示す陰極線管の側面図、第4図は電磁偏向手
段の後退時の偏向中心位置を示す電子銃の要部の側面図
、第5図は本発明の他の実施例で用いる四重極コイルの
斜視図、第6図は本発明の他の実施例において四重極コ
イルを配した状態を示す陰極線管の側面図、第7図は四
正極コイルへの投入電流とコンバージェンス電位差の関
係を示すグラフ、第8図は陰極線管の等価回路図、第9
図は静電集中方式の陰極線管の一例の断面図、第10図
は静電集中方式の陰極線管の他の例の要部の断面図であ
る。 (11は管体、(2)は電子銃、(3)は静電コンバー
ジェンス手段、(21)は電磁偏向手段、(22)は四
正極コイルである。
FIG. 1 is a graph showing the relationship between the amount of movement of the electromagnetic deflection means and the convergence potential difference, which is used to explain the present invention, FIG. 2 is a graph showing the relationship between the amount of current ΣIk and the convergence potential difference, and FIG. 3 is an example of the present invention. 4 is a side view of the cathode ray tube showing the retracted position of the electromagnetic deflection means, FIG. 4 is a side view of the essential parts of the electron gun showing the deflection center position when the electromagnetic deflection means is retracted, and FIG. 5 is a side view of another embodiment of the present invention. A perspective view of a quadrupole coil used in the example, FIG. 6 is a side view of a cathode ray tube showing a state in which quadrupole coils are arranged in another embodiment of the present invention, and FIG. 7 is an input current to the four positive electrode coils. Figure 8 is an equivalent circuit diagram of a cathode ray tube. Figure 9 is a graph showing the relationship between
The figure is a cross-sectional view of an example of a cathode ray tube of an electrostatic concentration type, and FIG. 10 is a cross-sectional view of a main part of another example of a cathode ray tube of an electrostatic concentration type. (11 is a tube body, (2) is an electron gun, (3) is an electrostatic convergence means, (21) is an electromagnetic deflection means, and (22) is a four-positive coil.

Claims (1)

【特許請求の範囲】[Claims] 陰極線管に組込まれた静電集中型電子銃に対し、静電集
中電極及びその周辺に該電子銃よりの電子ビームを照射
して、静電集中電極の電位を安定化することを特徴とす
る電子銃の処理法。
An electrostatic concentrating electron gun incorporated in a cathode ray tube is characterized by irradiating an electrostatic concentrating electrode and its surroundings with an electron beam from the electron gun to stabilize the potential of the electrostatic concentrating electrode. Electron gun processing method.
JP61256496A 1986-10-28 1986-10-28 Electron gun processing Expired - Fee Related JPH0744001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61256496A JPH0744001B2 (en) 1986-10-28 1986-10-28 Electron gun processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61256496A JPH0744001B2 (en) 1986-10-28 1986-10-28 Electron gun processing

Publications (2)

Publication Number Publication Date
JPS63110523A true JPS63110523A (en) 1988-05-16
JPH0744001B2 JPH0744001B2 (en) 1995-05-15

Family

ID=17293443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61256496A Expired - Fee Related JPH0744001B2 (en) 1986-10-28 1986-10-28 Electron gun processing

Country Status (1)

Country Link
JP (1) JPH0744001B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118972A (en) * 1977-03-28 1978-10-17 Toshiba Corp Electron gun constituent body
JPS5549838A (en) * 1978-10-05 1980-04-10 Toshiba Corp Treating method for electron gun

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53118972A (en) * 1977-03-28 1978-10-17 Toshiba Corp Electron gun constituent body
JPS5549838A (en) * 1978-10-05 1980-04-10 Toshiba Corp Treating method for electron gun

Also Published As

Publication number Publication date
JPH0744001B2 (en) 1995-05-15

Similar Documents

Publication Publication Date Title
EP0424888B1 (en) Color cathode ray tube apparatus
JPH05205651A (en) Cathode-ray tube
CA2123021C (en) Color picture tube having an inline electron gun with three astigmatic lenses
CA1246242A (en) High voltage processing of crt mounts
JPS63110523A (en) Treatment of electron gun
US4564786A (en) External neck charge dissipation means for an in-line color cathode ray tube
JP3635153B2 (en) Electron gun for cathode ray tube and cathode ray tube
EP0589522B1 (en) Cathode-ray tube
US6646370B2 (en) Cathode-ray tube apparatus
JP3116671B2 (en) Electron gun and color cathode ray tube using the same
US6376980B1 (en) CRT having an electron gun with magnetic pieces attached to one of a plurality of electrodes, configured to correct deflection defocusing
JPS63231847A (en) Color cathode ray tube
JPS5943637Y2 (en) cathode ray tube
JPS6012647A (en) Cathode-ray tube
JP2004095284A (en) Cathode-ray tube
EP0333421A2 (en) Cathode ray tubes
JPH08315750A (en) Color picture tube and its manufacture
JPS5697948A (en) Electron gun electrode frame for cathode-ray tube
KR20010017763A (en) electron gun for color cathode ray tube
JPH01157044A (en) Static magnetic field applied type electron gun
JP2000173511A (en) Cathode-ray tube
JPH0574369A (en) Picture tube
JPH11204058A (en) Television picture tube apparatus
JPH0729509A (en) Electron gun and manufacture thereof
JPS6177234A (en) Manufacture of cathode-ray tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees