JPS6297245A - Imaging system - Google Patents

Imaging system

Info

Publication number
JPS6297245A
JPS6297245A JP13040685A JP13040685A JPS6297245A JP S6297245 A JPS6297245 A JP S6297245A JP 13040685 A JP13040685 A JP 13040685A JP 13040685 A JP13040685 A JP 13040685A JP S6297245 A JPS6297245 A JP S6297245A
Authority
JP
Japan
Prior art keywords
wave
sample
amplitude
microscope
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13040685A
Other languages
Japanese (ja)
Inventor
Tsutomu Hoshimiya
務 星宮
Takashi Ono
孝 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13040685A priority Critical patent/JPS6297245A/en
Publication of JPS6297245A publication Critical patent/JPS6297245A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the spatial resolution of an image by measuring are recording the amplitude and the phase of wave such as heat wave, distortion wave or resilient wave occurring on the surface of a sample optically, electrically and thermally while reconstructing the waveface of the produced wave. CONSTITUTION:Laser light 1 is modulated to scan the surface of a sample 5 by means of a scanning mechanism 3. The light collected through a lens 4 to the point P is absorbed to produce thermal wave and acoustic wave in the sample 5 which is propagated. Reflection light caused by a defect is collected to the point Q and detected through a photo detector 7, thus the amplitude and the phase of the wave are measured, constructing a spatial hologram then it is Fourier converted and displayed onto a display 15. Thus a continuous modulating microscope imaging apparatus or a photo-acoustic microscope employing image processing method is formed. Consequently, when applying the side looking rader technology, the sample structure can be viewed non- destructively with high resolution.

Description

【発明の詳細な説明】 本発明は、超音波顕微鏡、光音響顕微鏡、電子線超音波
顕微鏡等のような試料の表面および内部の光学的、熱的
、音響的性質の違いを利用して試料に間する様々な画像
情報を測定する顕微鏡装置の映像方式に間する。 従来
の上記の各顕微鏡装置においては、試料の深さ方向の情
報を得ようとすると、試料表面の空間分解能を犠牲にし
なければならなかった。従来のこれらの顕微鏡装置にお
いては主として連続波変調法が用いられ、それらの情報
検出法は、圧電素子やマイクロフォン等で試料表面ある
いは裏面全体から発生する信号を積分した形の情報検出
を行うものである。また、パルスを用いる上記顕微鏡装
置においては、比較的大出力のレーザーを用いる必要が
あり、試料を破壊する危険性があった。この発明は、マ
イクロ波レーダーにおいて用いられているサイドルッキ
ングレーダーの技術を上記顕微鏡の分野に応用すること
により、光学的、熱的、音響的性質の違いを利用して非
破壊的に試料表面および内部の構造を可視化することを
目的とする。そのため光、電子線、あるいは超音波を利
用して試料表面および内部に波動を発生させるための単
一もしくは複数の送信点、あるいは光学的、音響的、あ
るいは熱的に波動を検出して電気信号に変換するための
単一もしくは複数の受信点をもうけ、これらを移動させ
ながら波動の振幅と位相とを記録し、電気的に記録され
た上記信号から空間的にホログラムを構成し、これを電
気的に、もしくは光学的にフーリエ変換して、より空間
分解能の良い映像を得るものである。
Detailed Description of the Invention The present invention utilizes differences in optical, thermal, and acoustic properties of the surface and interior of a sample, such as an ultrasound microscope, a photoacoustic microscope, an electron beam ultrasound microscope, etc. The imaging method of the microscope device measures various image information during the process. In each of the above-mentioned conventional microscope devices, in order to obtain information in the depth direction of the sample, the spatial resolution of the sample surface had to be sacrificed. These conventional microscope devices mainly use continuous wave modulation, and these information detection methods detect information in the form of integrating signals generated from the entire front or back surface of the sample using piezoelectric elements, microphones, etc. be. Furthermore, in the above-mentioned microscope apparatus that uses pulses, it is necessary to use a relatively high-output laser, and there is a risk of destroying the sample. This invention applies the side-looking radar technology used in microwave radars to the field of microscopy, thereby making use of differences in optical, thermal, and acoustic properties to non-destructively improve the surface of a sample. The purpose is to visualize the internal structure. For this purpose, single or multiple transmission points are used to generate waves on and inside the sample using light, electron beams, or ultrasound, or electrical signals are generated by detecting waves optically, acoustically, or thermally. Create a single or multiple reception points to convert the signal into a signal, record the amplitude and phase of the wave while moving these points, spatially construct a hologram from the electrically recorded signals, and convert this into an electrical signal. Fourier transform is performed either physically or optically to obtain an image with better spatial resolution.

この発明を光音響顕微鏡として実施した実施例を図面に
もとすいて説明すれば次の通りである。
An embodiment in which the present invention is implemented as a photoacoustic microscope will be described below with reference to the drawings.

lは試料を照射するためにもちいられるレーザーで、そ
の光は変調器2により変調され、スキャナー等の走査機
構3により試料5の表面上を走査される。レンズ4によ
り点Pに集光された光の吸収により試料表面に熱波およ
び音響波が発生し、伝搬する。試料内部に欠陥等が存在
すれば、それからの反射は再び試料表面または裏面に到
達する。
1 is a laser used to irradiate the sample, and its light is modulated by a modulator 2 and scanned over the surface of the sample 5 by a scanning mechanism 3 such as a scanner. A thermal wave and an acoustic wave are generated on the sample surface by absorption of the light focused on the point P by the lens 4, and propagate. If there is a defect or the like inside the sample, the reflection from it will reach the front or back surface of the sample again.

プローブレーザ−6の光は、5の表面(または裏面)の
点Qに集光される。試料表面で反射した光は、光検出器
7によりヘテロダイン等の方法で検出され、2またはそ
れ以上のチャンネルの信号変換部により変調信号ととも
に同期検波等の方法で検出される。信号は、振幅、位相
成分とも処理、記録された後、スキャナーのドライバー
信号によりP点の位置情報をもとに画像としてディスプ
レイ15上に表示される。
The light from the probe laser 6 is focused on a point Q on the front surface (or back surface) of the probe laser 6 . The light reflected on the sample surface is detected by a photodetector 7 using a method such as heterodyne, and is detected by a signal converter of two or more channels using a method such as synchronous detection together with a modulated signal. After the signal is processed and recorded in both amplitude and phase components, it is displayed as an image on the display 15 based on the position information of point P by the driver signal of the scanner.

なお、図では試料照射用のレーザーを走査、変調したが
、逆にプローブ用のレーザーを走査、変調してもよい。
In addition, although the laser for sample irradiation is scanned and modulated in the figure, the laser for probe may be scanned and modulated conversely.

この発明は、以上説明した様に従来の音響波を利用する
各種顕微鏡装置においてその空間分解能を飛躍的に向上
する効果がある。
As explained above, the present invention has the effect of dramatically improving the spatial resolution of various conventional microscope devices that utilize acoustic waves.

なお、この発明の実施態様には次のようなものがある。Note that the embodiments of this invention include the following.

(イ)上記の画像処理法を用いた連続波変調形各種顕微
鏡(超音波顕微鏡、光音響顕微鏡、電子線超音波顕微鏡
、およびイオンビームを用いた顕微鏡等)映像装置。
(a) Various types of continuous wave modulation type microscopes (ultrasonic microscopes, photoacoustic microscopes, electron beam ultrasound microscopes, microscopes using ion beams, etc.) that use the above-mentioned image processing methods, and imaging devices.

(ロ)上記の画像処理法を用いたパルス変調形各種顕微
鏡(超音波顕微鏡、光音響顕微鏡、電子線超音波顕微鏡
、およびイオンビームを用いた顕微鏡等)映像装置。
(b) Imaging devices using various pulse modulation type microscopes (ultrasonic microscopes, photoacoustic microscopes, electron beam ultrasound microscopes, microscopes using ion beams, etc.) using the above-mentioned image processing methods.

(ハ)上記の画像処理法を用いたチャーブ波変調形各種
顕微鏡(超音波顕微鏡、光音響顕微鏡、電子線超音波顕
微鏡、およびイオンビームを用いた顕微鏡等)映像装置
(c) Imaging devices using various Chirb wave modulation type microscopes (ultrasonic microscopes, photoacoustic microscopes, electron beam ultrasound microscopes, microscopes using ion beams, etc.) using the above image processing method.

(ニ)上記の画像処理法を用い、かつ送信部に超音波、
光、電子線等の励起法を、受信部に光学的、電気的、あ
るいは熱的検出法の種々の異なった組み合わせを用いた
、(イ)〜(ハ)に述べた各種装置。
(d) Using the above image processing method and transmitting ultrasonic waves,
Various devices described in (a) to (c) above, which use various combinations of optical, electrical, or thermal detection methods in the receiving section for excitation methods such as light and electron beams.

(ホ)超音波、光、電子線等で試料表面を走査するため
の機械的、電気的、光学的な種々の機構を備えた上記(
イ)〜(ニ)に述べた各種装置。
(e) The above-mentioned (
Various devices described in (a) to (d).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光音響顕微鏡H置の構成の一例を示したもので
あする。 l    レーザー(試料照射用)、2変調器、3  
 スキャナー等の走査機構、4レンズ、5   試料(
この例ではX−Yステージの上にのせである)、6  
10−ブレーザー、7   光検出器、8   変調信
号源、9   変調信号変換部、lO光検出信号変換部
、11    電子計算機、12   メモリー、13
   スキャナーのドライバー、14ドライバ一信号入
出力部、15   ディスプレー。
FIG. 1 shows an example of the configuration of a photoacoustic microscope H position. l Laser (for sample irradiation), 2 modulators, 3
Scanning mechanism such as scanner, 4 lenses, 5 specimens (
In this example, it is placed on an X-Y stage), 6
DESCRIPTION OF SYMBOLS 10-Blazer, 7 Photodetector, 8 Modulation signal source, 9 Modulation signal converter, IO photodetection signal converter, 11 Electronic computer, 12 Memory, 13
Scanner driver, 14 driver - signal input/output section, 15 display.

Claims (1)

【特許請求の範囲】[Claims] 1 顕微鏡下等で固体試料の微細な部分の光学的、熱的
、音響的性質の違いを利用して試料の表面および内部の
画像情報を測定するための映像方式であって、熱波、歪
波、および弾性波等の試料表面に発生した波動の振幅と
位相とを一個あるいは複数個の検出点で光学的、電気的
あるいは熱的に測定、記録して、発生した波動の波面の
再構成を行なうことによって、映像の空間的な分解能の
向上をはかるようにしたことを特徴とする映像方式。
1 An imaging method for measuring image information on the surface and inside of a sample by utilizing differences in optical, thermal, and acoustic properties of minute parts of a solid sample under a microscope, etc. The amplitude and phase of waves and elastic waves generated on the sample surface are measured and recorded optically, electrically, or thermally at one or more detection points, and the wavefront of the generated waves is reconstructed. A video method characterized by improving the spatial resolution of images by performing
JP13040685A 1985-06-14 1985-06-14 Imaging system Pending JPS6297245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13040685A JPS6297245A (en) 1985-06-14 1985-06-14 Imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13040685A JPS6297245A (en) 1985-06-14 1985-06-14 Imaging system

Publications (1)

Publication Number Publication Date
JPS6297245A true JPS6297245A (en) 1987-05-06

Family

ID=15033516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13040685A Pending JPS6297245A (en) 1985-06-14 1985-06-14 Imaging system

Country Status (1)

Country Link
JP (1) JPS6297245A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435829A2 (en) * 1989-12-28 1991-07-03 JENOPTIK GmbH Arrangement for the analysis of thermal waves in layered systems
US10265047B2 (en) 2014-03-12 2019-04-23 Fujifilm Sonosite, Inc. High frequency ultrasound transducer having an ultrasonic lens with integral central matching layer
US10478859B2 (en) 2006-03-02 2019-11-19 Fujifilm Sonosite, Inc. High frequency ultrasonic transducer and matching layer comprising cyanoacrylate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435829A2 (en) * 1989-12-28 1991-07-03 JENOPTIK GmbH Arrangement for the analysis of thermal waves in layered systems
US10478859B2 (en) 2006-03-02 2019-11-19 Fujifilm Sonosite, Inc. High frequency ultrasonic transducer and matching layer comprising cyanoacrylate
US10265047B2 (en) 2014-03-12 2019-04-23 Fujifilm Sonosite, Inc. High frequency ultrasound transducer having an ultrasonic lens with integral central matching layer
US11083433B2 (en) 2014-03-12 2021-08-10 Fujifilm Sonosite, Inc. Method of manufacturing high frequency ultrasound transducer having an ultrasonic lens with integral central matching layer
US11931203B2 (en) 2014-03-12 2024-03-19 Fujifilm Sonosite, Inc. Manufacturing method of a high frequency ultrasound transducer having an ultrasonic lens with integral central matching layer

Similar Documents

Publication Publication Date Title
US4463608A (en) Ultrasound imaging system
JP4828527B2 (en) Acousto-optic imaging method and apparatus
US4012951A (en) Acoustic examination methods and apparatus
US3790281A (en) Combined system for acoustical-optical microscopy
Massey An optical heterodyne ultrasonic image converter
JPH0827264B2 (en) Photoacoustic imaging method with multiple modulation frequencies
US7652773B2 (en) Enhanced detection of acousto-photonic emissions in optically turbid media using a photo-refractive crystal-based detection system
JP2000197635A (en) Method and system for detecting characteristic inside one lump of tissue
US3711823A (en) Acoustic to optical image converter using an acoustic grating
JP3903105B2 (en) Dynamic change detection method, dynamic change detection apparatus, and ultrasonic diagnostic apparatus
JP2846079B2 (en) Photoacoustic signal detection method and apparatus
US3585848A (en) Method and apparatus for recording acoustic images and holograms
US3715482A (en) Holographic imaging by simultaneous source and receiver scanning
US3632183A (en) Holographic imaging by simultaneous source and receiver scanning
JPS6297245A (en) Imaging system
US7018334B2 (en) Imaging of a region in a scattering medium
Kessler Imaging with dynamic-ripple diffraction
Jacobs Ultrasound image converter systems utilizing electron-scanning techniques
CN115201115A (en) Photoacoustic imaging device and method based on structured light detection
US3706965A (en) Real-time acoustic imaging system
Metherell et al. Temporal reference acoustical holography
WO2014196150A1 (en) Acousto-optic image pickup device
Metherell et al. Temporal reference acoustical holography
JPS634142B2 (en)
US3890829A (en) Method and apparatus for acoustical imaging