JPS6266141A - Vessel for fluorescent immunological measurement - Google Patents

Vessel for fluorescent immunological measurement

Info

Publication number
JPS6266141A
JPS6266141A JP60205391A JP20539185A JPS6266141A JP S6266141 A JPS6266141 A JP S6266141A JP 60205391 A JP60205391 A JP 60205391A JP 20539185 A JP20539185 A JP 20539185A JP S6266141 A JPS6266141 A JP S6266141A
Authority
JP
Japan
Prior art keywords
fluorescence
container
layer
sample
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60205391A
Other languages
Japanese (ja)
Inventor
Yoshiaki Watanabe
芳明 渡辺
Takeshi Kato
武司 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP60205391A priority Critical patent/JPS6266141A/en
Publication of JPS6266141A publication Critical patent/JPS6266141A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)

Abstract

PURPOSE:To measure fluorescence with high accuracy by providing a layer to reflect the fluorescence to a vessel for contg. the sample which emits the fluorescence, onto the surface not in contact with the sample. CONSTITUTION:The layer 2 which consists of a metal or contains the metal and reflects the fluorescence is provided to the outside surface of a plastic molding 1 for contg. the sample which emits the fluorescence. Since the fluorescence emitted by the sample is reflected by the layer 2, the fluorescent intensity sensed by a measuring instrument is increased and the measurement in a trace region is made possible with high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は免疫検査の一手法である螢光免疫測定法に用い
られる試料容器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a sample container used in fluorescence immunoassay, which is a method of immunoassay.

〔従来技術〕[Prior art]

螢光分析は極微量分析の一手法として広く利用されてい
るが、今日ではこの測定技術を応用した免疫検査法であ
る螢光免疫測定法が臨床検査にと9入れられつつある。
Fluorescence analysis is widely used as a method for ultra-trace analysis, and today, fluorescence immunoassay, an immunoassay that applies this measurement technology, is being used in clinical testing.

この測定法は一般に酵素免疫測定法と呼ばれている手法
を発展させた高感度の免疫測定法で、これまで最も感度
が高いといわれた放射免疫測定法を上まわる程の微量測
定が可能であるといわれている。この測定法は、容器の
内側表面に抗原(もしくは抗体)を吸着固定し、次いで
抗体(もしくは抗原)を加えて抗原−抗体反応を順次行
なわせ、最後に酵素を標識した抗体(もしくは抗原)を
反応させる。さらに、検体に固定されたこの酵素に対し
て螢光基質(酵素による反応で螢光を発する物質)を加
え、これに励起光を照射し、試料が発する螢光量を読み
取る、というものである。
This measurement method is a highly sensitive immunoassay developed from a method commonly called enzyme immunoassay, and is capable of measuring trace amounts that exceed radioimmunoassay, which was said to be the most sensitive method up until now. It is said that there is. In this measurement method, an antigen (or antibody) is adsorbed and immobilized on the inner surface of a container, then the antibody (or antigen) is added to cause an antigen-antibody reaction to occur sequentially, and finally the enzyme-labeled antibody (or antigen) is added. Make it react. Furthermore, a fluorescent substrate (a substance that emits fluorescence when the enzyme reacts) is added to the enzyme immobilized on the sample, and excitation light is irradiated onto it, and the amount of fluorescence emitted by the sample is read.

螢光免疫測定法に用いるための容器としては従来、特開
昭59−132335号公報が知られている。
JP-A-59-132335 has been known as a container for use in fluorescence immunoassay.

これは容器を構成する材料自体が発する自己螢光を抑え
て、試料が発する螢光を精度よく検知しよ゛うとするも
ので、具体的には、容器を構成するプラスチック材料に
顔料を練り込むかもしくはコーティングし1.励起光の
成形品内部への浸入を阻止することによシ自己螢光の発
生を減少させようとしたものである。しかしながら、特
開昭60−6868号公報にも開示されているように、
プラスチック材料に顔料等の添加物を加えた場合その表
面における抗原(もしくは抗体)等の吸着性に不均一性
を生ずるという問題があシ、螢光免疫測定法に用いるた
めの容器として必ずしも適切なものであるとはいえない
This is an attempt to accurately detect the fluorescence emitted by the sample by suppressing the self-fluorescence emitted by the material that makes up the container itself. Specifically, pigments are kneaded into the plastic material that makes up the container. Or coated 1. This is an attempt to reduce the occurrence of self-fluorescence by preventing excitation light from penetrating into the molded product. However, as disclosed in Japanese Patent Application Laid-Open No. 60-6868,
When additives such as pigments are added to plastic materials, there is a problem that non-uniformity occurs in the adsorption of antigens (or antibodies), etc. on the surface of the plastic materials. It cannot be said that it is a thing.

一方、自己螢光が小さく、実際の螢光測定には殆んど影
響を与えない低螢光材料も数多く市販されておシ、また
測定機器の方も、励起波長、螢光波長のいずれに対して
も精度の高い対応が可能で、パックグラウンドとなる自
己螢光も自動的に補正されるように改良されている。従
って、螢光免疫測定のために低自己螢光の容器を用いる
ことは必ずしも必要とはされないが、試料の発する螢光
を効率よく、より多く捕集することができれば、微弱な
螢光であっても一層感度の高い測定が可能となるのであ
シ、そのような潜在的なニーズは多い。
On the other hand, there are many low-fluorescence materials on the market that have low self-fluorescence and have little effect on actual fluorescence measurements, and measurement equipment is also difficult to determine whether the excitation wavelength or the fluorescence wavelength. It has also been improved to automatically correct for self-fluorescence, which causes pack-ground. Therefore, it is not necessarily necessary to use a container with low self-fluorescence for fluorescence immunoassay, but if it is possible to efficiently collect more of the fluorescence emitted by the sample, it is possible to reduce the weak fluorescence. However, there are many potential needs for this, as even more sensitive measurements can be made.

本発明者らは、このようなニーズに応えるため種々の方
法について検討を行ない、容器の内側に向って螢光を反
射する層を設けることによって測定の感度を高め得るこ
とを見出し、鋭意研究を進めて本発明を完成させるに至
ったものである。
In order to meet these needs, the present inventors investigated various methods and discovered that measurement sensitivity could be increased by providing a layer that reflects fluorescent light toward the inside of the container, and conducted extensive research. This led to the completion of the present invention.

〔発明の目的〕[Purpose of the invention]

即ち本発明の目的は、高感度の測定を可能にする螢光免
疫測定法用容器を提供するにある。
That is, an object of the present invention is to provide a container for fluorescence immunoassay that enables highly sensitive measurements.

〔発明の構成〕[Structure of the invention]

本発明は、螢光を発する試料を保持する容器であって、
試料と接しない外側表面ないしは内層に、螢光を反射す
る層を形成させた事を特徴とする螢光免疫測定法用容器
である。
The present invention is a container for holding a fluorescent sample, comprising:
This is a container for fluorescence immunoassay, characterized in that a layer that reflects fluorescent light is formed on the outer surface or inner layer that does not come into contact with the sample.

容器の形状としては、マイクロプレート、キエベット、
試験管、スピッツ、反応板などがあるが、用途に応じて
選ばれるものであり特に限定されるものではない。
Container shapes include microplate, Kievet,
There are test tubes, spitz, reaction plates, etc., but they are selected depending on the purpose and are not particularly limited.

螢光免疫測定法では、前述のとおυ抗原、抗体などの蛋
白質を容器表面に吸着、固定し反応を行なわせるが、一
般に金属への蛋白質の吸着は不安定で均一な再現性のあ
る結果は望めない。これに対してプラスチックへの吸着
は安定で、プラスチック表面の容器を用いれば確度の高
い測定を行なうことが可能である。従って、蛋白質を吸
着させる面と反射層は別層でなければならない。このよ
うな条件を実現する容器としては、例えば、第1図に示
したプラスチック成形品(1)の外側表面に反射rfI
I(2)を設けた容器、第2図に示した成形容器(4)
の内側表面に反射層(2)を設け、さらにその上にプラ
スチック表面層(3)を設けた容器(即ち、反射層(2
)を内層とする)などが用いうる。
In fluorescence immunoassay, proteins such as the above-mentioned antigens and antibodies are adsorbed and immobilized on the surface of a container and a reaction is carried out, but in general, the adsorption of proteins to metals is unstable and uniform and reproducible results are not possible. I can't hope. On the other hand, adsorption to plastic is stable, and if a container with a plastic surface is used, highly accurate measurements can be made. Therefore, the surface on which proteins are adsorbed and the reflective layer must be separate layers. For example, a container that achieves these conditions may include a reflective rfI on the outer surface of the plastic molded product (1) shown in Figure 1.
Container provided with I (2), molded container (4) shown in Figure 2
A container (i.e., a container with a reflective layer (2) on its inner surface and a plastic surface layer (3) on top of the reflective layer (2))
) can be used.

螢光を反射する層(2)は、金属ないし金属を含有する
物質からなる。
The layer (2) that reflects fluorescent light is made of metal or a substance containing metal.

本発明で用いることのできる金属としては、銀、水銀、
金、白金、銅、アルミニウム、ニッケル、すす、チタン
、クロム、インジウム等の他、水銀アマルガムや上記金
属の合金であってもよく、マた、金属を含む物質として
は、金属の微粒子を樹脂中に分散させた銀R−スト、金
属ペイント等を挙げることができる。プラスチック成形
品(1)や成形容器(4)の表面に金属ないし金属を含
む物質よυなる反射層(2)を形成する方法としては、
金属のメッキ、蒸着、スノξツタリング、イオンブレー
ティング、また、金属を含む物質のコーティング等があ
るが、これらの方法に限定されるものではない。
Metals that can be used in the present invention include silver, mercury,
In addition to gold, platinum, copper, aluminum, nickel, soot, titanium, chromium, indium, etc., mercury amalgam and alloys of the above metals may also be used. Examples include silver R-st dispersed in a metal paint, metal paint, and the like. A method for forming a reflective layer (2) of metal or a substance containing metal on the surface of a plastic molded product (1) or a molded container (4) is as follows:
Methods include metal plating, vapor deposition, snootering, ion blating, and coating with a substance containing metal, but are not limited to these methods.

反射M (2)の表面にプラスチック表面層(3)を形
成する方法としては、プラスチックの溶液、エマルジョ
ン等をコーティング、あるいはその中に容器をディッピ
ングする方法の他、プラズマ重合等によシブラスチック
層で被覆する方法も用いうる。
Methods for forming the plastic surface layer (3) on the surface of the reflective M (2) include coating a plastic solution, emulsion, etc., or dipping the container therein, as well as forming a siplastic layer by plasma polymerization, etc. A method of coating with can also be used.

プラスチック成形品(1)およびプラスチック表面層(
3)を形成するプラスチックとしては、自己螢光の少い
透明なものであればどのようなものでもよいが、たとえ
ばポリスチレン、ヒIJ塩化ビニール、ポリメチルメタ
アクリレートなどが好適であシ、さらK、その表面が抗
原、抗体等の蛋白質の吸着性を改善するための処理が加
えられていても何ら差しつかえない。また、本発明では
容器のプラスチック層を通して螢光を反射増幅させるた
め、この層内での螢光損失を少くする意味で層厚は薄い
方が好ましい。
Plastic molded product (1) and plastic surface layer (
The plastic forming 3) may be any transparent material with low self-fluorescence, but preferred examples include polystyrene, vinyl chloride, and polymethyl methacrylate. There is no problem even if the surface is treated to improve adsorption of proteins such as antigens and antibodies. Further, in the present invention, since fluorescent light is reflected and amplified through the plastic layer of the container, it is preferable that the layer be thin in order to reduce loss of fluorescent light within this layer.

また反射層(2)となる金属層の厚さは、反射機能を保
持しているならば特に限定されるものではない。成形容
器(4)を形成する材質としてはプラスチックの他、ガ
ラス、セラミック、金属等も使用することができ、特に
限定されない。プラスチックを使用する場合でも、上記
のような自己螢光性や透明性の制約はなり、ぼりエチレ
ン、ポリプロピレン等を含めて各種のプラスチックを使
用することができる。また、金属を使用する場合は、そ
の内側表面を鏡面に仕上げるととKより反射層(2)の
形成が不要になる利点がある。また、第2図における反
射層(2)を、銀イースト、金属イイント等を用いて形
成させた場合は、その表面は実質的に樹脂層(プラスチ
ック)からなっており、プラスチック表面N(3)の形
成を省略することが可能である。
Further, the thickness of the metal layer serving as the reflective layer (2) is not particularly limited as long as it maintains a reflective function. The material for forming the molded container (4) is not particularly limited, and may include glass, ceramic, metal, etc. in addition to plastic. Even when plastic is used, the above-mentioned restrictions on self-fluorescence and transparency do not apply, and various plastics including ethylene, polypropylene, etc. can be used. Further, when metal is used, if the inner surface is finished to a mirror finish, there is an advantage that the formation of the reflective layer (2) becomes unnecessary. Moreover, when the reflective layer (2) in FIG. 2 is formed using silver yeast, metal yeast, etc., its surface is substantially made of a resin layer (plastic), and the plastic surface N (3) It is possible to omit the formation of .

〔発明の効果〕〔Effect of the invention〕

本発明の螢光免疫測定法用容器を用いる事により、高感
度の測定が可能である。即ち本発明による反射層が測定
試料の発する螢光を反射する事により、測定機の感する
螢光強度が増大する。これにより、従来強度が弱く正確
な測定が行えなかった極微量域の測定も、高い精度で測
定が可能となる。
By using the container for fluorescence immunoassay of the present invention, highly sensitive measurements are possible. That is, the reflective layer according to the present invention reflects the fluorescent light emitted by the measurement sample, thereby increasing the fluorescent light intensity perceived by the measuring instrument. This makes it possible to measure with high precision even in the extremely small amount range, which was conventionally too weak to measure accurately.

以下比較例、実施例をあげて本発明をよυ具体′的に説
明する。
The present invention will be explained in more detail below with reference to comparative examples and examples.

く参考例1〉 螢光免疫測定法用容器として、各社のピリスチレンおよ
びピリ塩化ビニール製のマイクロプレートを用いて自己
螢光の比較を行った。
Reference Example 1> Self-fluorescence was compared using microplates made of pyristyrene and pyrovinyl chloride from various companies as containers for fluorescence immunoassay.

螢光測定機は、ダイナチック社製マイクロフルオール(
Micro FLUOR,商品名)を用いた。励起波長
、螢光波長はそれぞれ365nm、 450nmで測定
を行った。この波長は代表的な螢光試薬4−メチルウン
ベリフェロンの測定波長に相当する。
The fluorescence measurement device was a Microfluor (manufactured by Dynatic).
Micro FLUOR (trade name) was used. The excitation wavelength and fluorescence wavelength were 365 nm and 450 nm, respectively. This wavelength corresponds to the measurement wavelength of the typical fluorescent reagent 4-methylumbelliferone.

結果は第1表に示した通シで、一部を除き、その大半が
低自己螢光であることが分かる。
The results are shown in Table 1, and it can be seen that most of them, with a few exceptions, have low self-fluorescence.

第   1   表 ピリスチレン製マイクロプレート ポリ塩化ビニール製マイクロプレート 〈実施例1〉 プラスチック容器として住友ベークライト@製エリザ用
プレートアミノ化タイプ(ゼリスチレン製、品番MS−
3696F)を用いて、これに螢光反射層を形成した。
Table 1 Microplate made of pyristyrene Microplate made of polyvinyl chloride <Example 1> As a plastic container, a plate aminated type for Eliza made by Sumitomo Bakelite@ (made by Zerystyrene, product number MS-
3696F) to form a fluorescent reflective layer thereon.

反射層としてはアルミニウムの薄膜を、日本真空工栗社
製スノζツタリング装置を用いて5mAで120分処理
する事によシ、成形品の外側表面に形成した。
As a reflective layer, a thin aluminum film was formed on the outer surface of the molded product by treating it at 5 mA for 120 minutes using a Nippon Shinku Kokuri Co., Ltd. snow zeta ringing device.

プレートの各ウェルに、4−メチルウンベリフ゛−6 エロンの水溶液を10〜10  Mの濃度で100μを
加えた。参考例1と同じ螢光測定機を用い同様の波長で
螢光強度を測定した。なお比較例として、反射層を形成
していないプレートを用いて同様の測定を行っ九。第2
表に示したとおシ、本発明に第    2    表 〈実施例2〉 フロー社製マイクロプレート(イリ塩化ビニール製、凧
タイプ)を用いて、成形品の外側表面に銀メッキを行っ
た。
To each well of the plate, 100 µ of an aqueous solution of 4-methylumbelliferin-6-elon at a concentration of 10-10 M was added. Using the same fluorescence measuring device as in Reference Example 1, the fluorescence intensity was measured at the same wavelength. As a comparative example, similar measurements were conducted using a plate on which no reflective layer was formed. Second
Table 2 <Example 2> The outer surface of the molded product was plated with silver using a microplate manufactured by Flow Co., Ltd. (made of irivinyl chloride, kite type) as shown in the table.

このプレートに、β−D−ガラクトシダーゼ(シグマ社
製、以下β−Gat) f 10 〜10 ■/mIt
の濃度で100 lit/ウェル入れ、4℃で18時間
静置した。生理食塩水で洗浄した後、さらに3X10 
 Mの4−メチルウンベリフェリル−β−D−ガラクト
シド(コツホ−ライト社製)を50)d/ウェル加え室
温で30分間反応させた。グリ゛シンー水酸化ナトリウ
ム緩衝液(PH10,3)を2′00μt/ウェル加え
て反応を停止させ、実施例1と同様にして測定を行った
。比較例としてメッキ処理を施さないプレートについて
も同様の測定を行った。第3表に示したとおシ、本発明
の反射層の効果が大きいことが分かる。
Add β-D-galactosidase (manufactured by Sigma, hereinafter referred to as β-Gat) to this plate.
The solution was placed at a concentration of 100 liters/well and left at 4°C for 18 hours. After washing with saline, add 3X10
M 4-methylumbelliferyl-β-D-galactoside (manufactured by Kotzholite) was added 50) d/well and allowed to react at room temperature for 30 minutes. The reaction was stopped by adding 2'00 μt/well of glycine-sodium hydroxide buffer (PH 10.3), and measurements were carried out in the same manner as in Example 1. As a comparative example, similar measurements were performed on a plate that was not subjected to plating treatment. As shown in Table 3, it can be seen that the reflective layer of the present invention has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、本発明の一実施例と第2図は成
形容器とその内側のプラスチック表面層との間(内層)
に反射層を設けた容器である。
FIG. 1 and FIG. 2 show an embodiment of the present invention, and FIG. 2 shows the space between the molded container and its inner plastic surface layer (inner layer)
This is a container with a reflective layer on the inside.

Claims (3)

【特許請求の範囲】[Claims] (1)螢光を発する試料を保持する容器であって、試料
と接しない外側表面ないしは内層に、螢光を反射する層
を形成させた事を特徴とする螢光免疫測定法用容器。
(1) A container for fluorescence immunoassay, which is a container for holding a sample that emits fluorescence, and is characterized in that a layer that reflects fluorescence is formed on the outer surface or inner layer that does not come into contact with the sample.
(2)螢光を反射する層が、金属または金属を含有する
物質よりなる事を特徴とする特許請求の範囲第1項記載
の螢光免疫測定法用容器。
(2) The container for fluorescence immunoassay according to claim 1, wherein the layer that reflects fluorescent light is made of a metal or a substance containing metal.
(3)試料と接する面がプラスチックよりなる事を特徴
とする特許請求の範囲第1項記載の螢光免疫測定法用容
器。
(3) The container for fluorescence immunoassay according to claim 1, characterized in that the surface in contact with the sample is made of plastic.
JP60205391A 1985-09-19 1985-09-19 Vessel for fluorescent immunological measurement Pending JPS6266141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60205391A JPS6266141A (en) 1985-09-19 1985-09-19 Vessel for fluorescent immunological measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60205391A JPS6266141A (en) 1985-09-19 1985-09-19 Vessel for fluorescent immunological measurement

Publications (1)

Publication Number Publication Date
JPS6266141A true JPS6266141A (en) 1987-03-25

Family

ID=16506042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60205391A Pending JPS6266141A (en) 1985-09-19 1985-09-19 Vessel for fluorescent immunological measurement

Country Status (1)

Country Link
JP (1) JPS6266141A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105849U (en) * 1988-01-07 1989-07-17
JPH01141450U (en) * 1988-03-24 1989-09-28
JPH0266430A (en) * 1988-09-01 1990-03-06 Agency Of Ind Science & Technol Sample holder for fluorescent measurement
JPH02254364A (en) * 1989-03-29 1990-10-15 Teikoku Seiyaku Kk Plate for measuring immunity of biological/chemical luminescent enzyme
JPH04249736A (en) * 1990-12-31 1992-09-04 Jasco Corp Concentrating vessel of eluate for infrared spectral measurement
JPH06218304A (en) * 1993-01-27 1994-08-09 Asahi Sanac Kk Paint spray machine for architecture
WO1994021379A1 (en) * 1993-03-16 1994-09-29 Westaim Technologies Inc. Enhanced microtitre plate and immunoassays conducted therein
WO2003019199A1 (en) * 2001-08-22 2003-03-06 Takara Bio Inc. Substrate having ligands immobilized thereon
EP1024363A3 (en) * 1999-01-29 2004-11-03 Bodenseewerk Perkin-Elmer Gmbh Quantitative determination of analytes in a heterogeneous system
JP2007003363A (en) * 2005-06-24 2007-01-11 Matsushita Electric Ind Co Ltd Probe carrier, and fluorescence reader
JP2009510475A (en) * 2005-10-03 2009-03-12 クリアティーヴィ・マイクロテク,インコーポレーテッド Sensitive emission collection and detection system
JP2011501132A (en) * 2007-10-10 2011-01-06 ポカード・ディアグノスティクス・リミテッド System for identifying bacteria in urine
JP2011511942A (en) * 2008-02-05 2011-04-14 ポカード・ディアグノスティクス・リミテッド System for identifying bacteria in biological samples
US9862920B2 (en) 2012-12-11 2018-01-09 Pocared Diagnostics Ltd. Optics cup with curved bottom
US10288632B2 (en) 2009-09-21 2019-05-14 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in biological samples

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713471U (en) * 1980-06-28 1982-01-23
JPS606868A (en) * 1983-05-19 1985-01-14 ベ−リンガ−・マンハイム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Substrate for appalying immunity active substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713471U (en) * 1980-06-28 1982-01-23
JPS606868A (en) * 1983-05-19 1985-01-14 ベ−リンガ−・マンハイム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Substrate for appalying immunity active substance

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105849U (en) * 1988-01-07 1989-07-17
JPH01141450U (en) * 1988-03-24 1989-09-28
JPH0266430A (en) * 1988-09-01 1990-03-06 Agency Of Ind Science & Technol Sample holder for fluorescent measurement
JPH02254364A (en) * 1989-03-29 1990-10-15 Teikoku Seiyaku Kk Plate for measuring immunity of biological/chemical luminescent enzyme
JPH04249736A (en) * 1990-12-31 1992-09-04 Jasco Corp Concentrating vessel of eluate for infrared spectral measurement
JPH06218304A (en) * 1993-01-27 1994-08-09 Asahi Sanac Kk Paint spray machine for architecture
WO1994021379A1 (en) * 1993-03-16 1994-09-29 Westaim Technologies Inc. Enhanced microtitre plate and immunoassays conducted therein
EP1024363A3 (en) * 1999-01-29 2004-11-03 Bodenseewerk Perkin-Elmer Gmbh Quantitative determination of analytes in a heterogeneous system
US7011955B1 (en) 1999-01-29 2006-03-14 Universitaet Tuebingen Quantitative determination of analytes in a heterogeneous system
WO2003019199A1 (en) * 2001-08-22 2003-03-06 Takara Bio Inc. Substrate having ligands immobilized thereon
JP2007003363A (en) * 2005-06-24 2007-01-11 Matsushita Electric Ind Co Ltd Probe carrier, and fluorescence reader
JP2009510475A (en) * 2005-10-03 2009-03-12 クリアティーヴィ・マイクロテク,インコーポレーテッド Sensitive emission collection and detection system
JP2011501132A (en) * 2007-10-10 2011-01-06 ポカード・ディアグノスティクス・リミテッド System for identifying bacteria in urine
US8808649B2 (en) 2007-10-10 2014-08-19 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in urine
JP2014197025A (en) * 2007-10-10 2014-10-16 ポカード・ディアグノスティクス・リミテッドPocared Diagnostics, Ltd. System for conducting identification of bacteria in urine
JP2016145841A (en) * 2007-10-10 2016-08-12 ポカード・ディアグノスティクス・リミテッドPocared Diagnostics, Ltd. System for conducting identification of bacteria in urine
EP3192876A1 (en) * 2007-10-10 2017-07-19 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in urine
JP2017156355A (en) * 2007-10-10 2017-09-07 ポカード・ディアグノスティクス・リミテッドPocared Diagnostics, Ltd. Optical cup or cuvette for use in optical analysis
JP2018151392A (en) * 2007-10-10 2018-09-27 ポカード・ディアグノスティクス・リミテッドPocared Diagnostics, Ltd. Optical analysis device, and method for identifying type and amount of micro-organism in fluid sample
JP2011511942A (en) * 2008-02-05 2011-04-14 ポカード・ディアグノスティクス・リミテッド System for identifying bacteria in biological samples
US10073036B2 (en) 2008-02-05 2018-09-11 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in biological samples
JP2020095050A (en) * 2008-02-05 2020-06-18 ポカード・ディアグノスティクス・リミテッドPocared Diagnostics, Ltd. Cooling system and optics cup
US10288632B2 (en) 2009-09-21 2019-05-14 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in biological samples
US11002752B2 (en) 2009-09-21 2021-05-11 Pocared Diagnostics Ltd. System for conducting the identification of bacteria in biological samples
US9862920B2 (en) 2012-12-11 2018-01-09 Pocared Diagnostics Ltd. Optics cup with curved bottom

Similar Documents

Publication Publication Date Title
US4558012A (en) Method and member for detecting and/or measuring the concentration of a chemical substance
CN106872420B (en) Kit and method for time-resolved fluorescence quantitative detection of microalbuminuria
AU654262B2 (en) Method and apparatus for detection of an analyte
JPS6266141A (en) Vessel for fluorescent immunological measurement
US4067959A (en) Indirect solid surface test for antigens or antibodies
AU2004227171B2 (en) Optical chemical sensing device with pyroelectric or piezoelectric transducer
WO2019141287A1 (en) Ordered porous nanostructure thin film interference effect-based biological detector and method for using same to perform biological molecule detection
Severs et al. An immunosensor for syphilis screening based on surface plasmon resonance
EP0304461A1 (en) Improved assay technique and apparatus therefor
Ekins Immunoassay design and optimization
Kurihara et al. Fabrication of carboxylated silicon nitride sensor chips for detection of antigen–antibody reaction using microfluidic reflectometric interference spectroscopy
JPH05506936A (en) Immobilized analyte detection device
US20190250154A1 (en) Method for re-using test probe and reagents in an immunoassay based on interferometry
TWI644800B (en) Biological sensing chip containing molybdenum disulfide and detection device using the biological sensing chip
JP5356219B2 (en) Chemical detector
JPS6378052A (en) Simple device and method for stabilized immune detection
JPS5944583B2 (en) Protein detection method
US7829349B2 (en) Base carrier for detecting target substance, element for detecting target substance, method for detecting target substance using the element, and kit for detecting target substance
CN112304906B (en) Dual-channel probe type 81-degree inclined fiber bragg grating sensor system and preparation method and application thereof
KR100511055B1 (en) Measuring method of biochip and biosensor using surface plasmon resonance combined with an enzymatic precipitation
CN207976394U (en) Time-resolved fluoroimmunoassay chromatography detects the test strips and kit of AMH
TW200411164A (en) Method for immunoassays based on infrared reflection absorption spectroscopy
JPH04233462A (en) Immunological quantitative analysis
CN115824980A (en) Micro-ring resonator for detecting IgG protein in urine and preparation method and application thereof
CA1083036A (en) Indirect solid surface test for antigens or antibodies