JPH04233462A - Immunological quantitative analysis - Google Patents

Immunological quantitative analysis

Info

Publication number
JPH04233462A
JPH04233462A JP41699190A JP41699190A JPH04233462A JP H04233462 A JPH04233462 A JP H04233462A JP 41699190 A JP41699190 A JP 41699190A JP 41699190 A JP41699190 A JP 41699190A JP H04233462 A JPH04233462 A JP H04233462A
Authority
JP
Japan
Prior art keywords
antigen
antibody
concentration
sample
immobilized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41699190A
Other languages
Japanese (ja)
Inventor
Minoru Takase
高瀬 實
Kazunori Shibata
和典 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP41699190A priority Critical patent/JPH04233462A/en
Priority to PCT/JP1991/001373 priority patent/WO1992006379A1/en
Priority to EP19910917698 priority patent/EP0504432A4/en
Publication of JPH04233462A publication Critical patent/JPH04233462A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Measuring Cells (AREA)

Abstract

PURPOSE:To achieve an expansion of measurable density area of an immunoassay, a reduction in the frequency of diluting operation of a sample to be inspected of the inspection and a higher measuring accuracy thereof. CONSTITUTION:Immobilizing areas are formed on a substrate for a plurality of antibodies and antigens different in density and the antigen or antibody in a sample is made to act on the substrate to trap the antigen or the antibody in the sample in the antibody or antigen immobilized in the areas. Then, a latex particle having the antibody or antigen immobilized thereon is made to work to trap the latex particle in the antigen or the antibody in the sample. Then, the number of the latex particles or a physical quantity correlated thereto is measured and a density of the antigen corresponding to a measured value is determined from a calibration curve prepared previously using antigen with a known density.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は免疫学的定量分析方法に
関し、特に免疫学的検査の測定濃度領域の拡大、検体試
料の稀釈操作の簡略化および測定精度の向上を図ること
のできる免疫学的定量分析方法に関する。
[Field of Industrial Application] The present invention relates to an immunological quantitative analysis method, and more particularly, to an immunological quantitative analysis method that can expand the measurable concentration range of an immunological test, simplify the dilution operation of a specimen sample, and improve the measurement accuracy. Concerning quantitative analysis methods.

【0002】0002

【従来の技術】近年、医療分野においては、病気の早期
発見等を目的として、体液中の微量成分の定量分析が頻
繁に行なわれている。例えば、血液中の微量成分の定量
が行なわれているが、血液中に含まれる体液成分はその
濃度がng(ナノグラム)/ml オーダーと極めて微
量なものが多く、これらの微量成分を定量的に分析する
ことは医療分野における重要な課題となっている。
BACKGROUND OF THE INVENTION In recent years, in the medical field, quantitative analysis of trace components in body fluids has been frequently carried out for the purpose of early detection of diseases. For example, trace components in blood are being quantified, but many of the body fluid components contained in blood are extremely small, with concentrations on the order of ng (nanograms)/ml, and it is difficult to quantify these trace components. Analysis has become an important issue in the medical field.

【0003】従来、抗原−抗体反応を利用した血液微量
成分の免疫学的測定法としては、ラテックス凝集反応法
(LIA法)、ラジオイムノアッセイ法(RIA法)、
あるいは酵素免疫検査法(EIA法)などの免疫学的手
法が知られている。上記ラテックス凝集反応法(LIA
法)は、1965年にSingerとPlotz らに
よって開発された方法であり、抗体(または抗原)を固
定してなる不溶性担体粒子(ラテックス粒子)を用いて
抗原−抗体反応を行なわせ、ラテックス粒子の凝集を生
じさせた後、ラテックスの濁度から抗原(または抗体)
の濃度を求める方法である。また、ラジオイムノアッセ
イ法(RIA法)は、放射性同位元素でラベルした抗体
(または抗原)を用いて抗原−抗体反応を行なわせ、抗
体(または抗原)にラベルした放射性同位元素の放射線
量より抗原(または抗体)の濃度を求める方法である。 さらに、酵素免疫検査法(EIA法)は、酵素でラベル
した抗体(または抗原)を用いて抗原−抗体反応を行な
わせ、抗体(または抗原)にラベルした酵素反応による
発色の程度により抗原(または抗体)の濃度を求める方
法である。上記の各免疫学的測定方法においては、濃度
既知の標準物質を用いて濁度,放射能強度,吸光度等を
測定してあらかじめ検量線を作成しておき、未知濃度の
検体を測定したときの測定値を検量線に当てはめ、それ
により検体中の目的物質濃度を求めている。
[0003] Conventionally, immunoassay methods for detecting trace blood components using antigen-antibody reactions include latex agglutination method (LIA method), radioimmunoassay method (RIA method),
Alternatively, immunological methods such as enzyme immunoassay (EIA method) are known. The above latex agglutination reaction method (LIA)
This method was developed by Singer and Plotz et al. in 1965, and involves performing an antigen-antibody reaction using insoluble carrier particles (latex particles) on which antibodies (or antigens) are immobilized. After causing agglutination, the antigen (or antibody) is determined from the turbidity of the latex.
This is a method to find the concentration of In addition, the radioimmunoassay method (RIA method) uses an antibody (or antigen) labeled with a radioisotope to perform an antigen-antibody reaction, and the radiation dose of the radioisotope labeled with the antibody (or antigen) is determined by the antigen (or antigen). or antibody) concentration. Furthermore, enzyme immunoassay (EIA method) uses an enzyme-labeled antibody (or antigen) to perform an antigen-antibody reaction, and the degree of color development due to the enzyme reaction labeled with the antibody (or antigen) is determined by the antigen (or antigen). This method determines the concentration of antibodies (antibodies). In each of the above immunoassay methods, a calibration curve is prepared in advance by measuring turbidity, radioactivity intensity, absorbance, etc. using a standard substance with a known concentration, and a calibration curve is prepared in advance when measuring a sample with an unknown concentration. The measured values are applied to a calibration curve to determine the concentration of the target substance in the sample.

【0004】0004

【発明が解決しようとする課題】しかしながら、上述し
た従来の免疫学的測定方法においては、作成される検量
線はその性質上一本だけであり、この検量線による測定
可能な濃度範囲は大きくても2〜3桁の範囲しかないた
め、臨床検査等で扱っている種々の濃度の検体をすべて
カバーすることはできない。したがって、未知濃度の検
体の測定を行なう場合、検体を測定可能な濃度範囲にな
るまで何回も稀釈する必要があり、この稀釈操作が煩雑
であり、時間面およびコスト面で不利であるという問題
がある。さらに、稀釈操作に伴うピペッティングの際に
誤差の発生等が起き易いという問題がある。  また、
一般にS/N(信号/ノイズ)比は測定回数の平方根に
比例して向上することが知られているが、上述した従来
の免疫学的測定法においては検量線が一本であるため、
一回の測定においては単一のデータしか得ることができ
ず、測定精度の向上に限界があるという問題がある。本
発明は、上述した問題点にかんがみてなされたもので、
免疫学的検査の測定可能な濃度領域の拡大、検体の稀釈
操作回数の低減および測定精度の向上を図ることのでき
る免疫学的定量分析方法の提供を目的とする。
[Problems to be Solved by the Invention] However, in the conventional immunoassay method described above, only one calibration curve is created due to its nature, and the concentration range that can be measured by this calibration curve is wide. Since the range is only 2 to 3 digits, it is not possible to cover all the various concentrations of specimens used in clinical tests. Therefore, when measuring a sample with an unknown concentration, it is necessary to dilute the sample many times until it reaches a measurable concentration range, and this dilution operation is complicated and disadvantageous in terms of time and cost. There is. Furthermore, there is a problem in that errors are likely to occur during pipetting associated with dilution operations. Also,
It is generally known that the S/N (signal/noise) ratio improves in proportion to the square root of the number of measurements, but in the conventional immunoassay method described above, there is only one calibration curve.
There is a problem in that only a single piece of data can be obtained in one measurement, and there is a limit to the improvement of measurement accuracy. The present invention has been made in view of the above-mentioned problems.
The purpose of the present invention is to provide an immunological quantitative analysis method that can expand the measurable concentration range of immunological tests, reduce the number of sample dilution operations, and improve measurement accuracy.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の免疫学的定量分析方法は、固相上に測定可
能な濃度領域が異なる複数の抗体(または抗原)の固定
領域を設け、この抗体(または抗原)固定領域に該抗体
(または抗原)と特異的に反応する抗原(または抗体)
を含む試料を作用させて抗原(または抗体)を抗原−抗
体反応により捕捉せしめた後、さらに該抗原(または抗
体)と特異的に反応する抗体(または抗原)を固定して
なる不溶性担体粒子を作用させ、前記抗原(または抗体
)によって捕捉された不溶性担体粒子の数またはこの粒
子数と相関する物理量を測定することにより、抗原(ま
たは抗体)濃度を測定するようにしてある。また、好ま
しくは、濃度の異なる抗体,抗原の溶液を用いて固相上
の各領域に抗原,抗体を固着せしめて、測定可能な濃度
領域が異なる複数の抗原,抗体を固定した領域を固相上
に形成するようにしてあり、不溶性担体粒子をラテック
ス粒子としてある。さらに、必要に応じ、固相として平
板状の基板あるいは回転可能な円盤状の基板を用いた構
成としてある。
[Means for Solving the Problems] In order to achieve the above object, the immunological quantitative analysis method of the present invention immobilizes a plurality of antibodies (or antigens) with different measurable concentration regions on a solid phase. An antigen (or antibody) that specifically reacts with the antibody (or antigen) is provided in this antibody (or antigen) immobilization region.
After the antigen (or antibody) is captured by an antigen-antibody reaction by reacting with a sample containing the antigen, insoluble carrier particles are further immobilized with an antibody (or antigen) that specifically reacts with the antigen (or antibody). The antigen (or antibody) concentration is measured by measuring the number of insoluble carrier particles captured by the antigen (or antibody) or a physical quantity correlated with this number of particles. Preferably, the antigens and antibodies are immobilized on each region on the solid phase using solutions of antibodies and antigens having different concentrations, and the regions on which a plurality of antigens and antibodies immobilized with different measurable concentration regions are fixed on the solid phase. The insoluble carrier particles are latex particles. Furthermore, if necessary, a flat substrate or a rotatable disk-shaped substrate may be used as the solid phase.

【0006】ここで、抗原とは、免疫応答(抗体産生)
や免疫寛容を誘導し(免疫原性)、または抗体と結合す
る活性を示す物質の総称をいう。抗体とは、ある抗原に
対して免疫性を獲得した個体が持つ、抗原特異的に働く
抵抗性の実態の総称をいう。
[0006] Here, antigen refers to immune response (antibody production).
A general term for substances that induce immunogenicity (immunogenicity) or bind to antibodies. Antibody is a general term for the resistance that occurs in individuals who have acquired immunity to a certain antigen and acts specifically on the antigen.

【0007】以下、本発明を図面を参照しつつ詳細に説
明する。なお、ここでは基板/抗体/抗原/抗体/不溶
性担体粒子の構成をとる場合について説明する。図1は
本発明の免疫学的定量分析方法の手順を示す説明図であ
る。本発明の免疫学的定量分析方法においては、まず、
固相上に測定可能な濃度領域が異なる複数の抗体固定領
域を設ける。ここで、固相としては抗体を固定しうるも
のであれば特に限定されないが、通常は基板が使用され
ている。例えば、図1(I)に示すように基板1上に抗
体2が固定される。基板1に固定される抗体2は、測定
しようとする抗原によって異なるが、例えば、測定しよ
うとする抗原をある免疫動物(例えば、兎,山羊,羊な
ど)に投与して産生させたポリクロナール抗体やモノク
ローナル抗体等が挙げられる。
The present invention will be explained in detail below with reference to the drawings. Here, a case will be described in which the configuration is substrate/antibody/antigen/antibody/insoluble carrier particles. FIG. 1 is an explanatory diagram showing the procedure of the immunological quantitative analysis method of the present invention. In the immunological quantitative analysis method of the present invention, first,
A plurality of antibody immobilization regions with different measurable concentration regions are provided on the solid phase. Here, the solid phase is not particularly limited as long as it can immobilize the antibody, but a substrate is usually used. For example, as shown in FIG. 1(I), an antibody 2 is immobilized on a substrate 1. The antibody 2 immobilized on the substrate 1 varies depending on the antigen to be measured, but for example, it may be a polyclonal antibody produced by administering the antigen to be measured to a certain immunized animal (e.g., rabbit, goat, sheep, etc.). Examples include monoclonal antibodies.

【0008】ここで、基板1の大きさ,厚さ,形状等は
適宜選択され、特に制限されないが、平板状(プレート
状)あるいは回転可能な円盤状(ディスク状)とするの
が好ましい。平板状の基板は、電子顕微鏡等を用いた分
析に適する。また、基板を回転可能な円盤状に形成する
と、試料の展開およびレーザー光等による分析が容易か
つ自動的に行なえるので好ましい。基板1の形成材料と
しては、ポリカーボネート,ポリメチルメタクリレート
,ポリスチレン,ポリ塩化ビニル,ポリ酢酸ビニル,ポ
リウレタン,エポキシ樹脂等のプラスチック材料やガラ
ス等の透明材料、あるいは光反射性の良い金属材料、そ
の他シリコン単結晶のような無機材料等が挙げられる。 このように基板を光透過性あるいは光反射性の良い材料
で形成すると、レーザー光等による光学的分析が可能と
なる。上記固相(基板)上に測定可能な濃度領域が異な
る複数の抗体固定領域を設けるには、例えば、濃度の異
なる抗体溶液を用い、これを基板上に滴下し、物理吸着
あるいは化学吸着によって固定する。滴下する抗体溶液
の濃度はその抗体と特異的に反応する抗原(あるいは抗
抗体)により異なるが、一般的には10−2〜10−7
g/mlオーダーの濃度のものが使用される。
[0008] Here, the size, thickness, shape, etc. of the substrate 1 are appropriately selected and are not particularly limited, but it is preferably in the shape of a flat plate (plate) or a rotatable disk (disc). A flat substrate is suitable for analysis using an electron microscope or the like. Furthermore, it is preferable to form the substrate into a rotatable disk shape, since this allows the sample to be developed and analyzed using laser light or the like easily and automatically. Materials for forming the substrate 1 include plastic materials such as polycarbonate, polymethyl methacrylate, polystyrene, polyvinyl chloride, polyvinyl acetate, polyurethane, and epoxy resin, transparent materials such as glass, metal materials with good light reflectivity, and other silicon materials. Examples include inorganic materials such as single crystals. If the substrate is formed of a material with good light transmittance or light reflectivity in this way, optical analysis using laser light or the like becomes possible. To provide multiple antibody immobilization regions with different measurable concentration regions on the above solid phase (substrate), for example, use antibody solutions with different concentrations, drop them onto the substrate, and immobilize them by physical adsorption or chemical adsorption. do. The concentration of the antibody solution to be dropped varies depending on the antigen (or anti-antibody) that specifically reacts with the antibody, but is generally between 10-2 and 10-7.
A concentration on the order of g/ml is used.

【0009】抗体を固定させる具体的条件に関しては、
一般的な抗体固定方法における条件と同様の条件が採用
される(酸素免疫反応法、石川栄治著、医学書院刊19
87年参照)。例えば、抗体の0.05Mトリス緩衝食
塩水(TBS)溶液(pH8.2,抗体濃度10−2〜
10−7g/ml)あるいは0.05M炭酸・重炭酸緩
衝溶液(pH9.6,抗体濃度10−2〜10−7μg
/ml)を基板上に滴下し、20〜30℃で2時間(あ
るいは4℃で一昼夜)放置して、抗体2を基板1上に物
理的に吸着させればよい。この場合、基板表面にアミノ
基,カルボキシル基またはその誘導体等の官能基を有す
る基板を用いることにより、抗体を基板上に化学結合さ
せることもできる
Regarding the specific conditions for immobilizing antibodies,
Conditions similar to those for general antibody immobilization methods are adopted (Oxygen immunoreaction method, written by Eiji Ishikawa, published by Igaku Shoin 19
(see 1987). For example, a 0.05M Tris-buffered saline (TBS) solution of the antibody (pH 8.2, antibody concentration 10-2
10-7 g/ml) or 0.05 M carbonate/bicarbonate buffer solution (pH 9.6, antibody concentration 10-2 to 10-7 μg)
/ml) onto the substrate and left at 20 to 30°C for 2 hours (or overnight at 4°C) to physically adsorb antibody 2 onto substrate 1. In this case, the antibody can be chemically bonded to the substrate by using a substrate having functional groups such as amino groups, carboxyl groups, or derivatives thereof on the surface of the substrate.

【0010】上記複数の抗体固定領域の形状、配列に関
しては種々の態様が可能である。例えば図2に示すよう
に、各抗体固定領域A〜Dの形状は円形(同図(b),
(d),(e),(f))や矩形(同図(a),(c)
)とされる。また、各抗体固定領域の配列としては、長
方形状の基板(プレート)1の長手方向に配列する場合
(同図(a),(b))、円盤状の基板(ディスク)1
の半径方向に配列する場合(同図(c),(d))、円
盤状のディスクの円周方向に配列する場合(同図(e)
)等が挙げられる。この場合、各領域A〜Dは連続して
配列してもよく(同図(a),(c))、間隔をあけて
配列してもよい(同図(b),(d),(e),(f)
)。また、基板1は図2(f)に示すように、円盤状の
ディスクに多数の突条1aを放射状に形成して多数の試
料展開面1bを設け、これら試料展開面1bのそれぞれ
に抗体固定領域A〜Dを設けることにより、多数の検体
試料の同時分析を行なえるようにしてもよい。
[0010] Various embodiments are possible regarding the shape and arrangement of the plurality of antibody-fixing regions. For example, as shown in Figure 2, each antibody immobilization area A to D has a circular shape (Figure 2(b),
(d), (e), (f)) and rectangles ((a), (c))
). In addition, as for the arrangement of each antibody immobilization region, when arranged in the longitudinal direction of a rectangular substrate (plate) 1 (see Figures (a) and (b)), when arranged in the longitudinal direction of a rectangular substrate (plate) 1, and when arranged in the longitudinal direction of a rectangular substrate (plate) 1,
((c), (d) in the same figure), and in the circumferential direction of a disk ((e) in the same figure).
) etc. In this case, the regions A to D may be arranged consecutively ((a), (c) in the figure) or may be arranged at intervals ((b), (d), (in the figure)). e), (f)
). In addition, as shown in FIG. 2(f), the substrate 1 is a disc-shaped disk with a large number of radially formed protrusions 1a to provide a large number of sample development surfaces 1b, and antibodies are immobilized on each of these sample development surfaces 1b. By providing regions A to D, a large number of specimen samples may be analyzed simultaneously.

【0011】なお、抗体固定領域の数は図2に示したよ
うに四つの場合に限られず、任意の個数とできる。図2
においては、各抗体固定領域A〜Dの濃度は、領域A:
10−3g/ml,領域B:10−4g/ml,領域C
:10−5g/ml,領域D:10−6g/mlのよう
に図示右方向あるいは下方向に向かって濃度が減少する
ように構成してあるが、その逆の順序になるように構成
してもよい。
Note that the number of antibody immobilization regions is not limited to four as shown in FIG. 2, but can be any number. Figure 2
, the concentration of each antibody immobilization region A to D is region A:
10-3 g/ml, area B: 10-4 g/ml, area C
10-5 g/ml, Region D: 10-6 g/ml, so that the concentration decreases toward the right or downward in the diagram, but it is configured so that the concentration is in the opposite order. Good too.

【0012】上記のように得られた複数の抗体固定領域
A〜Dを形成した基板は、図1(II)に示すように、
非特異性吸着防止のため、ブロッキング剤3でその表面
を覆い、ブロッキング処理を行なうことが好ましい。こ
こで、ブロッキング剤としては、ウシ血清アルブミン,
カゼイン,スキムミルク等が挙げられる。本発明方法に
おいては、次に、上記抗体固定基板4上で、検体試料5
中の抗原6を抗原−抗体反応により捕捉せしめる(図1
(III ))。ここで、分析対象とされる検体試料5
としては、抗原を含むものであれば特に制限されない。 例えば、血液,胸水、腹水,心臓水,関節水,尿等の体
液を挙げることができる。分析対象物である抗原は特に
制限されないが、例えば、C−反応性蛋白質(CRP)
、α−フェトプロティン(AFP)、癌胎児性抗原(C
EA)等が挙げられる。ここで、CRPとはC−rea
ctive  proteinの略であって、炎症性疾
患や体内組織の壊死があるような病態で著しく増量する
血漿蛋白の一つであり、いわゆる急性相反応蛋白acu
te  phase  proteinsの代表的な成
分である。
[0012] As shown in FIG. 1 (II), the substrate on which a plurality of antibody immobilization regions A to D obtained as described above were formed,
In order to prevent non-specific adsorption, it is preferable to cover the surface with blocking agent 3 and perform blocking treatment. Here, as the blocking agent, bovine serum albumin,
Examples include casein and skim milk. In the method of the present invention, next, the specimen sample 5 is placed on the antibody immobilized substrate 4.
The antigen 6 inside is captured by an antigen-antibody reaction (Figure 1
(III)). Here, the specimen sample 5 to be analyzed
There are no particular restrictions on the antigen as long as it contains an antigen. Examples include body fluids such as blood, pleural fluid, ascites fluid, heart fluid, joint fluid, and urine. The antigen to be analyzed is not particularly limited, but for example, C-reactive protein (CRP)
, α-fetoprotein (AFP), carcinoembryonic antigen (C
EA), etc. Here, CRP is C-rea
It is an abbreviation for active protein, and it is one of the plasma proteins that increases significantly in pathological conditions such as inflammatory diseases and necrosis of body tissues, and is a so-called acute phase reactive protein.
It is a typical component of te phase proteins.

【0013】基板1上で抗原−抗体反応を行なわせるに
は、例えば、基板上の抗体固定領域A〜Dの各々に分析
対象物である抗原6を含んだ検体試料5を適量(例えば
50μl 程度)滴下すればよい。これによって、基板
1上に形成された抗体固定領域A〜D中の抗体2と検体
試料5中の抗原6との間に抗原−抗体反応を行なわせる
ことができる。また、円盤状の基板1を回転して、遠心
力で検体試料を基板1上に薄膜状に展開することによっ
て、基板1上で抗原−抗体反応を行なわせるようにして
もよい。この場合、抗原−抗体反応に要する時間は1〜
5分程度の短い時間で済む。抗原−抗体反応後、捕捉さ
れた抗原6以外の残余の成分7,8は、リン酸緩衝食塩
水(PBS)(pH7.4 )、あるいはトリス緩衝食
塩水(TBS)(pH8.2 )等を適量(例えば、1
ml程度)滴下して洗い流すか、あるいは滴下後さらに
基板1を回転して洗い流す。
In order to carry out an antigen-antibody reaction on the substrate 1, for example, an appropriate amount (for example, about 50 μl) of the specimen sample 5 containing the antigen 6, which is the analyte, is applied to each of the antibody-immobilized regions A to D on the substrate. ) just drop it. This allows an antigen-antibody reaction to occur between the antibodies 2 in the antibody immobilization regions A to D formed on the substrate 1 and the antigen 6 in the specimen sample 5. Alternatively, the antigen-antibody reaction may be caused to occur on the substrate 1 by rotating the disk-shaped substrate 1 and spreading the specimen sample on the substrate 1 in the form of a thin film using centrifugal force. In this case, the time required for antigen-antibody reaction is 1~
It only takes about 5 minutes. After the antigen-antibody reaction, the remaining components 7 and 8 other than the captured antigen 6 are treated with phosphate buffered saline (PBS) (pH 7.4) or Tris buffered saline (TBS) (pH 8.2). Appropriate amount (for example, 1
ml) and rinse it off, or after dropping it, further rotate the substrate 1 and rinse it off.

【0014】次いで、上記抗原−抗体反応後の基板1に
、抗原6と特異的に反応する抗体9を固定してなる不溶
性担体粒子10を作用させる(第1図(IV))。ここ
で、抗体9を固定してなる不溶性担体粒子10とは、例
えば、ラテックス粒子に、分析対象物である抗原6に対
する抗体9を、物理的あるいは化学的に吸着または結合
させて固定したものをいう。この場合、ラテックス粒子
は粒径が揃っていればよく、プラスチック微粒子(例え
ば、ポリスチレン等)、無機微粒子あるいは金属微粒子
等のいずれであってもよい。不溶性担体粒子は、蛍光性
を有するもの、あるいは着色されたものであってもよく
、これにより蛍光性あるいは着色性を利用した分析が可
能となる。この場合、不溶性担体粒子自体が蛍光物質で
形成されていてもよく、蛍光材料でコーティングされて
いてもよく、蛍光物質が不溶性担体粒子に付着してもよ
い。抗体を固定してなる不溶性担体粒子を得るには、例
えば、TBSを用いてpHや塩濃度を調整した1.0%
ラテックス懸濁液に抗体を入れ、温室で2時間放置して
、ラテックス粒子に抗体を物理吸着させる。その後、遠
心分離にかけて上清を捨て、吸着されなかった抗体を除
去し、沈殿部にリン酸緩衝食塩水(PBS)(PH7.
4)を注ぎ、再分散させて作成される(特開昭62−2
67298号,Applied and Enviro
nmental Microbiology, Oct
.1988, P2345−2348参照)。
Next, insoluble carrier particles 10 having immobilized antibodies 9 that specifically react with the antigen 6 are applied to the substrate 1 after the antigen-antibody reaction (FIG. 1 (IV)). Here, the insoluble carrier particles 10 on which antibodies 9 are immobilized are particles on which, for example, latex particles are immobilized with antibodies 9 against antigens 6, which are the analyte, physically or chemically adsorbed or bonded to them. say. In this case, the latex particles need only have a uniform particle size, and may be any of plastic particles (eg, polystyrene, etc.), inorganic particles, or metal particles. The insoluble carrier particles may be fluorescent or colored, thereby enabling analysis using fluorescence or coloring. In this case, the insoluble carrier particles themselves may be formed of a fluorescent material, may be coated with a fluorescent material, or the fluorescent material may be attached to the insoluble carrier particles. In order to obtain insoluble carrier particles on which antibodies are immobilized, for example, 1.0% with pH and salt concentration adjusted using TBS.
Add the antibody to the latex suspension and leave it in a greenhouse for 2 hours to physically adsorb the antibody onto the latex particles. Thereafter, the supernatant was discarded by centrifugation to remove unadsorbed antibodies, and the precipitate was filled with phosphate buffered saline (PBS) (pH 7.
4) and redispersing it (Japanese Patent Application Laid-Open No. 62-2
No. 67298, Applied and Enviro
nmental Microbiology, Oct.
.. 1988, P2345-2348).

【0015】上記のようにして調製された抗体を固定し
てなる不溶性担体粒子を含んだ水溶液は、上述した抗原
−抗体反応後の基板1(図1(III))に適量(例え
ば、50μl )滴下される(あるいは滴下後さらに基
板1の回転によって展開される)。これにより、基板1
の抗体2に捕捉された抗原6と、不溶性担体粒子10に
固定された抗体9とが再度抗原−抗体反応を起こし、抗
体9を介して不溶性担体粒子10が捕捉される(第1図
(IV))。基板上に捕捉されなかった不溶性担体粒子
は、上述した検体試料と同様の方法で洗い流される。こ
のようにして、サンプル基板が作製される。
[0015] An appropriate amount (for example, 50 μl) of the aqueous solution containing the insoluble carrier particles on which the antibody prepared as described above is immobilized is applied to the substrate 1 (FIG. 1 (III)) after the antigen-antibody reaction described above. It is dropped (or it is further spread out by rotating the substrate 1 after being dropped). As a result, substrate 1
The antigen 6 captured by the antibody 2 and the antibody 9 immobilized on the insoluble carrier particles 10 cause an antigen-antibody reaction again, and the insoluble carrier particles 10 are captured via the antibody 9 (see )). Insoluble carrier particles not captured on the substrate are washed away in the same manner as for the analyte sample described above. In this way, a sample substrate is produced.

【0016】次に、上記サンプル基板上の抗原6によっ
て捕捉された不溶性担体粒子10の数または粒子数と相
関する物理量を測定手段11で測定して、抗原6の数(
抗原の濃度)を求める(第1図(IV))。ここで、粒
子数等の測定手段11としては、光学的測定手段が好ま
しい。光学的測定手段としては、光学顕微鏡で得られる
画像を画像解析装置を介して解析し粒子数の測定を行な
う測定手段が例示される。また、他の光学的測定手段と
しては、レーザー,LED,ハロゲンランプ等の光源と
、フォトディテクター,CCD(ラインセンサー含む)
等の受光系とを組み合わせた種々の測定手段が例示され
る。この場合、レーザー光等を用い反射率の変化等から
直接粒子数を計数(カウント)するようにしてもよく、
あるいは着色による吸光度や蛍光物質による蛍光強度等
のように粒子数と相関する物理量を測定し、これを粒子
数に換算して粒子数を求めてもよい(特願平2−270
900号参照)。
Next, the number of insoluble carrier particles 10 captured by the antigen 6 on the sample substrate or a physical quantity correlated with the number of particles is measured by the measuring means 11 to determine the number of antigens 6 (
(Figure 1 (IV)). Here, as the means 11 for measuring the number of particles, etc., an optical measuring means is preferable. An example of the optical measuring means is a measuring means that measures the number of particles by analyzing an image obtained with an optical microscope via an image analysis device. In addition, other optical measurement means include light sources such as lasers, LEDs, and halogen lamps, photodetectors, and CCDs (including line sensors).
Various measurement means are exemplified in combination with a light receiving system such as. In this case, the number of particles may be counted directly from changes in reflectance using laser light, etc.
Alternatively, the number of particles may be determined by measuring a physical quantity that correlates with the number of particles, such as the absorbance due to coloring or the intensity of fluorescence due to a fluorescent substance, and converting this into the number of particles (Patent Application No. 2-270
(See No. 900).

【0017】なお、光学的測定手段と不溶性担体粒子の
粒径との関係については次のことがいえる。光学顕微鏡
と画像解析装置とを組み合わせた測定手段を用いる場合
には、不溶性担体粒子の粒径は0.2μm程度であるこ
とが好ましい。また、光学的測定手段としてレーザーを
用いる場合には、不溶性担体粒子の粒径が小さくなると
レーザー光に対する信号が弱くなり、S/N比が悪くな
るので好ましくない。一方、蛍光を発する不溶性担体粒
子を用いる場合には、蛍光強度を粒子数に換算して、抗
原濃度を測定しているので、粒径が小さくてもよい。さ
らに電子顕微鏡を用いれば0.2μm以下の不溶性担体
粒子も利用することができる。上記の観点および抗原−
抗体の反応性からすると、不溶性担体粒子の粒径は0.
01〜10μmの範囲内であることが好ましい。
The following can be said about the relationship between the optical measuring means and the particle size of the insoluble carrier particles. When using a measuring means that combines an optical microscope and an image analysis device, the particle size of the insoluble carrier particles is preferably about 0.2 μm. Furthermore, when a laser is used as an optical measurement means, it is not preferable that the particle size of the insoluble carrier particles becomes smaller, since the signal to the laser beam becomes weaker and the S/N ratio deteriorates. On the other hand, when insoluble carrier particles that emit fluorescence are used, the antigen concentration is measured by converting the fluorescence intensity into the number of particles, so the particle size may be small. Furthermore, if an electron microscope is used, insoluble carrier particles of 0.2 μm or less can also be used. Above aspects and antigens-
Considering the reactivity of the antibody, the particle size of the insoluble carrier particles is 0.
It is preferably within the range of 0.01 to 10 μm.

【0018】上記で計測した不溶性担体粒子の個数から
抗原の濃度を求めるには、抗原濃度既知の試料を用いる
こと以外は上述したのと同様にして、抗原濃度と不溶性
担体粒子の数との関係を求め、あらかじめ検量線を作成
しておき、この検量線から、抗原濃度を求めればよい。 この場合、検量線は、測定可能な濃度領域が異なる抗体
固定領域A〜Dごとに作成される(したがって検量線は
四本作成される)。例えば、抗原濃度既知の試料であっ
て抗原濃度が異なるものを6種(10−2〜10−7 
 g/ml)用意し、この抗原濃度既知の6種のそれぞ
れを各抗体固定領域A〜Dに作用させ、上述したのと同
様にして、不溶性担体粒子の数を測定して、各抗体固定
領域A〜Dにおける抗原濃度と担体粒子の数との関係を
求める。そして、これらの関係を一つのグラフにプロッ
トして検量線A’〜D’を作成する(図3(a)参照)
To determine the antigen concentration from the number of insoluble carrier particles measured above, the relationship between the antigen concentration and the number of insoluble carrier particles is determined in the same manner as described above except that a sample with a known antigen concentration is used. , create a calibration curve in advance, and then determine the antigen concentration from this calibration curve. In this case, a calibration curve is created for each of the antibody immobilization regions A to D, which have different measurable concentration regions (therefore, four calibration curves are created). For example, six types of samples with known antigen concentrations (10-2 to 10-7) with different antigen concentrations were prepared.
g/ml), and each of these six types with known antigen concentrations is applied to each antibody-immobilized region A to D. The number of insoluble carrier particles is measured in the same manner as described above, and each antibody-immobilized region is The relationship between the antigen concentration and the number of carrier particles in A to D is determined. Then, plot these relationships on one graph to create calibration curves A' to D' (see Figure 3(a)).
.

【0019】次に、図3(a)に示す検量線から未知濃
度(Ca)の抗原濃度を求める方法を具体的に説明する
。例えば、未知濃度(Ca)の検体試料を各抗体固定領
域A〜Dに作用させたとき、抗体固定領域A〜Cにおい
てラテックス数a1 ,a2 ,a3 が計測されたと
すると(Dでは検量線D’の範囲外であるので計測され
ない)図3(a)の各抗体固定領域についての検量線A
’〜C’により、そのラテックス数に対応する濃度Ca
1 ,Ca2 ,Ca3 が求められる。そして、それ
らの平均値Caが抗原濃度とされる(図3(b)参照)
。同様に、抗原濃度を未知濃度(Cb)とし、各濃度領
域A〜Dにおけるラテックス数がb1 (領域C)b2
 (領域D)(A,B領域ではラテックス数が多すぎて
有効測定領域外でありラテックス数は得られない)であ
るとすると、図3(a)の検量線C’,D’より濃度C
b1 ,Cb2 が求められる。そしてそれらの平気値
Cbが抗原濃度とされる(図3(c)参照)。
Next, a method for determining the antigen concentration of the unknown concentration (Ca) from the calibration curve shown in FIG. 3(a) will be specifically explained. For example, suppose that when a specimen sample with an unknown concentration (Ca) is applied to each antibody-immobilized region A to D, latex numbers a1, a2, and a3 are measured in the antibody-immobilized regions A to C (in D, the calibration curve D' Calibration curve A for each antibody fixation region in Figure 3(a)
By '~C', the concentration Ca corresponding to the latex number
1, Ca2, and Ca3 are found. Then, their average value Ca is taken as the antigen concentration (see Figure 3(b))
. Similarly, the antigen concentration is defined as an unknown concentration (Cb), and the number of latex in each concentration region A to D is b1 (region C) b2
(Region D) (The number of latex is too large in regions A and B and it is outside the effective measurement area, so the number of latex cannot be obtained).
b1 and Cb2 are found. Then, their normal value Cb is taken as the antigen concentration (see FIG. 3(c)).

【0020】図3(a)に示されたごとく固定抗体の濃
度差によって検量線A’〜D’の位置が違うので、1つ
の検量線ではカバーできなかったダイナミックレンジが
見掛け上拡大した形になる。これにより、従来行なって
いた測定可能範囲になるまでの稀釈の繰り返し操作が省
略又は低減される。また、もし抗原濃度が図3(a)に
示すCaの場合には、A,B,Cエリアで捕捉されたラ
テックス数より各々濃度が求められる(図3(b))。 この場合、その値が予め決定されている測定可能領域内
にある測定値のみを有効測定値とし、それらを平均する
ことにより目的物質濃度が求められる(図3(b))。 これにより従来の検量線一つだけによるものより測定精
度の向上が期待できる。一般に、S/N(信号/ノイズ
)比は測定回数の平方根に比例することが知られている
からである。
As shown in FIG. 3(a), the positions of the calibration curves A' to D' differ depending on the concentration difference of the immobilized antibody, so the dynamic range that could not be covered by one calibration curve is apparently expanded. Become. This eliminates or reduces the need for repeated dilution operations until a measurable range is achieved, which has been conventionally performed. Furthermore, if the antigen concentration is Ca shown in FIG. 3(a), the concentration can be determined from the number of latexes captured in areas A, B, and C (FIG. 3(b)). In this case, only the measured values whose values are within a predetermined measurable region are taken as valid measured values, and the target substance concentration is determined by averaging them (FIG. 3(b)). As a result, it is expected that measurement accuracy will be improved compared to the conventional method using only one calibration curve. This is because it is generally known that the S/N (signal/noise) ratio is proportional to the square root of the number of measurements.

【0021】なお、上述した本発明の免疫学的定量分析
方法においては、説明の都合上、基板/抗体/抗原/抗
体/不溶性担体粒子の構成となる場合を示したが、かわ
りに、基板/抗原/抗体/抗原/不溶性担体粒子の構成
とし、抗体濃度の定量を行なうものとしてもよい。
[0021] In the above-described immunological quantitative analysis method of the present invention, for convenience of explanation, a case is shown in which the structure is substrate/antibody/antigen/antibody/insoluble carrier particles. The antigen/antibody/antigen/insoluble carrier particle structure may be used to quantify the antibody concentration.

【0022】[0022]

【実施例】以下、実施例にもとづき本発明をさらに詳細
に説明する。 [実施例1]:CRP(C−反応性蛋白質)の定量抗体
固定基板の作成 図2(b)に示すように、タテ2cm、ヨコ7cmのポ
リカーボネート製プレート上に、CRP抗原を兎に免疫
させて得たCRP抗体を固定させる。抗体の固定には、
抗体濃度1×10−3、10−4、10−5、10−6
g/mlのTBS(トリス緩衝食塩水)溶液50μlを
、1cmφ径の面積となるようにそれぞれ上記の順番で
領域A〜Dに滴下し、30℃で2時間静置して物理吸着
させた。 その後、吸着されなかった抗体をTBS(pH8.2)
10mlで洗浄し、さらに非特異吸着の防止のため、ブ
ロッキング剤(ブロックエース:雪印製)を用い4℃で
一晩静置してブロッキング処理を行なった。Tween
20(ポリサイエンス社製)0.05wt%を加えたト
リス緩衝食塩水(以下TBS−Tweenという)10
mlで残ったブロッキング剤を洗浄し、抗体固定基板と
した。
EXAMPLES The present invention will be explained in more detail below based on examples. [Example 1]: Quantification of CRP (C-reactive protein) Creation of antibody-immobilized substrate As shown in Figure 2(b), a rabbit was immunized with CRP antigen on a polycarbonate plate measuring 2 cm in length and 7 cm in width. The CRP antibody obtained is fixed. For antibody fixation,
Antibody concentration 1x10-3, 10-4, 10-5, 10-6
50 μl of TBS (Tris-buffered saline) solution of g/ml was dropped onto regions A to D in the above order so as to have an area of 1 cm diameter, and was allowed to stand at 30° C. for 2 hours to cause physical adsorption. After that, the unadsorbed antibodies were dissolved in TBS (pH 8.2).
The plate was washed with 10 ml of water, and further, in order to prevent non-specific adsorption, a blocking treatment was carried out by standing at 4° C. overnight using a blocking agent (Block Ace, manufactured by Snow Brand). Tween
20 (manufactured by Polyscience) 0.05 wt% Tris buffered saline (hereinafter referred to as TBS-Tween) 10
The remaining blocking agent was washed away with ml and used as an antibody-immobilized substrate.

【0023】検量線の作成 CRP抗原濃度既知のTBS溶液標準液(例えば1.0
×10−3g/ml)50μlを基板上の抗体固定領域
A〜Dを全て覆うように広げた。30℃で5分間静置し
、抗原−抗体反応を行なわせた後、上記TBS−Twe
en10mlで未反応の抗原溶液を洗浄した。予めCR
P抗体を物理吸着により感作(固定)した0.1μmφ
の抗体感作ポリスチレンラテックス粒子をTBSに分散
させた分散溶液(ラテックス濃度:0.05wt%)5
0μlを、上記抗原溶液と同様にして領域A〜Dに広げ
た。30℃で5分間静置し、抗原−抗体反応によりラテ
ックス粒子を捕捉させた後、上記TBS−Tween1
0mlにより未反応のラテックス溶液を洗浄した。各領
域(A〜D)におけるラテックス粒子数を画像解析装置
を接続した日立製電子顕微鏡S−800でカウントし、
各抗体固定領域(A〜D)の抗原(濃度1.0×10−
3g/ml)に対するラテックス数とした。同様に1.
0×10−4,1.0×10−5,1.0×10−7,
1.0×10−9,1.0×10−11 g/mlのC
RP抗原濃度既知のTBS標準溶液にて上記のごとくラ
テックス粒子数をカウントし、各領域A〜Dの各抗原濃
度に対するラテックス数とした。上記各領域A〜Dの各
抗原濃度に対するラテックス数は、表1に示す通りにな
った。これらの関係を1つのグラフにプロットしたのが
図4である。これをCRP抗原定量における検量線とし
た。
Preparation of a calibration curve Prepare a standard TBS solution with a known concentration of CRP antigen (for example, 1.0
x 10-3 g/ml) was spread to cover all antibody-immobilized areas A to D on the substrate. After standing at 30°C for 5 minutes to perform an antigen-antibody reaction, the TBS-Twe
The unreacted antigen solution was washed with 10 ml of en. CR in advance
0.1μmφ sensitized (fixed) with P antibody by physical adsorption
A dispersion solution of antibody-sensitized polystyrene latex particles dispersed in TBS (latex concentration: 0.05 wt%) 5
0 μl was spread over areas AD in the same manner as the antigen solution above. After standing at 30°C for 5 minutes to capture latex particles by antigen-antibody reaction, the TBS-Tween1
The unreacted latex solution was washed with 0 ml. The number of latex particles in each region (A to D) was counted using a Hitachi electron microscope S-800 connected to an image analysis device.
Antigen (concentration 1.0 x 10-
3g/ml). Similarly 1.
0×10-4, 1.0×10-5, 1.0×10-7,
1.0 x 10-9, 1.0 x 10-11 g/ml C
The number of latex particles was counted as described above using a TBS standard solution with a known RP antigen concentration, and the number of latex particles was determined for each antigen concentration in each region A to D. The latex numbers for each antigen concentration in each of the above regions A to D were as shown in Table 1. FIG. 4 shows these relationships plotted in one graph. This was used as a standard curve for CRP antigen quantification.

【0024】[0024]

【表1】[Table 1]

【0025】未知試料中のCRP濃度の定量表2に示し
たように、被検者から採血した血液を常法(遠心分離法
)で血清分離し、検体1,2,3とした。 上記検体1をTBSにより5倍稀釈した溶液50μlを
、上記検量線作成法と同様に、基板上の抗体固定領域A
〜D上に広げた。30℃で5分間静置、反応させた後、
未反応の検体溶液はTBS10mlにより洗浄、除去し
た。CRP抗体感作ラテックス分散溶液(0.05wt
%/TBS溶液)50μlを領域A〜Dに広げて、30
℃で5分間静置、反応させた。抗原抗体反応により捕捉
されなかったラテックス溶液を、TBS−Tween1
0mlで洗浄、除去した。各エリアにおけるラテックス
粒子数を電子顕微鏡観察によりカウントし、各エリアの
検量線から検体1の濃度を540(A)ng/ml,5
38(B)ng/ml,534(C)ng/mlとした
。なお、Dエリアより得たラテックス数は測定可能領域
外であり、これを無視した。次いで、これらの濃度の算
術平均をとり、540ng/mlを検体1のCRP濃度
とした。以下検体2,3も同様にして、それぞれ24.
8μg/ml,3.5ng/mlのCRP濃度を得た。 この結果を表2に示す。 [比較例1]従来法(LIA法)で同検体1〜3を測定
した。この結果、検体1のCRP濃度は538ng/m
l、検体2のCRP濃度は24μg/mlであり、検体
3のCRP濃度は測定不能であった。この結果を表2に
示す。
Quantification of CRP Concentration in Unknown Samples As shown in Table 2, blood was collected from a subject and serum was separated using a conventional method (centrifugation method) to obtain samples 1, 2, and 3. 50 μl of a solution obtained by diluting the above sample 1 5 times with TBS was added to the antibody immobilized area
~ Spread on D. After standing at 30°C for 5 minutes to react,
Unreacted sample solution was washed and removed with 10 ml of TBS. CRP antibody sensitized latex dispersion solution (0.05wt
%/TBS solution) was spread over areas A to D and 30
The mixture was allowed to stand at ℃ for 5 minutes to react. The latex solution that was not captured by the antigen-antibody reaction was transferred to TBS-Tween1.
It was washed and removed with 0ml. The number of latex particles in each area was counted by electron microscope observation, and the concentration of sample 1 was determined to be 540 (A) ng/ml, 5
The concentrations were 38 (B) ng/ml and 534 (C) ng/ml. Note that the number of latex obtained from area D was outside the measurable range and was ignored. Next, the arithmetic mean of these concentrations was taken, and 540 ng/ml was determined as the CRP concentration of sample 1. Samples 2 and 3 are treated in the same manner, each with 24.
CRP concentrations of 8 μg/ml and 3.5 ng/ml were obtained. The results are shown in Table 2. [Comparative Example 1] Samples 1 to 3 were measured using a conventional method (LIA method). As a result, the CRP concentration of sample 1 was 538 ng/m
l. The CRP concentration of sample 2 was 24 μg/ml, and the CRP concentration of sample 3 was unmeasurable. The results are shown in Table 2.

【0026】[0026]

【表2】[Table 2]

【0027】上述した本発明の免疫学的定量分析方法に
よれば、測定可能な濃度領域が異なる複数の抗体固定領
域を設けているので、各領域の各検量線が重なり合って
、見掛け上のダイナミックレンジ(測定可能域)が拡大
し(個々の領域については、ダイナミックレンジが拡大
しているわけではない)、実際上の測定可能な濃度領域
が拡大する。したがって、煩雑な稀釈操作を省略し、あ
るいは稀釈回数を減らすことができ、これによって、検
査時間の短縮および検査のコストダウンが図られる。 また、一回の検体測定によって、複数のデータ(検出濃
度)が得られるため、検出精度が向上する。
According to the immunological quantitative analysis method of the present invention described above, since a plurality of antibody immobilization regions with different measurable concentration regions are provided, the calibration curves of each region overlap, resulting in an apparent dynamic The range (measurable region) is expanded (the dynamic range of each region is not necessarily expanded), and the actual measurable concentration region is expanded. Therefore, a complicated dilution operation can be omitted or the number of dilutions can be reduced, thereby shortening the testing time and reducing the cost of testing. Furthermore, since a plurality of pieces of data (detected concentration) can be obtained by one sample measurement, detection accuracy is improved.

【0028】[0028]

【発明の効果】以上説明したように、本発明の免疫学的
定量分析方法によれば、免疫学的検査の測定可能な濃度
領域の拡大、稀釈操作回数の低減および測定精度の向上
を図ることができる。
[Effects of the Invention] As explained above, according to the immunological quantitative analysis method of the present invention, it is possible to expand the measurable concentration range in immunological tests, reduce the number of dilution operations, and improve measurement accuracy. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の免疫学的定量分析方法の手順を示す説
明図である。(I)〜(IV)は各手順を示す。
FIG. 1 is an explanatory diagram showing the procedure of the immunological quantitative analysis method of the present invention. (I) to (IV) indicate each procedure.

【図2】抗体固定領域の態様を示す平面図である。FIG. 2 is a plan view showing an embodiment of an antibody immobilization region.

【図3】(a)は検量線を示すグラフ、(b),(c)
は未知濃度の検体試料から抗原濃度を求める例を示した
説明図である。
[Figure 3] (a) is a graph showing the calibration curve, (b), (c)
FIG. 2 is an explanatory diagram showing an example of determining an antigen concentration from a specimen sample with an unknown concentration.

【図4】実施例において作成した検量線を示すグラフで
ある。
FIG. 4 is a graph showing a calibration curve created in an example.

【符号の説明】[Explanation of symbols]

1…基板 2…抗体 3…ブロッキング剤 5…検体試料 6…抗原 9…抗体 10…ラテックス粒子 11…測定手段 1...Substrate 2...Antibody 3...Blocking agent 5...Specimen sample 6...antigen 9...Antibody 10...Latex particles 11...Measuring means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  固相上に測定可能な濃度領域が異なる
複数の抗体固定領域を設け、この抗体固定領域に該抗体
と特異的に反応する抗原を含む試料を作用させて抗原を
抗原−抗体反応により捕捉せしめた後、さらに該抗原と
特異的に反応する抗体を固定してなる不溶性担体粒子を
作用させ、前記抗原によって捕捉された不溶性担体粒子
の数または粒子数と相関する物理量を検出することによ
り試料中の抗原濃度を測定することを特徴とした免疫学
的定量分析方法。
Claim 1: A plurality of antibody immobilization areas with different measurable concentration ranges are provided on a solid phase, and a sample containing an antigen that specifically reacts with the antibody is applied to the antibody immobilization areas to convert the antigen into an antigen-antibody mixture. After the antigen is captured by reaction, insoluble carrier particles on which an antibody that specifically reacts with the antigen is immobilized are applied to detect the number of insoluble carrier particles captured by the antigen or a physical quantity correlated with the number of particles. An immunological quantitative analysis method characterized by measuring the antigen concentration in a sample.
【請求項2】  固相上に測定可能な濃度領域が異なる
複数の抗原の固定領域を設け、この抗原の固定領域に該
抗原と特異的に反応する抗体を含む試料を作用させて抗
体を抗原−抗体反応により捕捉せしめた後、さらに該抗
体と特異的に反応する抗原を固定してなる不溶性担体粒
子を作用させ、前記抗体によって捕捉された不溶性担体
粒子の数または粒子数と相関する物理量を検出すること
により試料中の抗体濃度を測定することを特徴とした免
疫学的定量分析方法。
2. A plurality of antigen immobilization regions with different measurable concentration ranges are provided on a solid phase, and a sample containing an antibody that specifically reacts with the antigen is allowed to act on the antigen immobilization region. - After being captured by an antibody reaction, insoluble carrier particles on which an antigen that specifically reacts with the antibody is immobilized are further applied to detect the number of insoluble carrier particles captured by the antibody or a physical quantity correlated with the number of particles. An immunological quantitative analysis method characterized by measuring the antibody concentration in a sample by detection.
【請求項3】  濃度の異なる抗体,抗原の溶液を用い
て固相上の各領域に抗原,抗体を固着せしめて、測定可
能な濃度領域が異なる複数の抗原,抗体を固定した領域
を固相上に形成することを特徴とした請求項1または2
記載の免疫学的定量分析方法。
Claim 3: Antigens and antibodies are immobilized on each region on a solid phase using solutions of antibodies and antigens with different concentrations, and the regions on which a plurality of antigens and antibodies with different measurable concentration regions are immobilized are fixed on the solid phase. Claim 1 or 2 characterized in that it is formed on
Described immunological quantitative analysis method.
【請求項4】  固相が平板状の基板である請求項1,
2または3記載の免疫学的定量分析方法。
Claim 4: Claim 1, wherein the solid phase is a flat substrate.
3. The immunological quantitative analysis method according to 2 or 3.
【請求項5】  固相が回転可能な円盤状の基板である
請求項1,2または3記載の免疫学的定量分析方法。
5. The immunological quantitative analysis method according to claim 1, 2 or 3, wherein the solid phase is a rotatable disk-shaped substrate.
【請求項6】  不溶性担体粒子がラテックス粒子であ
る請求項1,2,3,4または5記載の免疫学的定量分
析方法。
6. The immunological quantitative analysis method according to claim 1, 2, 3, 4 or 5, wherein the insoluble carrier particles are latex particles.
JP41699190A 1990-10-09 1990-12-28 Immunological quantitative analysis Pending JPH04233462A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP41699190A JPH04233462A (en) 1990-12-28 1990-12-28 Immunological quantitative analysis
PCT/JP1991/001373 WO1992006379A1 (en) 1990-10-09 1991-10-09 Method of immunological quantitative analysis
EP19910917698 EP0504432A4 (en) 1990-10-09 1991-10-09 Method of immunological quantitative analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41699190A JPH04233462A (en) 1990-12-28 1990-12-28 Immunological quantitative analysis

Publications (1)

Publication Number Publication Date
JPH04233462A true JPH04233462A (en) 1992-08-21

Family

ID=18525152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41699190A Pending JPH04233462A (en) 1990-10-09 1990-12-28 Immunological quantitative analysis

Country Status (1)

Country Link
JP (1) JPH04233462A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504397A (en) * 1994-09-21 1998-04-28 ザ ユニバーシティ コート オブ ザ ユニバーシティ オブ グラスゴー Apparatus and method for performing sample analysis
WO2004001396A1 (en) * 2002-06-19 2003-12-31 Matsushita Electric Industrial Co., Ltd. Analyzing apparatus and analyzed disc used in the same
WO2004111620A1 (en) * 2003-06-10 2004-12-23 Sony Corporation Bioassay substrate and bioassay device and method
JP2011512534A (en) * 2008-02-15 2011-04-21 エムディーエス アナリティカル テクノロジーズ Quantification method by mass spectrometry

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10504397A (en) * 1994-09-21 1998-04-28 ザ ユニバーシティ コート オブ ザ ユニバーシティ オブ グラスゴー Apparatus and method for performing sample analysis
WO2004001396A1 (en) * 2002-06-19 2003-12-31 Matsushita Electric Industrial Co., Ltd. Analyzing apparatus and analyzed disc used in the same
US7423246B2 (en) 2002-06-19 2008-09-09 Matsushita Electric Industrie Co., Ltd. Analysis apparatus and analysis disc used for the same
WO2004111620A1 (en) * 2003-06-10 2004-12-23 Sony Corporation Bioassay substrate and bioassay device and method
US7718129B2 (en) 2003-06-10 2010-05-18 Sony Corporation Bioassay substrate and bioassay device and method
JP2011512534A (en) * 2008-02-15 2011-04-21 エムディーエス アナリティカル テクノロジーズ Quantification method by mass spectrometry

Similar Documents

Publication Publication Date Title
WO1992006379A1 (en) Method of immunological quantitative analysis
US8093057B2 (en) System for quantitative measurement of glycohemoglobin and method for measuring glycohemoglobin
JP3458860B2 (en) Sensor device for sandwich analysis
US5132097A (en) Apparatus for analysis of specific binding complexes
KR20030036905A (en) Biosensors and measurement method
JP2006098418A (en) Solid phase assay for detection of ligand
KR20020028799A (en) Immunological analytical method and device for the determination of glycosylated protein
KR100461889B1 (en) Method of measurement in chromatography
JPH07508102A (en) assay
JPH01118769A (en) One-level measurement for antibody specific to antigen
JP7267211B2 (en) Sandwich-type assays using the decreasing signal portion of the dose-response curve to measure analytes, such as high-concentration analytes
CN106771239A (en) Serum amyloid A protein/Procalcitonin/C reactive proteins are three-in-one to determine kit and preparation method
JPH055741A (en) Method for immunological quantitative analysis
JP2572829B2 (en) Waveguide sensor
US20190250154A1 (en) Method for re-using test probe and reagents in an immunoassay based on interferometry
EP0603958A1 (en) Improvement of the dynamic range in specific binding assays
JP4437211B2 (en) Measuring method using immunochromatography and sample analysis tool used therefor
JPH04233462A (en) Immunological quantitative analysis
JPH10185921A (en) Immunological determination device
CN116413445A (en) Detection card, kit and detection method for detecting total thyroxine content
WO1990015328A1 (en) Improved immunoassay
US6168921B1 (en) Method for the quantitative and/or qualitative determination of atoms or molecules
GB2217335A (en) Compositions for isolation and immobilisation of C-reactive protein in body liquids
CN110988356A (en) C-reactive protein fast quantitative immunochromatographic test paper and preparation method thereof
JP3476274B2 (en) Immunoassay