JPS626284B2 - - Google Patents

Info

Publication number
JPS626284B2
JPS626284B2 JP56199260A JP19926081A JPS626284B2 JP S626284 B2 JPS626284 B2 JP S626284B2 JP 56199260 A JP56199260 A JP 56199260A JP 19926081 A JP19926081 A JP 19926081A JP S626284 B2 JPS626284 B2 JP S626284B2
Authority
JP
Japan
Prior art keywords
glass frit
powder
paste
conductive
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56199260A
Other languages
Japanese (ja)
Other versions
JPS58100306A (en
Inventor
Yasuhiro Ogawa
Sankichi Shinoda
Katsuhiko Pponjo
Tsunehiko Todoroki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19926081A priority Critical patent/JPS58100306A/en
Priority to US06/376,213 priority patent/US4400214A/en
Priority to GB08213293A priority patent/GB2102026B/en
Priority to DE19823217480 priority patent/DE3217480A1/en
Publication of JPS58100306A publication Critical patent/JPS58100306A/en
Publication of JPS626284B2 publication Critical patent/JPS626284B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電性ペーストに関し、安価で、導電
性、耐食性のすぐれた導電性ペーストの提供を目
的とするものである。 従来、導電性ペーストの導電性粉体には、
Au,Ag,Pdなどの貴金属が用いられてきた。
一般的には、この導電性粉体にAg粉を用い、ホ
ウケイ酸ガラスフリツトおよび酸化鉛、酸化ビス
マス、酸化亜鉛などとともにビヒクル中に分散し
てペーストとし、これをセラミツクス等の基板に
スクリーン印刷等の方法で塗布した後、高温で焼
成して、コンデンサ、圧電体素子、半導体素子等
の電極あるいは電子回路用の配線導体として使用
されてきた。 しかしながら、近年、貴金属類、特にAgの価
格高謄のために、導電性Agペーストの代替とし
て、安価な導電性粉体を用いた導電性ペーストと
か、セラミツクスの焼付用電極として、Cu,Ni
のメツキ電極など、多くの提案がなされている。
たとえば、Ag粉体の代用として、安価なNi,
Cuなどの卑金属粉体あるいは、TiN,SnO2など
の導電性金属化合物粉体等を用いてなる導電性ペ
ーストが開発され、一部に市販されるようになつ
てきた。 しかしながら、Ni,Cuなどの卑金属粉体を用
いた導電性ペーストは、初期特性は良好なものが
得られるが、耐食性が悪いために満足できるもの
ではなく、また卑金属粉体のため、焼成に対して
は非酸化性雰囲気が必要であるなどの難点があ
る。また、TiN,SnO2などの導電性金属化合物
粉体を用いた導電性ペーストは、粉体自体が比較
的高抵抗のため、低抵抗の導電性ペーストは得ら
れにくく、TiN粉体を用いた導電性ペーストは高
温焼付型に対しては、空気中焼成ではTiNが酸化
してしまうため使用できない欠点がある。 一方、Al2O3粉体にAg被覆した導電性粉体を
用いた導電性ペーストがある。このAg被覆
Al2O3粉体を用いた導電性ペーストは、経済性の
点で優れているが、Al2O3はAgとの濡れ性が悪
いためにAl2O3とAgとの密着性が悪く、ペース
トの混練時に被覆したAgが剥離し、導電性劣化
になつている。また、この種の酸化物にAg被覆
した粉体、あるいは前述のTiNやSnO2の粉体を
用いた導電性ペーストは、焼成後の導電膜にはん
だ付け性がないという問題がある。 以上のように、Ag代替として各種導電性ペー
ストが提案されているが、いずれも導電性、耐食
性、はんだ付け性などの点で満足できるものでは
なく、これらの諸特性の優れた安価な高温焼付型
導電性ペーストの出現が望まれている。 本発明者らは、上記したような導電性、耐食
性、はんだ付け性、さらには経済性をも満足でき
るべく、卑金属を主成分とする種々の合金粉体に
ついて調査検討した結果、Cu,Al,およびZnを
主成分として含有する合金の粉体とAg粉体との
混合粉体を導電媒体とした導電性ペーストが、上
記諸特性をかなりのレベルで満足することを見い
出した。 しかしながら、ガラスフリツトの化学組成によ
つては、導電性ペーストの焼成膜が上記の諸特性
を十分に満足しないという問題点が残されてい
た。この種の導電性ペーストでは、焼成によりガ
ラスフリツトが溶融固化することにより、焼成膜
の強度を保つている。しかしながら、一般的にガ
ラス融液は金属に対して腐食性を有しており、
Cu―Al―Zn系合金に対する影響は特に顕著であ
り、前述のようにCu―Al―Zn系合金粉体とAg
粉体との混合粉体を導電媒体とした導電性ペース
トは、使用するガラスフリツトが腐食性の強いガ
ラスフリツトである場合には、焼成時にガラス融
液により合金粉体が腐食され、その結果、ペース
ト焼成膜の導電性ならびに半田付け性が得られな
い。 本発明者らは、ホウケイ酸塩系ガラスについて
調査検討した結果、B2O3,SiO2、およびNa2O,
K2O,Li2Oから選ばれた少くとも1種のアルカ
リ金属酸化物を主成分とするガラスが、Cu,
Al,およびZnを主成分とした合金粉体とAg粉
体との混合粉体を導電媒体とした導電性ペースト
のガラスフリツトとして有効であることを見い出
した。ガラスフリツトの腐食性は、Al8重量%、
Zn25重量%、残部Cuの組成よりなるCu―Al―Zn
合金粉体とガラスフリツトをビヒクル中に分散さ
せてペーストとし、これをアルミナ基板にスクリ
ーン印刷し、大気中850℃で焼成し、その焼成膜
の外観で評価した。その結果を第1表に示す。
The present invention relates to a conductive paste, and an object of the present invention is to provide a conductive paste that is inexpensive and has excellent conductivity and corrosion resistance. Conventionally, conductive powder in conductive paste contains
Noble metals such as Au, Ag, and Pd have been used.
Generally, Ag powder is used as the conductive powder, and it is dispersed in a vehicle together with borosilicate glass frit, lead oxide, bismuth oxide, zinc oxide, etc. to form a paste, and this is applied to a substrate such as ceramics by screen printing, etc. After being applied by a method and then fired at a high temperature, it has been used as electrodes for capacitors, piezoelectric elements, semiconductor elements, etc., or as wiring conductors for electronic circuits. However, in recent years, due to the rising prices of precious metals, especially Ag, as an alternative to conductive Ag paste, conductive paste using inexpensive conductive powder, and Cu, Ni as electrodes for baking ceramics are being used.
Many proposals have been made, including the glazed electrode.
For example, as a substitute for Ag powder, cheap Ni,
Conductive pastes made of powders of base metals such as Cu or powders of conductive metal compounds such as TiN and SnO 2 have been developed and some are now commercially available. However, although conductive pastes using base metal powders such as Ni and Cu have good initial properties, they are unsatisfactory due to poor corrosion resistance, and because they are base metal powders, they are not resistant to firing. However, there are drawbacks such as the need for a non-oxidizing atmosphere. In addition, conductive pastes using conductive metal compound powders such as TiN and SnO 2 have a relatively high resistance, so it is difficult to obtain conductive pastes with low resistance. Conductive paste has the disadvantage that it cannot be used for high-temperature baking types because TiN oxidizes when baked in air. On the other hand, there is a conductive paste using conductive powder in which Al 2 O 3 powder is coated with Ag. This Ag coating
A conductive paste using Al 2 O 3 powder is excellent in terms of economy, but because Al 2 O 3 has poor wettability with Ag, the adhesion between Al 2 O 3 and Ag is poor. During the kneading of the paste, the coated Ag peeled off, resulting in deterioration of the conductivity. Further, a conductive paste using powder of this type of oxide coated with Ag or the aforementioned powder of TiN or SnO 2 has a problem in that the conductive film after firing does not have solderability. As mentioned above, various conductive pastes have been proposed as Ag substitutes, but none of them are satisfactory in terms of conductivity, corrosion resistance, solderability, etc. The emergence of type conductive pastes is desired. The present inventors investigated various alloy powders mainly composed of base metals in order to satisfy the above-mentioned conductivity, corrosion resistance, solderability, and economic efficiency. We have also found that a conductive paste using a mixed powder of an alloy powder containing Zn as a main component and Ag powder as a conductive medium satisfies the above-mentioned properties to a considerable degree. However, depending on the chemical composition of the glass frit, there remains the problem that the fired film of the conductive paste does not fully satisfy the above-mentioned characteristics. In this type of conductive paste, the strength of the fired film is maintained by melting and solidifying the glass frit during firing. However, glass melt is generally corrosive to metals,
The effect on Cu-Al-Zn alloys is particularly remarkable, and as mentioned above, Cu-Al-Zn alloy powder and Ag
When using a conductive paste that uses a mixed powder as a conductive medium, if the glass frit used is a highly corrosive glass frit, the alloy powder will be corroded by the glass melt during firing, and as a result, the paste will not be fired. The conductivity and solderability of the film cannot be obtained. As a result of research and study on borosilicate glass, the present inventors found that B 2 O 3 , SiO 2 , and Na 2 O,
Glass whose main component is at least one alkali metal oxide selected from K 2 O and Li 2 O is Cu,
It has been found that a mixed powder of alloy powder mainly composed of Al and Zn and Ag powder is effective as a glass frit for a conductive paste using a conductive medium. The corrosivity of glass frit is Al8% by weight,
Cu-Al-Zn with a composition of 25% by weight Zn and the balance Cu
The alloy powder and glass frit were dispersed in a vehicle to form a paste, which was screen printed on an alumina substrate, fired at 850°C in the atmosphere, and evaluated based on the appearance of the fired film. The results are shown in Table 1.

【表】【table】

【表】 第1表において、ガラス融液による腐食により
ペースト焼成膜の黒化が激しいものを×、所々に
斑点状に黒化の部分が認められるものを△、ほと
んど黒色の斑点が認められないものを〇で示す。
B2O3は腐食性はないが、多量に添加するとガラ
スの耐水性を劣化させる傾向にある。SiO2は腐
食性はないが、多量に添加するとガラスの軟化点
の上昇を招き、作業上の制約を受けやすい。 Na2O,Li2O,K2Oのアルカリ金属酸化物の添
加は、ガラスの軟化点を下げ作業上の制約を受け
にくくするが、腐食性を強くする傾向にある。 Al2O3の添加は、腐食性を軽減する傾向がある
反面、ガラスの軟化点を高くする。CaO,Mg
O,SrO,BaO,BeOのアルカリ土類金属酸化物
の添加は、ガラスの腐食性を著しく軽減するとと
もに耐水性を増す傾向にあるが、軟化点を上昇さ
せる欠点がある。 以上のようなガラスフリツツトの材料の長所と
欠点を相補いながら、作業上においても、腐食性
においても満足できる化学組成は、B2O310〜70
モル%、SiO215〜60モル%、Al2O30〜15モル
%、Na2O,Li2O,K2Oのアルカリ金属酸化物が
全体として5〜50モル%、CaO,MgO,BaO,
SrO,BeOのアルカリ土類金属酸化物が全体とし
て0〜30モル%である。また、本発明によるガラ
スフリツトを用いたAgペーストと市販のガラス
フリツト(PbO―B2O3―SiO2系ガラスフリツ
ト)を用いたAgペーストを作製し、両者の焼成
膜の耐湿試験を行ない面抵抗の変化を追跡調査し
た結果、両者に差は認められなかつたので、本発
明にかかるガラスフリツトの耐水性は満足できる
ものである。 なお、ガラスフリツトの材料において、たとえ
ばNa2CO3がガラス化反応の過程においてNa2Oに
変化するように、材料の出発原料は、ガラス化反
応の過程で所定の化学式の物質になるものであれ
ば、何を選んでもさしつかえない。 本発明に従えば、合金粉体とAg粉体の混合粉
体をガラスフリツトと共にビヒクル中に分散して
導電ペーストとなす。このペーストは、通常のA
gペーストと同様に、セラミツクス等の基板にス
クリーン印刷等の方法で塗布した後、大気中高温
で焼付けて、電極、導電路として利用される。粉
体、ガラスフリツトの粒径は0.05〜10μの範囲、
好ましくは0.5〜5μ程度が良い。10μ以上にな
ると、スクリーン印刷時の印刷性が悪化し、最終
焼成後の面抵抗が大きくなる。 次に、本発明をより具体化するために、実施例
について詳述する。 本発明にかかるガラスフリツトは、次のように
して作製した。本発明に従う化学組成に合わせて
B2O3,SiO2,Al2O3などの各素材を秤量し、全量
を20gとした。素材として、適宜、Na2CO3
Li2CO3,K2CO3などを用いた。これを十分混合
し、白金るつぼ中でガラス化を行なつた後、水中
に投入してガラスを得た。ガラス化は1300℃で2
時間行なつた。得られたガラスを、機械的に粉砕
し、平均粒径約2μのガラスフリツトを得た。 合金粉体は、溶解、溶湯噴霧、機械的粉砕によ
り、平均粒径約2μの粉体を得た。 上記の方法によつて得られたガラスフリツトと
合金粉体、および市販の銀粉体(平均粒径約2
μ)を所定の混合割合になるように秤量し、全量
を3gとした。ガラスフリツトの重量は全量の15
重量%とした。これをエチルセルロース
(100cps)とテレピネオールからなるビヒクル1
mlと共に、フーバーマーラを用いて混練した。フ
ーバーマーラによる混練は、荷重100ポンド、40
回転を4回繰り返して行なつた。 上記作製したペーストをスクリーン印刷法を用
いて、アルミナ基板上に所定の形状に印刷後、
120℃で10分乾燥し、空気中で750〜850℃10分
間、その前後の温度上昇、温度下降を含めて1時
間サイクルの条件で焼成した。 上記印刷パターンの両端間の抵抗値を測定した
結果を第2表に示す。第2表には、焼成膜のはん
だ付け性について、はんだ付けが容易なものを
〇、比較的容易なものを△、できないものを×と
して、併せて示す。 また第2表において、合金粉Aの組成はAl8重
量%、Zn25重量%、残部Cuであり、合金粉Bの
組成はAl4重量%、Zn30重量%、B0.1重量%、残
部Cuである。またNo.22のガラスフリツトには
ZnO,B2O3,SiO2系の市販品、No.23のガラスフ
リツトにはPbO,B2O3,SiO2系の市販品を用い
た。
[Table] In Table 1, those with severe blackening of the fired paste film due to corrosion by the glass melt are ×, and those with black spots observed here and there are △, where almost no black spots are observed. Mark things with a circle.
B 2 O 3 is not corrosive, but when added in large amounts it tends to deteriorate the water resistance of glass. SiO 2 is not corrosive, but when added in large amounts it raises the softening point of the glass, which tends to impose operational constraints. Addition of alkali metal oxides such as Na 2 O, Li 2 O, and K 2 O lowers the softening point of glass and makes it less susceptible to operational constraints, but it tends to increase corrosivity. Addition of Al 2 O 3 tends to reduce corrosivity, but increases the softening point of the glass. CaO, Mg
The addition of alkaline earth metal oxides such as O, SrO, BaO, and BeO tends to significantly reduce the corrosivity of glass and increase its water resistance, but it has the disadvantage of raising the softening point. The chemical composition that complements the advantages and disadvantages of the glass frit materials mentioned above and is satisfactory in terms of both workability and corrosion resistance is B 2 O 3 10-70.
mol%, SiO 2 15-60 mol%, Al 2 O 3 0-15 mol%, total alkali metal oxides of Na 2 O, Li 2 O, K 2 O 5-50 mol %, CaO, MgO, BaO,
The total amount of alkaline earth metal oxides such as SrO and BeO is 0 to 30 mol%. In addition, an Ag paste using the glass frit according to the present invention and an Ag paste using a commercially available glass frit (PbO-B 2 O 3 -SiO 2- based glass frit) were prepared, and the baked films of both were subjected to a moisture resistance test to determine the change in sheet resistance. As a result of follow-up investigation, no difference was found between the two, so the water resistance of the glass frit according to the present invention is satisfactory. In addition, in the case of glass frit materials, the starting raw material of the material may be a substance with a predetermined chemical formula during the vitrification reaction process, such as Na 2 CO 3 changing to Na 2 O during the vitrification reaction process. Well, it doesn't matter what you choose. According to the present invention, a mixed powder of alloy powder and Ag powder is dispersed in a vehicle together with glass frit to form a conductive paste. This paste is a regular A
Similar to g-paste, it is applied to a substrate such as ceramics by a method such as screen printing, and then baked in the atmosphere at high temperature to be used as an electrode or conductive path. The particle size of powder and glass frit ranges from 0.05 to 10μ,
Preferably, the thickness is about 0.5 to 5μ. When the thickness exceeds 10μ, printability during screen printing deteriorates, and sheet resistance after final firing increases. Next, in order to make the present invention more specific, examples will be described in detail. The glass frit according to the present invention was produced as follows. In accordance with the chemical composition according to the invention
Each material such as B 2 O 3 , SiO 2 , Al 2 O 3 was weighed to give a total amount of 20 g. As a material, Na 2 CO 3 ,
Li 2 CO 3 , K 2 CO 3 and the like were used. After thoroughly mixing the mixture and vitrifying it in a platinum crucible, the mixture was poured into water to obtain glass. Vitrification at 1300℃2
I spent time. The obtained glass was mechanically crushed to obtain glass frit with an average particle size of about 2 μm. The alloy powder was melted, sprayed with molten metal, and mechanically pulverized to obtain a powder with an average particle size of about 2 μm. Glass frit and alloy powder obtained by the above method, and commercially available silver powder (average particle size of about 2
μ) were weighed to achieve a predetermined mixing ratio, and the total amount was 3 g. The weight of the glass frit is 15% of the total amount.
It was expressed as weight%. Vehicle 1 consisting of ethyl cellulose (100 cps) and terpineol
ml using a Hubermala. Kneading with Hoover Mara, load 100 lbs., 40 lbs.
Rotation was repeated four times. After printing the paste prepared above into a predetermined shape on an alumina substrate using a screen printing method,
It was dried at 120°C for 10 minutes and fired in air at 750-850°C for 10 minutes, followed by a 1-hour cycle including temperature increases and decreases. Table 2 shows the results of measuring the resistance values between both ends of the printed pattern. Table 2 also shows the solderability of the fired films, with those that are easy to solder marked as ○, those that are relatively easy to solder as △, and those that cannot be soldered as ×. Further, in Table 2, the composition of alloy powder A is 8% by weight of Al, 25% by weight of Zn, and the balance is Cu, and the composition of alloy powder B is 4% by weight of Al, 30% by weight of Zn, 0.1% by weight of B, and the balance is Cu. In addition, No. 22 glass fritz has
Commercial products based on ZnO, B 2 O 3 and SiO 2 were used, and commercial products based on PbO, B 2 O 3 and SiO 2 were used for glass frit No. 23.

【表】【table】

【表】 上記した説明、および第2表から明らかなよう
に、本発明にかかる導電性ペーストは、導電性、
はんだ付け性の面からは十分実用に供し得る特性
を示すものであり、さらに空気中での焼成が可能
であるという優れた効果がある。また、経済的に
は、ガラスフリツトの化学組成を規定することに
より、導電粉体として卑金属合金粉体とAg粉体
との混合粉体の使用が可能になり、従来のAgペ
ーストに比較して極めて安価に導電性ペーストが
作製し得ることから、その工業的価値は大なるも
のがある。
[Table] As is clear from the above explanation and Table 2, the conductive paste according to the present invention has conductivity,
In terms of solderability, it exhibits sufficient properties for practical use, and furthermore, it has the excellent effect of being able to be fired in air. In addition, economically, by specifying the chemical composition of the glass frit, it is possible to use a mixed powder of base metal alloy powder and Ag powder as the conductive powder, which is extremely superior to conventional Ag paste. Since the conductive paste can be produced at low cost, it has great industrial value.

Claims (1)

【特許請求の範囲】 1 少なくとも、Cu,Al,およびZnの3元素を
含有する合金とAgの粉体とを混合し、これをガ
ラスフリツトと共にビヒクル中に分散させるとと
もに、前記ガラスフリツトとして、B2O3
SiO2,およびNa2O,Li2O,K2Oから選ばれた少
くとも1種のアルカリ金属酸化物を主成分とした
ものを用いることを特徴とする導電性ペースト。 2 ガラスフリツトとして、B2O310〜70モル
%、SiO215〜60モル%、Al2O30〜15モル%、
Na2O,Li2O,K2Oのアルカリ金属酸化物のグル
ープの中から1成分以上を5〜60モル%、CaO,
MgO,BaO,SrO,BeOのアルカリ土類金属酸
化物のグループの中から1成分以上を0〜30モル
%の化学組成のものを用いることを特徴とする特
許請求の範囲第1項記載の導電性ペースト。
[Scope of Claims] 1. An alloy containing at least three elements of Cu, Al, and Zn is mixed with Ag powder, and this is dispersed in a vehicle together with a glass frit, and as the glass frit, B 2 O 3 ,
1. A conductive paste characterized by using a paste mainly containing SiO 2 and at least one alkali metal oxide selected from Na 2 O, Li 2 O, and K 2 O. 2 As glass frit, B 2 O 3 10 to 70 mol%, SiO 2 15 to 60 mol%, Al 2 O 3 0 to 15 mol%,
5 to 60 mol% of at least one component from the alkali metal oxide group of Na 2 O, Li 2 O, K 2 O, CaO,
The conductive material according to claim 1, characterized in that the conductive material has a chemical composition of 0 to 30 mol % of one or more components from the group of alkaline earth metal oxides such as MgO, BaO, SrO, and BeO. sex paste.
JP19926081A 1981-06-05 1981-12-09 Conductive paste Granted JPS58100306A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19926081A JPS58100306A (en) 1981-12-09 1981-12-09 Conductive paste
US06/376,213 US4400214A (en) 1981-06-05 1982-05-07 Conductive paste
GB08213293A GB2102026B (en) 1981-06-05 1982-05-07 Conductive pastes
DE19823217480 DE3217480A1 (en) 1981-06-05 1982-05-10 CONDUCTIVE PASTE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19926081A JPS58100306A (en) 1981-12-09 1981-12-09 Conductive paste

Publications (2)

Publication Number Publication Date
JPS58100306A JPS58100306A (en) 1983-06-15
JPS626284B2 true JPS626284B2 (en) 1987-02-10

Family

ID=16404825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19926081A Granted JPS58100306A (en) 1981-06-05 1981-12-09 Conductive paste

Country Status (1)

Country Link
JP (1) JPS58100306A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2653314B2 (en) * 1992-02-07 1997-09-17 鳴海製陶株式会社 Induction cooking container
JP2004192853A (en) * 2002-12-09 2004-07-08 National Institute Of Advanced Industrial & Technology Oxide conductive paste
JP4269795B2 (en) * 2003-06-13 2009-05-27 株式会社村田製作所 Conductive paste and inductor
JP4333594B2 (en) * 2004-02-19 2009-09-16 株式会社村田製作所 Conductive paste and ceramic electronic components
JP2007081059A (en) * 2005-09-13 2007-03-29 Toyo Aluminium Kk Aluminum paste composite and solar battery element employing the same
JP5796270B2 (en) * 2009-04-16 2015-10-21 日本電気硝子株式会社 Electrode forming material
WO2014175013A1 (en) 2013-04-25 2014-10-30 株式会社村田製作所 Conductive paste and multilayer ceramic electronic component

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484270A (en) * 1977-12-16 1979-07-05 Fujitsu Ltd Method of making ceramic multiilayer circuit base board
JPS5620647A (en) * 1979-07-11 1981-02-26 Masini Martino Latch opening of knitting needle of double cylinder knitting machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5484270A (en) * 1977-12-16 1979-07-05 Fujitsu Ltd Method of making ceramic multiilayer circuit base board
JPS5620647A (en) * 1979-07-11 1981-02-26 Masini Martino Latch opening of knitting needle of double cylinder knitting machine

Also Published As

Publication number Publication date
JPS58100306A (en) 1983-06-15

Similar Documents

Publication Publication Date Title
US4029605A (en) Metallizing compositions
US4400214A (en) Conductive paste
EP0021538B1 (en) Air-fireable conductor composition
JP5159080B2 (en) Overcoat glass paste and thick film resistance element
US3838071A (en) High adhesion silver-based metallizations
JP2000048642A (en) Conductive paste and glass circuit substrate
CN101217067A (en) A lead free aluminum electrode slurry of PTC thermo-sensitive resistor and preparation method
JPS626284B2 (en)
JP2568075B2 (en) Conductor composition
US4044173A (en) Electrical resistance compositions
JPH02109314A (en) Electroconductive compound for terminal electrode of ceramic capacitor
JPS621662B2 (en)
JP2003267750A (en) Glass composition for coating resistive element
JPH0239410A (en) Conductive composed material for ceramic capacitor terminal electrode
US3849142A (en) Barium- or strontium-containing glass frits for silver metallizing compositions
JPH0440803B2 (en)
JPS6221739B2 (en)
US3592781A (en) Conductive glaze composition and method for preparation
JPH0541110A (en) Conductive paste
JPS6340328B2 (en)
JPH0239411A (en) Conductive composed material for ceramic capacitor terminal electrode
JPH0368485B2 (en)
JPH0239408A (en) Conductive composed material for ceramic capacitor terminal electrode
JP3192417B2 (en) Composition for coating chip resistors
JPS6341166B2 (en)