JPS6250174B2 - - Google Patents

Info

Publication number
JPS6250174B2
JPS6250174B2 JP54079952A JP7995279A JPS6250174B2 JP S6250174 B2 JPS6250174 B2 JP S6250174B2 JP 54079952 A JP54079952 A JP 54079952A JP 7995279 A JP7995279 A JP 7995279A JP S6250174 B2 JPS6250174 B2 JP S6250174B2
Authority
JP
Japan
Prior art keywords
gas separation
substrate
separation member
gas
permeation rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54079952A
Other languages
Japanese (ja)
Other versions
JPS5624018A (en
Inventor
Yutaka Yamamoto
Masakata Hirai
Jiro Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP7995279A priority Critical patent/JPS5624018A/en
Priority to DE8080103599T priority patent/DE3066085D1/en
Priority to EP80103599A priority patent/EP0021422B1/en
Priority to CA000354752A priority patent/CA1139680A/en
Publication of JPS5624018A publication Critical patent/JPS5624018A/en
Priority to US06/388,577 priority patent/US4410338A/en
Publication of JPS6250174B2 publication Critical patent/JPS6250174B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は気体を選択的に分離する気体分離部材
とその製造方法に関する。 空気中の酸素と窒素を分離し高濃度酸素空気を
得たり、あるいは水中実験室で室内の過剰の炭酸
ガスを水中に放出し水中より必要な酸素を得ると
いつた分野で膜状あるいは壁状の気体分離部材の
使用が検討されている。しかし、従来のかかる部
材は気体の分離係数が小さすぎたりあるいは気体
の透過量が少ないため実用しうる分野が極度に限
られていた。 本発明は従来の気体分離部材に比較し、分離係
数および気体の透過量で極めてすぐれかつ機械的
強度の高い新規な気体分離部材およびその製造方
法を提供するものである。 本発明の気体分離部材は膜状あるいは壁状の多
孔質基体と、該基体の表面にプラズマ重合により
形成された高分子薄膜とよりなることを特徴とす
るものである。また本発明の気体分離部材の製造
方法は膜状あるいは壁状の多孔質基体の表面にプ
ラズマ重合により高分子薄膜を形成することを特
徴とするものである。 ここで多孔質基体とは、気体分離部材の機械的
強度を受けもつもので、直径数+オングストロー
ム(Å)から数マイクロメーターの孔を有する多
孔質フイルムあるいは多孔質壁体をいう。具体的
には金属、セラミツクスあるいは高分子の粒子を
焼結して得られる焼結体、繊維を編製、織製ある
いはフエルト状に積載して形成した繊維状体、多
孔質高分子フイルムがこの基体として使用され
る。 基体の形状は平板状のものでよい。本発明方法
にあつては、高分子薄膜がプラズマ重合で形成さ
れるため凹凸のある表面のように比較的複雑な表
面をもつ形状のものでも比較的容易に高分子薄膜
が形成できる。 基体表面の孔に安定した高分子薄膜を形成する
には、孔の形状が円形の場合にはその直径が数千
オングストローム以下であることが好ましい。ま
た孔が矩形あるいは楕円形などの場合にはその短
径が1000オングストローム以下であることが好ま
しい。かかる基体として数十から数百オングスト
ロームの孔が多数均一に形成されている多孔質酢
酸セルロース膜、多孔質ポリカーボネート膜とか
延伸により数百オングストローム程度の孔が形成
された多孔質ポリプロピレン膜が有利に使用でき
る。 基体の表面に高分子薄膜を形成するプラズマ重
合とは、プラズマ状態の空間に有機モノマーを導
入し、この有機モノマーを活性化してラジカルあ
るいはイオンに変え重合を起させる重合方法をい
う。より具体的には、低圧の気体に電場を作用さ
せて気体を高エネルギー状態に励起し、気体を電
子、イオンおよびラジカルを豊富に含む解離状
態、すなわちプラズマ状態にする。このプラズマ
状態の空間に有機モノマーを導入する。この有機
モノマーがラジカルあるいはイオンのように活性
化され、未反応モノマーを次々に重合し、この空
間に設けられた基体の表面に高分子薄膜を形成す
る。電場を作用させる形式としては内部電極法、
外部電極法が可能である。内部電極法では直流、
交流および高周波の電場を作用させることができ
る。外部電極法では高周波の電場を作用させるこ
とができる。さらに一般に逆スパツタリングとし
て知られている方法は上記内部電極法のものと同
一であり、逆スパツタリングにより本発明のプラ
ズマ重合が可能である。 有機モノマーとしてヘキサメチルジシロキサン
およびジエトオキシジメチルシラン、テトラエト
オキシシラン等のアルコキシシラン類、トリエト
オキシビニルシラン等のビニルシラン類のプラズ
マ重合によりSi−O結合とC−C結合を含む高分
子薄膜が使用できる。 本発明の気体分離部材は基体の表面に存在する
微細な孔の表面がプラズマ重合により形成される
高分子薄膜で被覆され、この孔の部分に形成され
た高分子薄膜により気体の分離を行うものであ
る。このため孔の表面に形成されている高分子薄
膜の性状を知ることは重要な事ではあるが孔径が
千オングストローム以下と微細であるため現在の
物性計測手段ではその性状を知ることができな
い。現在までのプラズマ重合の知識等から推測す
ると基体の孔の周辺から高分子が形成され中心部
に向つて高分子の成長が進み最後には中心部の穴
が閉じられ薄膜が形成されるものと思われる。こ
のため孔の表面に形成される高分子薄膜は均一な
厚さのものではなく周辺部が厚く、中心部が薄い
膜であろうと想像される。またプラズマ状態では
種々の反応様式の反応が同時に起つていると考え
られるため得られる高分子薄膜そのものも、普通
の重合法によつて得られた高分子薄膜とは異なつ
た化学組成を有していると考えられる。例えば、
従来のジメチルポリシロキサン骨格より成るシリ
コーン薄膜は機械的強度が弱く、かつ気体分離率
(O2/N2)が2.0程度である。一方本発明のプラズ
マ重合で得られた気体分離部材は、高分子薄膜中
にSi−O結合とC−C結合を含むものを用いてい
るので、気体に対する分離性、透過性さらに機械
的強度がすぐれている。 本発明の気体分離部材の性能は気体分離率
(O2/N2)が2.3でガス透過量(O2+N2)が12(リ
ツトル/分m2気圧−空気)から気体分離率が3.9
でガス透過量が0.16までの範囲にある。この性能
は、従来公知の代表的な気体分離部材であるジメ
チルポリシロキサン骨格を主成分とするシリコー
ン薄膜(厚さ100マイクロメーター)の気体分離
率が1.9ガス透過量が0.17(リツトル/分m2気圧
−空気)であることから比較すると、非常にすぐ
れていることがわかる。さらに、本発明の気体分
離部材の性能は基体を含めての値であり、気体分
離の作用をする高分子薄膜が基体表面にプラズマ
重合で強固に結合され、気体分離の性能が高いば
かりでなく、機械的強度が基体と同様に高い。こ
のため、本発明の気体分離部材は総合的見地から
して実用性の高いものである。 なお、本発明の気体分離部材では基体の表面の
孔に形成された高分子薄膜の部分のみでガス分離
がなされている。故に、この孔の表面部分(ガス
透過有効面積)でのガス透過量は更に大きな値を
示すはずであり、これを計算によつて求めると、
分離率(O2/N2)が2.7程度のものでもガス透過
量で650(リツトル/分m2気圧−空気)という驚
くべき高い値になる。従つて、さらに微細な孔が
数多く存在し、孔部分の総面積の大きい多孔質基
体が開発されれば、さらにすぐれた気体分離部材
となる。 気体透過量および分離率はASTM方式(圧力
法)に基づき、透過気体の成分をガスクロマトグ
ラフにより分離、検出、定量を行なうことによつ
て求めた。 より具体的には透過セル中に膜をはさみ、膜の
両側の空間を真空ポンフによつて排気した後1.1
Kg/cm2に加圧された空気を膜の片側に導入し、所
定時間内に膜を透過した気体を一時トラツプし、
次にこれをガスクロマトグラフに導き、モレキユ
ラーシーブ型のカラムで酸素と窒素の各成分に分
離し、その各々の量を予め作製した検量線より求
め分離率(O2/N2)、O2透過速度、N2透過速度、
気体透過量(O2+N2)を算出した。 なお、本発明の高分子薄膜の厚さは数千オング
ストローム以下と考えられる。基体の代わりにガ
ラス板を使用し、本発明の方法と同一のプラズマ
重合条件でガラス上に高分子薄膜を形成し、干渉
顕微鏡による干渉縞の測定から高分子薄膜の厚さ
を測定した。以下に示す各実施例のプラズマ重合
条件ではいずれもその膜厚は1000オングストロー
ムないし3000オングストロームであつた。 本発明の気体分離部材の説明では空気中の酸素
と窒素の分離について述べたが、本発明の気体分
離部材は、水素、ヘリウム、一酸化炭素、二酸化
炭素、放射性希ガス類等の分離に有利に使用でき
る。 以下、実施例により説明する。 なお、本実施例で使用したプラズマ発生装置の
断面概略を第1図に示す。このプラズマ発生装置
は頂部に直径約7cmの突起11を有する高さ約50
cm、底部直径約30cmのガラス製ジヤー1とこのジ
ヤー1の底を構成する金属製の台2および突起1
1の上部および下部に巻きつけられた銅板製の電
極3とよりなる。台2にはモノマーガス導入用の
通路21とジヤー1内の気体を排出するための通
路22が設けられ、ジヤー1内には金属製の試料
台4が設けられている。プラズマ重合により高分
子薄膜を形成する基体5はジヤー1の内部の試料
台4の上、(これをA位置とする)、突起11の電
極3,3の間(これをB位置とする)、ジヤー1
の肩部(これをC位置とする)、ジヤー1の中央
部(これをD位置とする)およびジヤー1の下部
(これをE位置とする)のいずれかに置いた。な
お基体5の大きさは7cm×10cmの大きさで、同一
の位置に2個の基体を並べて配置した。 プラズマ重合は、まず基体を上記A,B,C,
DおよびEの位置の少なくとも1カ所に配置し、
真空ポンプ(図示せず)によりジヤー1内の空気
を通路22を通して脱気した。次に真空ポンプに
より脱気を続けた状態で通路21より所定の有機
モノマーを導入しジヤー内の気圧を約0.1〜0.3ト
ールに保つた。この状態で電極3,3間に所定入
力高周波電圧をかけプラズマ重合を起させ、所定
時間継続して基体5の表面に高分子薄膜を形成し
た。以下の実施例はいずれも上記の方法でプラズ
マ重合したものである。実施例ではモノマーの種
類、基体の種類およびプラズマ重合条件のみを記
載するにとどめる。 実施例に使用した基体を表に示す。
The present invention relates to a gas separation member that selectively separates gas and a method for manufacturing the same. Membrane-like or wall-like The use of gas separation members is being considered. However, the fields in which such conventional members can be put to practical use are extremely limited because the gas separation coefficient is too small or the amount of gas permeation is small. The present invention provides a novel gas separation member that has an extremely superior separation coefficient and gas permeation amount and high mechanical strength compared to conventional gas separation members, and a method for manufacturing the same. The gas separation member of the present invention is characterized by comprising a membrane-like or wall-like porous substrate and a thin polymer film formed on the surface of the substrate by plasma polymerization. Further, the method for manufacturing a gas separation member of the present invention is characterized in that a thin polymer film is formed on the surface of a membrane-like or wall-like porous substrate by plasma polymerization. The porous substrate herein refers to a porous film or porous wall having pores ranging from several angstroms (Å) in diameter to several micrometers, which provides the mechanical strength of the gas separation member. Specifically, this substrate includes a sintered body obtained by sintering metal, ceramic, or polymer particles, a fibrous body formed by knitting, weaving, or stacking fibers in the form of felt, and a porous polymer film. used as. The shape of the base may be a flat plate. In the method of the present invention, since a polymer thin film is formed by plasma polymerization, a polymer thin film can be formed relatively easily even on a surface having a relatively complex shape such as an uneven surface. In order to form a stable polymer thin film in the pores on the surface of the substrate, when the pores are circular in shape, the diameter is preferably several thousand angstroms or less. Further, when the hole is rectangular or elliptical, it is preferable that the short diameter thereof is 1000 angstroms or less. As such a substrate, a porous cellulose acetate membrane in which many pores of several tens to several hundred angstroms are uniformly formed, a porous polycarbonate membrane, or a porous polypropylene membrane in which pores of several hundred angstroms are formed by stretching are advantageously used. can. Plasma polymerization, which forms a thin polymer film on the surface of a substrate, refers to a polymerization method in which an organic monomer is introduced into a space in a plasma state, and the organic monomer is activated and converted into radicals or ions to cause polymerization. More specifically, an electric field is applied to a low-pressure gas to excite the gas to a high-energy state, thereby turning the gas into a dissociated state rich in electrons, ions, and radicals, that is, a plasma state. An organic monomer is introduced into this plasma state space. This organic monomer is activated like a radical or ion, and unreacted monomers are polymerized one after another, forming a thin polymer film on the surface of the substrate provided in this space. The methods of applying an electric field include the internal electrode method,
External electrode method is possible. In the internal electrode method, direct current,
Alternating current and high frequency electric fields can be applied. In the external electrode method, a high frequency electric field can be applied. Furthermore, the method generally known as reverse sputtering is the same as the internal electrode method described above, and the plasma polymerization of the present invention can be performed by reverse sputtering. Polymer thin films containing Si-O bonds and C-C bonds are produced by plasma polymerization of organic monomers such as hexamethyldisiloxane, alkoxysilanes such as diethoxydimethylsilane and tetraethoxysilane, and vinylsilanes such as triethoxyvinylsilane. can be used. The gas separation member of the present invention is one in which the surface of fine pores existing on the surface of a substrate is covered with a thin polymer film formed by plasma polymerization, and gas separation is performed by the thin polymer film formed in the pores. It is. For this reason, it is important to know the properties of the thin polymer film formed on the surface of the pores, but since the pore diameter is minute, less than 1,000 angstroms, the properties cannot be determined using current physical property measurement methods. Based on current knowledge of plasma polymerization, it is assumed that polymers are formed around the pores of the substrate, grow toward the center, and finally close the pores in the center and form a thin film. Seem. For this reason, it is assumed that the thin polymer film formed on the surface of the hole is not of uniform thickness, but is thicker at the periphery and thinner at the center. In addition, since reactions of various reaction modes are thought to occur simultaneously in the plasma state, the resulting polymer thin film itself may have a different chemical composition from that obtained by ordinary polymerization methods. It is thought that there are. for example,
Conventional silicone thin films consisting of a dimethylpolysiloxane skeleton have weak mechanical strength and a gas separation rate (O 2 /N 2 ) of about 2.0. On the other hand, the gas separation member obtained by plasma polymerization of the present invention uses a thin polymer film containing Si-O bonds and C-C bonds, so it has excellent gas separation properties, permeability, and mechanical strength. It is excellent. The performance of the gas separation member of the present invention is as follows: the gas separation rate (O 2 /N 2 ) is 2.3, the gas permeation rate (O 2 +N 2 ) is 12 (liter/min m 2 atm - air), and the gas separation rate is 3.9.
The gas permeation rate is in the range up to 0.16. This performance is based on the gas separation rate of a silicone thin film (thickness 100 micrometers) whose main component is a dimethylpolysiloxane skeleton, which is a conventionally known representative gas separation member, of 1.9 and the gas permeation rate of 0.17 (liters/min m2 ). When compared, it can be seen that they are very superior. Furthermore, the performance of the gas separation member of the present invention is a value that includes the substrate, and the thin polymer film that acts as a gas separation is firmly bonded to the surface of the substrate by plasma polymerization, so that it not only has high gas separation performance but also , the mechanical strength is as high as that of the base material. Therefore, the gas separation member of the present invention is highly practical from a comprehensive standpoint. Note that in the gas separation member of the present invention, gas separation is performed only in the portion of the polymer thin film formed in the pores on the surface of the base. Therefore, the amount of gas permeation at the surface portion of the hole (effective gas permeation area) should show an even larger value, and when this is determined by calculation,
Even when the separation rate (O 2 /N 2 ) is about 2.7, the gas permeation rate is surprisingly high at 650 (liters/minute m 2 atm - air). Therefore, if a porous substrate with many finer pores and a larger total area of pores were developed, it would become an even better gas separation member. The amount of gas permeation and the separation rate were determined based on the ASTM method (pressure method) by separating, detecting, and quantifying the components of the permeated gas using a gas chromatograph. More specifically, after sandwiching the membrane in a permeation cell and evacuating the space on both sides of the membrane using a vacuum pump, 1.1
Air pressurized to Kg/cm 2 is introduced to one side of the membrane, and the gas that permeates through the membrane within a predetermined period of time is temporarily trapped.
Next, this is led to a gas chromatograph and separated into each component of oxygen and nitrogen using a molecular sieve type column.The amount of each component is determined from a calibration curve prepared in advance and the separation rate (O 2 /N 2 ), O 2 permeation rate, N2 permeation rate,
The amount of gas permeation (O 2 +N 2 ) was calculated. Note that the thickness of the polymer thin film of the present invention is considered to be several thousand angstroms or less. A glass plate was used instead of the substrate, a polymer thin film was formed on the glass under the same plasma polymerization conditions as in the method of the present invention, and the thickness of the polymer thin film was measured by measuring interference fringes with an interference microscope. Under the plasma polymerization conditions of each example shown below, the film thickness was 1000 angstroms to 3000 angstroms. In the description of the gas separation member of the present invention, the separation of oxygen and nitrogen in the air has been described, but the gas separation member of the present invention can be advantageously used to separate hydrogen, helium, carbon monoxide, carbon dioxide, radioactive rare gases, etc. can. Examples will be explained below. Note that FIG. 1 shows a schematic cross-section of the plasma generator used in this example. This plasma generator has a height of about 50 mm and has a protrusion 11 with a diameter of about 7 cm on the top.
cm, a glass jar 1 with a bottom diameter of about 30 cm, a metal stand 2 and a protrusion 1 that make up the bottom of this jar 1.
It consists of an electrode 3 made of a copper plate wrapped around the upper and lower parts of the electrode 1. The stand 2 is provided with a passage 21 for introducing monomer gas and a passage 22 for discharging the gas in the jar 1, and a metal sample stand 4 is provided inside the jar 1. The substrate 5 on which a thin polymer film is formed by plasma polymerization is placed on the sample stage 4 inside the jar 1 (this is the A position), between the electrodes 3 and 3 of the protrusion 11 (this is the B position), Jiya 1
(this is the C position), the center of the jar 1 (this is the D position), or the bottom of the jar 1 (this is the E position). The size of the substrate 5 was 7 cm x 10 cm, and two substrates were placed side by side at the same position. In plasma polymerization, the substrate is first treated with the above A, B, C,
placed in at least one of the positions D and E;
Air in the jar 1 was evacuated through passage 22 by a vacuum pump (not shown). Next, a predetermined organic monomer was introduced through passage 21 while degassing was continued using a vacuum pump, and the pressure inside the jar was maintained at about 0.1 to 0.3 Torr. In this state, a predetermined input high frequency voltage was applied between the electrodes 3, 3 to cause plasma polymerization, and a thin polymer film was formed on the surface of the substrate 5 for a predetermined period of time. The following examples were all plasma polymerized using the above method. In the Examples, only the types of monomers, types of substrates, and plasma polymerization conditions are described. The table shows the substrates used in the examples.

【表】 実施例 1 基体としてPPを使用し、試料位置A(第1
図)で有機モノマーとしてヘキサメチルジシロキ
サンを使用し、モノマー圧力0.2トール電極間入
力50ワツトで30分間反応させ、基体上に高分子薄
膜を形成し、本発明の気体分離部材を作つた。 得られた気体分離部材の高分子薄膜側の走査電
子顕微鏡写真(10000倍)を第2図に示す。また
気体分離部材の裏側(基本側)の走査電子顕微鏡
写真(10000倍)を第3図に示す。これらの写真
により、基体の矩形状の孔が高分子薄膜で完全に
被覆されているのがわかる。参考までに、本実施
例で形成された高分子薄膜の赤外線吸収スペクト
ルを第4図に示す。また同じ高分子薄膜のESCA
(Electron Spectroscopy For Chemical
Analysis)分析結果では薄膜の炭素、酸素、珪素
の元素量は原子%で各々70%、12%、18%であつ
た。 次に、この基体分離部材の気体透過量および分
離率を前述したASTM方式で測定した。その結
果は次の通りであつた。 分離率(O2/N2):2.5 酸素透過速度:2.0×10-4ml/秒.cm2.cmHg 窒素透過速度:8.0×10-5ml/秒.cm2.cmHg 酸素と窒素の透過量:4.7/分.m2.気圧−空
気 実施例 2 実施例1と同じ基体、有機モノマーを用い試料
位置Bで、モノマー圧力0.3トール、電極間入力
80ワツトで30分間反応させ基体上に高分子薄膜を
形成し、気体分離部材を作つた。 この基体分離部材の分離率および気体透過量は
次のとおりであつた。 分離率(O2/N2):3.2 酸素透過速度:2.2×10-5ml/秒.cm2.cmHg 窒素透過速度:6.8×10-6ml/秒.cm2.cmHg 酸素と窒素の透過量:0.45/分.m2.気圧−空
気 実施例 3 基体としてPC−2、試料位置C、有機モノマ
ーとしてヘキサメチルジシロキサンを使用し、モ
ノマー圧力0.2トール電極間入力50ワツトで30分
間反応させ、基体上に高分子薄膜を形成し、本発
明の気体分離部材を作つた。 この高分子薄膜のESCA分析結果は、炭素、酸
素および珪素の元素量は原子%で各々68%、13%
および19%であつた。またこの気体分離部材の気
体分離性能は次のようなものであつた。 分離率(O2/N2):2.3 酸素透過速度:3.1×10-5ml/秒.cm2.cmHg 窒素透過速度:1.3×10-5ml/秒.cm2.cmHg 酸素窒素透過量:0.77/分.m2.気圧−空気 実施例 4 基体としてPC−3、試料位置A、有機モノマ
ーとしてヘキサメチルジシロキサンを使用し、モ
ノマー圧力0.2トール、電極間入力50ワツトで60
分間反応させ基体上に高分子薄膜を形成し、本発
明の気体分離部材を作つた。 この気体分離部材の気体分離性能は次のような
ものであつた。 分離率(O2/N2):3.6 酸素透過速度:9.5×10-6ml/秒.cm2.cmHg 窒素透過速度:2.6×10-6ml/秒.cm2.cmHg 酸素窒素透過量:0.19/分.m2.気圧−空気 実施例 5 基体としてPC−4を使用し他の反応条件は実
施例4と同じ条件で基体上に高分子薄膜を形成
し、本発明の気体分離部材を作つた。この気体分
離部材の気体分離性能は次のようなものであつ
た。 分離率(O2/N2):3.5 酸素透過速度:1.2×10-5ml/秒.cm2.cmHg 窒素透過速度:3.3×10-6ml/秒.cm2.cmHg 酸素窒素透過量:0.23/分.m2.気圧−空気 実施例 6 基体としてPC−2を使用し、他の反応条件は
実施例4と同じ条件で基体上に高分子薄膜を形成
し、本発明の気体分離部材を作つた。この気体分
離部材の気体分離性能は次のとおりであつた。 分離率(O2/N2):2.7 酸素透過速度:2.4×10-5ml/秒.cm2.cmHg 窒素透過速度:9.0×10-6ml/秒.cm2.cmHg 酸素窒素透過量:0.55/分.m2.気圧−空気 実施例 7 基体としてPP、有機モノマーとしてジエトオ
キシジメチルシランを使用し、他の反応条件は実
施例1と同じ条件で基体上に高分子薄膜を形成
し、本発明の気体分離部材を作つた。この高分子
薄膜のESCA分析結果では炭素、酸素、珪素の元
素量は原子%で各々、60%、22%、17%であつ
た。またこの気体分離部材の気体分離性能は次の
ようであつた。 分離率(O2/N2):2.7 酸素透過速度:9.5×10-5ml/秒.cm2.cmHg 窒素透過速度:3.5×10-5ml/秒.cm2.cmHg 酸素窒素透過量:2.2/分.m2.気圧−空気 実施例 8 反応時間20分、試料位置Bで他の条件は実施例
7とまつたく同一で基体上に高分子薄膜を形成
し、本発明の気体分離部材を作つた。この気体分
離部材の性能は次のとおりであつた。 分離率(O2/N2):3.5 酸素透過速度:7.7×10-6ml/秒.cm2.cmHg 窒素透過速度:2.2×10-6ml/秒.cm2.cmHg 酸素窒素透過量:0.15/分.m2.気圧−空気 実施例 9 有機モノマーとしてテトラエトオキシシランを
使用し、他は実施例1と同一条件で基体上に高分
子薄膜を形成し本発明の気体分離部材を作つた。
この高分子薄膜のESCAによる分析結果では、元
素量は原子%で炭素70%、酸素22%、珪素8%で
あつた。またこの気体分離部材の性能は次のとお
りであつた。 分離率(O2/N2):2.0 酸素透過速度:5.3×10-5ml/秒.cm2.cmHg 窒素透過速度:2.7×10-5ml/秒.cm2.cmHg 酸素窒素透過量:1.5/分.m2.気圧−空気 実施例 10 有機モノマーにトリエトオキシビニルシラン、
試料位置D、その他は実施例1と同じ条件で基体
上に高分子薄膜を形成し、本発明の気体分離部材
を作つた。その性能は次のとおりであつた。 分離率(O2/N2):2.6 酸素透過速度:7.0×10-5ml/秒.cm2.cmHg 窒素透過速度:2.8×10-5ml/秒.cm2.cmHg 酸素窒素透過量:1.7/分.m2.気圧−空気 比較例 有機モノマーとして1−ヘキセン、試料位置
C、反応時間60分その他は実施例1と同じ条件で
基体の表面に高分子薄膜を形成し、本発明の気体
分離部材を作つた。その性能は次のとおりであつ
た。 分離率(O2/N2):3.9 酸素透過速度:8.7×10-6ml/秒.cm2.cmHg 窒素透過速度:2.2×10-6ml/秒.cm2.cmHg 酸素窒素透過量:0.16/分.m2.気圧−空気
[Table] Example 1 Using PP as the substrate, sample position A (first
Hexamethyldisiloxane was used as an organic monomer in Fig. 1, and the reaction was carried out for 30 minutes at a monomer pressure of 0.2 torr and an interelectrode input of 50 watts to form a thin polymer film on the substrate, thereby producing the gas separation member of the present invention. A scanning electron micrograph (10,000 times magnification) of the polymer thin film side of the obtained gas separation member is shown in FIG. Fig. 3 shows a scanning electron micrograph (10,000x magnification) of the back side (base side) of the gas separation member. These photographs show that the rectangular pores of the substrate are completely covered with a thin polymer film. For reference, the infrared absorption spectrum of the polymer thin film formed in this example is shown in FIG. Also, ESCA of the same polymer thin film
(Electron Spectroscopy For Chemical
Analysis) The analysis results showed that the elemental amounts of carbon, oxygen, and silicon in the thin film were 70%, 12%, and 18%, respectively, in atomic percent. Next, the amount of gas permeation and the separation rate of this substrate separation member were measured using the above-mentioned ASTM method. The results were as follows. Separation rate (O 2 /N 2 ): 2.5 Oxygen permeation rate: 2.0×10 -4 ml/sec. cm2 . cmHg Nitrogen permeation rate: 8.0×10 -5 ml/sec. cm2 . cmHg Oxygen and nitrogen permeation rate: 4.7/min. m2 . Atmospheric pressure-air Example 2 Using the same substrate and organic monomer as in Example 1, at sample position B, monomer pressure 0.3 Torr, input between electrodes.
The reaction was carried out at 80 watts for 30 minutes to form a thin polymer film on the substrate, creating a gas separation member. The separation rate and gas permeation amount of this substrate separation member were as follows. Separation rate (O 2 /N 2 ): 3.2 Oxygen permeation rate: 2.2×10 -5 ml/sec. cm2 . cmHg Nitrogen permeation rate: 6.8×10 -6 ml/sec. cm2 . cmHg Oxygen and nitrogen permeation rate: 0.45/min. m2 . Atmospheric pressure-air Example 3 Using PC-2 as the substrate, sample position C, and hexamethyldisiloxane as the organic monomer, a reaction was performed for 30 minutes at a monomer pressure of 0.2 torr and interelectrode input of 50 watts to form a polymer thin film on the substrate. Then, the gas separation member of the present invention was manufactured. The ESCA analysis results of this polymer thin film show that the elemental amounts of carbon, oxygen, and silicon are 68% and 13%, respectively, in atomic percent.
and 19%. The gas separation performance of this gas separation member was as follows. Separation rate (O 2 /N 2 ): 2.3 Oxygen permeation rate: 3.1×10 -5 ml/sec. cm2 . cmHg Nitrogen permeation rate: 1.3×10 -5 ml/sec. cm2 . cmHg Oxygen/nitrogen permeation rate: 0.77/min. m2 . Pressure-Air Example 4 Using PC-3 as the substrate, sample position A, hexamethyldisiloxane as the organic monomer, monomer pressure 0.2 Torr, interelectrode input 50 Watts, 60
A thin polymer film was formed on the substrate by reacting for a minute, thereby producing the gas separation member of the present invention. The gas separation performance of this gas separation member was as follows. Separation rate (O 2 /N 2 ): 3.6 Oxygen permeation rate: 9.5×10 -6 ml/sec. cm2 . cmHg Nitrogen permeation rate: 2.6×10 -6 ml/sec. cm2 . cmHg Oxygen/nitrogen permeation rate: 0.19/min. m2 . Atmospheric Pressure-Air Example 5 A thin polymer film was formed on the substrate using PC-4 as the substrate and the other reaction conditions were the same as in Example 4 to produce the gas separation member of the present invention. The gas separation performance of this gas separation member was as follows. Separation rate (O 2 /N 2 ): 3.5 Oxygen permeation rate: 1.2×10 -5 ml/sec. cm2 . cmHg Nitrogen permeation rate: 3.3×10 -6 ml/sec. cm2 . cmHg Oxygen/nitrogen permeation rate: 0.23/min. m2 . Atmospheric Pressure-Air Example 6 Using PC-2 as a substrate, a polymer thin film was formed on the substrate under the same reaction conditions as in Example 4, and a gas separation member of the present invention was produced. The gas separation performance of this gas separation member was as follows. Separation rate (O 2 /N 2 ): 2.7 Oxygen permeation rate: 2.4×10 -5 ml/sec. cm2 . cmHg Nitrogen permeation rate: 9.0×10 -6 ml/sec. cm2 . cmHg Oxygen/nitrogen permeation rate: 0.55/min. m2 . Pressure-Air Example 7 Using PP as the substrate and diethoxydimethylsilane as the organic monomer, a thin polymer film was formed on the substrate under the same reaction conditions as in Example 1, and the gas separation member of the present invention was prepared. I made it. The results of ESCA analysis of this polymer thin film showed that the elemental amounts of carbon, oxygen, and silicon were 60%, 22%, and 17%, respectively, in atomic percent. Further, the gas separation performance of this gas separation member was as follows. Separation rate (O 2 /N 2 ): 2.7 Oxygen permeation rate: 9.5×10 -5 ml/sec. cm2 . cmHg Nitrogen permeation rate: 3.5×10 -5 ml/sec. cm2 . cmHg Oxygen/nitrogen permeation rate: 2.2/min. m2 . Pressure-Air Example 8 A polymer thin film was formed on a substrate under the same conditions as in Example 7, using a reaction time of 20 minutes and sample position B, to produce a gas separation member of the present invention. The performance of this gas separation member was as follows. Separation rate (O 2 /N 2 ): 3.5 Oxygen permeation rate: 7.7×10 -6 ml/sec. cm2 . cmHg Nitrogen permeation rate: 2.2×10 -6 ml/sec. cm2 . cmHg Oxygen/nitrogen permeation rate: 0.15/min. m2 . Pressure-Air Example 9 A gas separation member of the present invention was produced by forming a thin polymer film on a substrate under the same conditions as in Example 1 except that tetraethoxysilane was used as an organic monomer.
According to the results of ESCA analysis of this polymer thin film, the elemental contents were 70% carbon, 22% oxygen, and 8% silicon in atomic percent. Further, the performance of this gas separation member was as follows. Separation rate (O 2 /N 2 ): 2.0 Oxygen permeation rate: 5.3×10 -5 ml/sec. cm2 . cmHg Nitrogen permeation rate: 2.7×10 -5 ml/sec. cm2 . cmHg Oxygen/nitrogen permeation rate: 1.5/min. m2 . Pressure-Air Example 10 Organic monomers include triethoxyvinylsilane,
A thin polymer film was formed on a substrate under the same conditions as in Example 1 except for the sample position D, thereby producing a gas separation member of the present invention. Its performance was as follows. Separation rate (O 2 /N 2 ): 2.6 Oxygen permeation rate: 7.0×10 -5 ml/sec. cm2 . cmHg Nitrogen permeation rate: 2.8×10 -5 ml/sec. cm2 . cmHg Oxygen/nitrogen permeation rate: 1.7/min. m2 . Atmospheric Pressure-Air Comparative Example A thin polymer film was formed on the surface of a substrate under the same conditions as in Example 1, except that 1-hexene was used as an organic monomer, the sample position was C, and the reaction time was 60 minutes, to produce a gas separation member of the present invention. Its performance was as follows. Separation rate (O 2 /N 2 ): 3.9 Oxygen permeation rate: 8.7×10 -6 ml/sec. cm2 . cmHg Nitrogen permeation rate: 2.2×10 -6 ml/sec. cm2 . cmHg Oxygen/nitrogen permeation rate: 0.16/min. m2 . Atmospheric pressure - air

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で使用されたプラズマ
重合装置の断面を示す図、第2図および第3図は
実施例1で作られた本発明の気体分離部材の表側
および裏側各表面の走査電子顕微鏡写真、第4図
は実施例1で作られた本発明の気体分離部材の高
分子薄膜の赤外線吸収スペクトル図である。図中
符号1はジヤー、2は台、3は電極、4は試料
台、5は基体を示す。
FIG. 1 is a cross-sectional view of the plasma polymerization apparatus used in the example of the present invention, and FIGS. 2 and 3 show the front and back surfaces of the gas separation member of the present invention made in Example 1. The scanning electron micrograph and FIG. 4 are infrared absorption spectra of the polymer thin film of the gas separation member of the present invention produced in Example 1. In the figure, 1 is a jar, 2 is a stand, 3 is an electrode, 4 is a sample stand, and 5 is a base.

Claims (1)

【特許請求の範囲】 1 膜状あるいは壁状の多孔質基体と該基体の表
面にプラズマ重合により形成されたSi−O結合と
C−C結合を含む高分子薄膜とよりなることを特
徴とする気体分離部材。 2 高分子薄膜はヘキサメチルジシロキサン、ア
ルコキシシラン類、ビニルシラン類をモノマーと
して形成したことを特徴とする特許請求の範囲第
1項記載の気体分離部材。 3 多孔質気体は、孔が円形の場合には、その直
径が数千オングストローム以下、また孔が矩形あ
るいは楕円形の場合にはその短径が1000オングス
トローム以下の多孔質高分子フイルムとしたこと
を特徴とする特許請求の範囲第1項記載の気体分
離部材。 4 膜状あるいは壁状の多孔質基体の表面にプラ
ズマ重合法を用いて、有機モノマーを重合し、Si
−O結合とC−C結合を含む高分子薄膜を形成す
ることを特徴とする気体分離部材の製造方法。
[Claims] 1. It is characterized by consisting of a film-like or wall-like porous substrate and a polymer thin film containing Si-O bonds and C-C bonds formed on the surface of the substrate by plasma polymerization. Gas separation member. 2. The gas separation member according to claim 1, wherein the polymer thin film is formed using hexamethyldisiloxane, alkoxysilanes, and vinylsilanes as monomers. 3. The porous gas is a porous polymer film with a diameter of several thousand angstroms or less if the pores are circular, and a short diameter of 1000 angstroms or less if the pores are rectangular or elliptical. A gas separation member according to claim 1. 4 Using plasma polymerization, organic monomers are polymerized on the surface of a membrane-like or wall-like porous substrate to form Si.
A method for producing a gas separation member, comprising forming a thin polymer film containing -O bonds and C-C bonds.
JP7995279A 1979-06-25 1979-06-25 Gas separating member and production thereof Granted JPS5624018A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP7995279A JPS5624018A (en) 1979-06-25 1979-06-25 Gas separating member and production thereof
DE8080103599T DE3066085D1 (en) 1979-06-25 1980-06-25 Gas separating member
EP80103599A EP0021422B1 (en) 1979-06-25 1980-06-25 Gas separating member
CA000354752A CA1139680A (en) 1979-06-25 1980-06-25 Gas separating members and a method of making the same
US06/388,577 US4410338A (en) 1979-06-25 1982-06-15 Gas separating members and a method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7995279A JPS5624018A (en) 1979-06-25 1979-06-25 Gas separating member and production thereof

Publications (2)

Publication Number Publication Date
JPS5624018A JPS5624018A (en) 1981-03-07
JPS6250174B2 true JPS6250174B2 (en) 1987-10-23

Family

ID=13704635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7995279A Granted JPS5624018A (en) 1979-06-25 1979-06-25 Gas separating member and production thereof

Country Status (1)

Country Link
JP (1) JPS5624018A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5658518A (en) * 1979-10-17 1981-05-21 Toyota Central Res & Dev Lab Inc Fine-tubelike gas separating member
JPS5794304A (en) * 1980-12-03 1982-06-11 Sumitomo Chem Co Ltd Gas separating membrane made of polysulfone hollow fiber and its manufacture
JPS57150423A (en) * 1981-03-13 1982-09-17 Mitsubishi Chem Ind Ltd Gas separating film
JPS58180205A (en) * 1982-04-16 1983-10-21 Sumitomo Electric Ind Ltd Composite membrane having selective permeability to gas and its production
DE3217047A1 (en) * 1982-05-06 1983-11-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München MEMBRANES ON THE BASIS OF SILICA ACID THEROPOLYCONDENSATES, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
JPS59169507A (en) * 1983-03-14 1984-09-25 Agency Of Ind Science & Technol Gas separation membrane
JPS6090004A (en) * 1983-10-22 1985-05-21 Agency Of Ind Science & Technol Gas separation membrane
JPH03106425A (en) * 1989-09-19 1991-05-07 Nippon Pillar Packing Co Ltd Separation film and its manufacture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980456A (en) * 1975-03-31 1976-09-14 General Electric Company Method for sealing breaches in multi-layer ultrathin membrane composites
JPS5215483A (en) * 1975-07-28 1977-02-05 Asahi Chem Ind Co Ltd Gas permeable membrane
JPS5456985A (en) * 1977-10-14 1979-05-08 Mitsubishi Chem Ind Ltd Gas-separaing membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980456A (en) * 1975-03-31 1976-09-14 General Electric Company Method for sealing breaches in multi-layer ultrathin membrane composites
JPS5215483A (en) * 1975-07-28 1977-02-05 Asahi Chem Ind Co Ltd Gas permeable membrane
JPS5456985A (en) * 1977-10-14 1979-05-08 Mitsubishi Chem Ind Ltd Gas-separaing membrane

Also Published As

Publication number Publication date
JPS5624018A (en) 1981-03-07

Similar Documents

Publication Publication Date Title
US4410338A (en) Gas separating members and a method of making the same
Kramer et al. Low temperature plasma for the preparation of separation membranes
EP1632280B1 (en) Plasma treated porous materials
US4594079A (en) Gas separating member and method for manufacture thereof
US5013338A (en) Plasma-assisted polymerization of monomers onto polymers and gas separation membranes produced thereby
Yamamoto et al. Plasma polymerized membranes and gas permeability. I
JP2000143850A (en) Fluororesin with surface excellent in wettability
JPS6250174B2 (en)
Kleines et al. Enhancing the separation properties of plasma polymerized membranes on polydimethylsiloxane substrates by adjusting the auxiliary gas in the PECVD processes
Lin et al. Gas permeabilities of poly (trimethylsilylpropyne) membranes surface modified with CF4 plasma
US4607088A (en) Shaped body for gas separation
JPH0258970B2 (en)
Hartwig et al. Surface amination of poly (acrylonitrile)
Tu et al. Acrylamide plasma-induced polymerization onto expanded poly (tetrafluoroethylene) membrane for aqueous alcohol mixture vapor permeation separation
Görbig et al. Hydrophobic properties of plasma polymerized thin film gas selective membranes
US4976856A (en) Process for preparing non-porous, selective membrane layers
JPH0451222B2 (en)
JPS60257807A (en) Gas separating molded body
Inagaki et al. Pervaporation of ethanol-water mixture by plasma films prepared from hexamethyldisiloxane
JPH0330416B2 (en)
JPS6349220A (en) Gas separating membrane
JP2854890B2 (en) Gas separation membrane
JPS61149226A (en) Gas permselective composite membrane and preparation thereof
Inagaki et al. Gas separation membrane made by plasma polymerization of 1, 3‐ditrifluoromethylbenzene/CF4 mixture
JPS60139316A (en) Preparation of gas separating laminated composite membrane