JPH0258970B2 - - Google Patents

Info

Publication number
JPH0258970B2
JPH0258970B2 JP10536480A JP10536480A JPH0258970B2 JP H0258970 B2 JPH0258970 B2 JP H0258970B2 JP 10536480 A JP10536480 A JP 10536480A JP 10536480 A JP10536480 A JP 10536480A JP H0258970 B2 JPH0258970 B2 JP H0258970B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
rate
cmhg
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10536480A
Other languages
Japanese (ja)
Other versions
JPS5730528A (en
Inventor
Masakata Hirai
Jiro Sakata
Yutaka Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP10536480A priority Critical patent/JPS5730528A/en
Publication of JPS5730528A publication Critical patent/JPS5730528A/en
Publication of JPH0258970B2 publication Critical patent/JPH0258970B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/127In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction using electrical discharge or plasma-polymerisation

Description

【発明の詳細な説明】 本発明は気体の透過速度の異りを利用して気体
を分離する部材、特に水素あるいはヘリウムを他
の気体より選択的に分離する部材に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a member that separates gases by utilizing differences in gas permeation rates, and particularly to a member that selectively separates hydrogen or helium from other gases.

水素は水の電気分解や水性ガス等で容易に得ら
れることから、将来のエネルギー源として注目を
集めている。しかし、いずれの製造工程において
も水素を他の副成気体から分離することが必要で
あつて、この過程を省エネルギー的に行うことは
非常に重要な問題である。分離法には吸収法、吸
着法、拡散法、深冷分離法等種々の方法がある
が、膜分離技術を応用した拡散法が省エネルギー
という観点から有望視されている。
Hydrogen is attracting attention as a future energy source because it can be easily obtained through water electrolysis or water gas. However, in any production process, it is necessary to separate hydrogen from other by-product gases, and it is a very important issue to carry out this process in an energy-saving manner. There are various separation methods such as absorption method, adsorption method, diffusion method, cryogenic separation method, etc., but the diffusion method that applies membrane separation technology is considered to be promising from the viewpoint of energy saving.

特に水素の分離ではパラジウム系合金の膜を利
用したパラジウム拡散法が注目を集めているが、
パラジウムは高価であるし、水素によつて劣化す
るという欠点を有していることも事実である。
In particular, palladium diffusion methods using palladium-based alloy membranes are attracting attention for hydrogen separation.
It is true that palladium is expensive and has the drawback of being degraded by hydrogen.

一方、ヘリウムは反応性が乏しい気体であるた
めに、科学実験等種々の用途に用いられている
が、生産地が限られているために極めて高価であ
る。大規模の使用に際しては回収、精製を行うこ
とが有利であるが、このための装置は大型化する
ので、通常実験室規模で使用する際には回収を行
うことはあまり得策でない。もし実験室規模で使
用できるような小型の回収、精製装置が開発され
れば有益であるので、従来から膜分離技術を応用
した方法の開発が試みられている。しかし、現在
作製されている膜は、他の気体との分離能が小さ
かつたり、あるいは単位時間当りの回収量が少な
いというように、膜の性能が劣つているために、
この種の装置は一般化していない。
On the other hand, since helium is a gas with poor reactivity, it is used for various purposes such as scientific experiments, but it is extremely expensive because its production areas are limited. It is advantageous to perform recovery and purification when used on a large scale, but since the equipment for this becomes large-sized, it is usually not a good idea to perform recovery when used on a laboratory scale. It would be beneficial if a small-scale recovery and purification device that could be used on a laboratory scale could be developed, so attempts have been made to develop methods that apply membrane separation technology. However, the membranes currently produced have poor performance, such as low separation ability from other gases or a small amount of recovery per unit time.
This type of device is not common.

本発明は、従来の気体分離部材よりさらに高い
性能を有する気体分離部材を提供するもので、特
に、水素、ヘリウムを他の気体より分離するのに
すぐれている。
The present invention provides a gas separation member that has higher performance than conventional gas separation members, and is particularly excellent in separating hydrogen and helium from other gases.

本発明の気体分離部材は膜状あるいは壁状の多
孔質基体と、該基体の表面にプラズマ重合によつ
て層状に形成された化学組成が異なつた二種以上
の高分子薄膜とよりなり、該基体の表面に直接接
触して形成された第1層の高分子薄膜が有機珪素
化合物からなる樹脂薄膜であり、第1層の高分子
薄膜上に形成される第2層の高分子薄膜が飽和炭
化水素、不飽和炭化水素、芳香族炭化水素、カル
ボン酸、カルボン酸エステル、ニトリル化合物、
あるいは複素環式化合物をプラズマ重合させた少
なくとも1層で形成されたものであることを特徴
とするものである。
The gas separation member of the present invention consists of a membrane-like or wall-like porous substrate, and two or more kinds of polymer thin films with different chemical compositions formed in a layered manner on the surface of the substrate by plasma polymerization. The first layer of polymer thin film formed in direct contact with the surface of the substrate is a resin thin film made of an organic silicon compound, and the second layer of polymer thin film formed on the first layer of polymer thin film is saturated. Hydrocarbons, unsaturated hydrocarbons, aromatic hydrocarbons, carboxylic acids, carboxylic acid esters, nitrile compounds,
Alternatively, it is characterized by being formed of at least one layer formed by plasma polymerizing a heterocyclic compound.

ここで多孔質基体とは、気体分離部材の機械的
強度を受けもつもので、直径数十オングストロー
ム(Å)から数マイクロメーターの孔を有する多
孔質フイルムあるいは多孔質壁体をいう。具体的
には金属、セラミツクス、あるいは高分子の粒子
を焼結して得られる焼結体、繊維を編製、織製あ
るいはフエルト状に積載して形成した繊維状体、
多孔質高分子フイルム、その他多孔質ポリプロピ
レン中空繊維、多孔質ガラス中空繊維等の多孔質
中空繊維がこの基体として使用される。基体の形
状は平板状、管状その他の形状のものでよい。本
発明方法にあつては、高分子薄膜がプラズマ重合
で形成されるため管状の表面とか、凹凸のある表
面のように比較的複雑な表面をもつ形状のもので
も比較的容易に高分子薄膜が形成できる。基体表
面の孔に安定した第一層の高分子薄膜を形成する
には、孔の形状が円形の場合にはその直径が数千
オングストローム以下であることが好ましい。ま
た孔が矩形あるいは楕円形などの場合にはその短
径が1000オングストローム以下であることが好ま
しい。かかる基体として数十から数百オングスト
ロームの孔が多数均一に形成されている多孔質酢
酸セルロース膜、多孔質ポリカーボネート膜とか
延伸により数百オングストローム程度の孔が形成
された多孔質ポリプロピレン膜が有利に使用でき
る。
The porous substrate herein refers to a porous film or a porous wall having pores ranging from several tens of angstroms (Å) to several micrometers in diameter, and is responsible for the mechanical strength of the gas separation member. Specifically, sintered bodies obtained by sintering metal, ceramic, or polymer particles; fibrous bodies formed by knitting, weaving, or stacking fibers in the form of felt;
Porous polymer films and other porous hollow fibers such as porous polypropylene hollow fibers and porous glass hollow fibers are used as the substrate. The shape of the substrate may be flat, tubular, or other shapes. In the method of the present invention, since the polymer thin film is formed by plasma polymerization, the polymer thin film can be formed relatively easily even on objects with relatively complex shapes such as tubular surfaces or uneven surfaces. Can be formed. In order to form a stable first-layer thin polymer film in the pores on the substrate surface, when the pores are circular in shape, the diameter is preferably several thousand angstroms or less. Further, when the hole is rectangular or elliptical, it is preferable that the short diameter thereof is 1000 angstroms or less. As such a substrate, a porous cellulose acetate membrane in which many pores of several tens to several hundred angstroms are uniformly formed, a porous polycarbonate membrane, or a porous polypropylene membrane in which pores of several hundred angstroms are formed by stretching are advantageously used. can.

基体の表面に高分子薄膜を形成するプラズマ重
合とは、低圧の有機モノマーに電場を作用させ
て、この有機モノマーを活性化してラジカルある
いはイオンに変え重合を起こさせる重合方法をい
う。電場を作用させる形式としては内部電極方
式、無電極方式が可能である。内部電極方式では
直流、交流および高周波の電場を作用させること
ができる。無電極方式では高周波の電場を作用さ
せることができる。さらに一般に逆スパツタリン
グとして知られている方法は上記内部電極方式の
ものと同一で、逆スパツタリングにより本発明の
プラズマ重合が可能である。
Plasma polymerization, which forms a thin polymer film on the surface of a substrate, is a polymerization method in which an electric field is applied to an organic monomer under low pressure to activate the organic monomer and convert it into radicals or ions, causing polymerization. As a method of applying an electric field, an internal electrode method or a non-electrode method is possible. In the internal electrode method, direct current, alternating current, and high frequency electric fields can be applied. In the electrodeless method, a high-frequency electric field can be applied. Furthermore, the method generally known as reverse sputtering is the same as the internal electrode method described above, and the plasma polymerization of the present invention can be performed by reverse sputtering.

本発明で基体表面に第一層の高分子薄膜として
プラズマ重合で形成される高分子薄膜は有機硅素
化合物からなる樹脂(以下、オルガノシラン樹脂
とする。)で構成されることを特徴とする。この
ためのプラズマ重合における有機モノマーとして
は、ヘキサメチルジシロキサン、ジエトオキシジ
メチルシラン、オクタメチルシクロテトラシロキ
サン、テトラエトオキシシラン、トリエトオキシ
ビニルシラン、テトラメチルシラン等のオルガノ
シラン類が使用できる。基体の表面に第一層の高
分子薄膜を担持した複合膜は、基体の表面に存在
する微細な孔の表面がプラズマ重合により形成さ
れるオルガノシラン樹脂製の高分子薄膜で被覆さ
れ、この孔の部分に形成された高分子薄膜により
気体の分離が行われる。このため孔の表面に形成
されている高分子薄膜の性状を知ることは重要な
ことではあるが孔径が千オングストローム以下と
微細であるため現在の物性計測手段ではその性状
を知ることができない。現在までのプラズマ重合
の知識等から推測すると基体の孔の周辺から高分
子が形成され中心部に向つて高分子の成長が進み
最後には中心部の穴が閉じられ薄膜が形成される
ものと思われる。このため孔の表面に形成される
第一層の高分子薄膜は均一な厚さのものではなく
周辺部が厚く、中心部が薄い膜であろうと想像さ
れる。またプラズマ状態では種々の反応様式の反
応が同時に起つていると考えられるため得られる
高分子薄膜そのものも、普通の重合法によつて得
られた高分子薄膜とは異なつた化学組成を有して
いると考えられる。例えば、従来のジメチルポリ
シロキサン骨格より成るシリコーン薄膜は機械的
強度が弱く、かつ窒素に対する水素、ヘリウムお
よび酸素の分離率(H2/N2、He/N2、および
O2/N2)がそれぞれ2.1、1.1、および2.0程度で
あるが本発明のプラズマ重合で得られたシリコー
ン薄膜を担持した複合膜の機械的強度が高くかつ
分離率(H2/N2、He/N2およびO2/N2)がそ
れぞれ6.0、4.0、および2.3以上と高いことからも
化学組成の異なることが推論される。従来のジメ
チルポリシロキサン骨格より成るシリコーン薄膜
は気体の透過速度が、ポリエチレン等、他の高分
子で構成された同一厚さの薄膜よりおよそ100倍
程度大きいことが特長である。一方、本発明のプ
ラズマ重合で得られたオルガノシラン樹脂薄膜を
担持した複合膜と、市販のシリコーン薄膜とを同
一厚さで窒素の透過速度を比較すると同程度もし
くは少し劣る程度であるが、プラズマ重合ではオ
ルガノシラン樹脂薄膜部分が極めて薄い膜が作製
されるので単位時間当りの気体の透過量で比べる
と100倍程度大きくなる。このようにオルガノシ
ラン樹脂薄膜を担持した複合膜は従来の気体分離
部材に比較し、分離能および気体の透過量で極め
てすぐれている。しかし水素あるいはヘリウムの
分離精製に、この複合膜を用いるには分離能にお
いて十分ではない。一方、発明者らは1−ヘキセ
ンやシクロヘキセン等のオレフイン系炭化水素を
有機モノマーとして多孔質基体の表面にプラズマ
重合で高分子薄膜を形成させた複合膜は、窒素に
対する水素およびヘリウムの分離率が高いことを
見い出した。しかし、この複合膜はオルガノシラ
ン樹脂薄膜と同程度の厚さにすると、機械的強度
が十分でなく、また気体の透過量においても劣つ
ていた。本発明では基体の表面にオルガノシラン
樹脂薄膜を担持した複合膜の表面にオルガノシラ
ン樹脂以外の他の高分子薄膜を第2層とし形成さ
せるものである。この第2層の高分子薄膜として
はオレフイン系炭化水素、芳香族炭化水素もしく
はこれらの誘導体をプラズマ重合によつて得られ
る薄膜を採用できる。飽和炭化水素としてはメタ
ン、エタン等が不飽和炭化水素としては1−ヘキ
セン、シクロヘキセン、1,3−ペンタジエン、
1,3−シクロヘキサジエン、ジシクロペンタジ
エン、アセチレン等が、芳香族炭化水素としては
ベンゼン、トルエン、キシレン、スチレン、ジビ
ニルベンゼン等が、またこれらの誘導体として
は、アクリル酸、アクリル酸エチル、フラン、ベ
ンゾニトリル等のカルボン酸、カルボン酸エステ
ル、ニトリル化合物、複素環式化合物等が有利に
使用される。
In the present invention, the first layer of the polymer thin film formed on the surface of the substrate by plasma polymerization is characterized by being composed of a resin made of an organic silicon compound (hereinafter referred to as organosilane resin). As organic monomers for plasma polymerization for this purpose, organosilanes such as hexamethyldisiloxane, diethoxydimethylsilane, octamethylcyclotetrasiloxane, tetraethoxysilane, triethoxyvinylsilane, and tetramethylsilane can be used. In a composite membrane in which a first layer of polymer thin film is supported on the surface of a substrate, the surface of fine pores existing on the surface of the substrate is coated with a polymer thin film made of organosilane resin formed by plasma polymerization, and the pores are Gas separation is performed by a thin polymer film formed in the area. For this reason, it is important to know the properties of the thin polymer film formed on the surface of the pores, but because the pore diameter is so small as to be less than 1,000 angstroms, the properties cannot be determined using current physical property measurement methods. Based on current knowledge of plasma polymerization, it is assumed that polymers are formed around the pores of the substrate, grow toward the center, and finally close the pores in the center and form a thin film. Seem. For this reason, it is assumed that the first polymer thin film formed on the surface of the hole is not of uniform thickness, but is thicker at the periphery and thinner at the center. In addition, since reactions of various reaction modes are thought to occur simultaneously in the plasma state, the resulting polymer thin film itself may have a different chemical composition from that obtained by ordinary polymerization methods. It is thought that there are. For example, conventional silicone thin films consisting of dimethylpolysiloxane skeletons have weak mechanical strength and have low separation rates of hydrogen, helium, and oxygen relative to nitrogen (H 2 /N 2 , He/N 2 , and
O 2 /N 2 ) are about 2.1, 1.1, and 2.0, respectively, but the composite membrane supporting the silicone thin film obtained by plasma polymerization of the present invention has high mechanical strength and separation rate (H 2 /N 2 , It is also inferred that the chemical compositions are different from the fact that the He/N 2 and O 2 /N 2 ) values are as high as 6.0, 4.0, and 2.3 or higher, respectively. Conventional silicone thin films made of a dimethylpolysiloxane skeleton are characterized by a gas permeation rate that is about 100 times higher than thin films of the same thickness made of other polymers such as polyethylene. On the other hand, when comparing the nitrogen permeation rate of the composite film supporting the organosilane resin thin film obtained by plasma polymerization of the present invention and a commercially available silicone thin film with the same thickness, it is found that the nitrogen permeation rate is about the same or slightly inferior. In polymerization, an extremely thin organosilane resin film is produced, so the amount of gas permeation per unit time is about 100 times greater. As described above, a composite membrane supporting an organosilane resin thin film is extremely superior in separation ability and gas permeation rate compared to conventional gas separation members. However, the separation ability of this composite membrane is not sufficient for use in the separation and purification of hydrogen or helium. On the other hand, the inventors have developed a composite membrane in which a thin polymer film is formed by plasma polymerization on the surface of a porous substrate using olefinic hydrocarbons such as 1-hexene and cyclohexene as organic monomers, which has a high separation rate of hydrogen and helium relative to nitrogen. I found out that it is expensive. However, when this composite membrane was made to have a thickness comparable to that of an organosilane resin thin film, it did not have sufficient mechanical strength and was also inferior in gas permeation rate. In the present invention, a thin polymer film other than the organosilane resin is formed as a second layer on the surface of a composite film having a thin organosilane resin film supported on the surface of the substrate. As the second layer of polymer thin film, a thin film obtained by plasma polymerization of olefinic hydrocarbons, aromatic hydrocarbons, or derivatives thereof can be employed. Examples of saturated hydrocarbons include methane and ethane; examples of unsaturated hydrocarbons include 1-hexene, cyclohexene, 1,3-pentadiene,
1,3-cyclohexadiene, dicyclopentadiene, acetylene, etc., aromatic hydrocarbons include benzene, toluene, xylene, styrene, divinylbenzene, etc., and derivatives thereof include acrylic acid, ethyl acrylate, furan, Carboxylic acids such as benzonitrile, carboxylic esters, nitrile compounds, heterocyclic compounds, etc. are advantageously used.

第2層の高分子薄膜は、単層でも、あるいは上
記化合物2種類以上からなる多層でもよい。ま
た、各層は上記化合物の単独重合体からなるもの
でも、あるいは上記化合物2種類以上の共重合体
からなるものでよく、更に単独重合体あるいは共
重合体の混合物からなるものでもよい。
The second layer of polymer thin film may be a single layer or a multilayer consisting of two or more of the above compounds. Further, each layer may be made of a homopolymer of the above-mentioned compounds, or a copolymer of two or more of the above-mentioned compounds, or may be made of a mixture of homopolymers or copolymers.

第2層としての高分子薄膜は多孔質基体および
オルガノシラン樹脂薄膜によつて補強されている
ために機械的強度が大きく、しかも水素、ヘリウ
ムの分離における性能はオルガノシラン樹脂薄膜
のみを担持した複合膜に比べて、窒素に対する水
素およびヘリウムの分離率(H2/N2、He/N2
が著しく増大し、それぞれ30、および25程度とな
る。一方透過量の減少はオルガノシラン樹脂薄膜
のみを担持した複合膜に比べて多くても十分の一
程度にしかならず、従来の気体分離部材に比べて
著しく透過速度が大きい。ここで本発明の気体分
離部材の性能を試算してみる。
The polymer thin film as the second layer has high mechanical strength because it is reinforced by the porous substrate and the organosilane resin thin film, and its performance in separating hydrogen and helium is superior to that of the composite supporting only the organosilane resin thin film. Separation rate of hydrogen and helium relative to nitrogen (H 2 /N 2 , He/N 2 ) compared to membranes
increases significantly to about 30 and 25, respectively. On the other hand, the reduction in permeation amount is at most one-tenth of that of a composite membrane supporting only an organosilane resin thin film, and the permeation rate is significantly higher than that of conventional gas separation members. Here, the performance of the gas separation member of the present invention will be estimated.

本発明の気体分離部材の各種気体に対する透過
速度はおおよそ次のような値となる。H2透過速
度は9.4×10-5cm3/秒、cm2、cmHg、He透過速度は
8.1×10-5cm3/秒、cm2、cmHg、N2透過速度は3.1
×10-6cm3/秒、cm2、cmHg、O2透過速度は1.3×
10-5cm3/秒、cm2、cmHgである。ここで水素ある
いはヘリウムが空気中にそれぞれ50%含まれてい
る場合を仮定して、この混合気体を1気圧として
本発明の気体分離部材の片側に導き、もう片側を
真空状態にし、真空側に透過してくる混合気体の
総量と組成を示す。
The permeation rate of the gas separation member of the present invention for various gases has approximately the following values. H 2 permeation rate is 9.4×10 -5 cm 3 /sec, cm 2 , cmHg, He permeation rate is
8.1×10 -5 cm 3 /sec, cm 2 , cmHg, N 2 permeation rate is 3.1
×10 -6 cm 3 /sec, cm 2 , cmHg, O 2 permeation rate is 1.3×
10 -5 cm 3 /sec, cm 2 , cmHg. Assuming that the air contains 50% hydrogen or helium, this gas mixture is brought to one side of the gas separation member of the present invention at 1 atmosphere, the other side is brought into a vacuum state, and the other side is brought into a vacuum state. Shows the total amount and composition of the mixed gas that permeates.

なお以下の値は1平方メーターの気体分離部材
を用い、1分間の透過を行わせた場合を想定して
試算したものである。まず水素が空気中に50%含
まれている場合は、透過してくる混合気体の総量
は2.3リツトルで組成は水素が95%、窒素が2.5
%、酸素が2.8%である。またヘリウムが空気中
に50%含まれている場合は透過気体の総量は2.0
リツトルで、組成はヘリウムが94%、窒素が2.9
%、酸素が3.3%である。」このように本発明の気
体分離部材は水素およびヘリウムの分離精製にお
いて極めてすぐれていることが分かる。
The following values were calculated based on the assumption that a gas separation member of 1 square meter was used and permeation was performed for 1 minute. First, if the air contains 50% hydrogen, the total amount of the mixed gas that permeates is 2.3 liters, and the composition is 95% hydrogen and 2.5% nitrogen.
%, oxygen is 2.8%. Also, if the air contains 50% helium, the total amount of permeated gas is 2.0
The composition is 94% helium and 2.9% nitrogen.
%, oxygen is 3.3%. '' Thus, it can be seen that the gas separation member of the present invention is extremely excellent in the separation and purification of hydrogen and helium.

さらに、本発明の気体分離部材は基体の表面に
プラズマ重合で高分子薄膜を形成するものである
ため、基体の形状にかかわらず、その基体表面に
容易に強固な高分子薄膜を形成することが可能で
ある。従つて、中空系状の気体分離部材も本発明
の方法で容易に得られる。
Furthermore, since the gas separation member of the present invention forms a thin polymer film on the surface of the substrate by plasma polymerization, a strong thin polymer film can be easily formed on the surface of the substrate regardless of the shape of the substrate. It is possible. Therefore, a hollow system-like gas separation member can also be easily obtained by the method of the present invention.

気体透過量および分離率はASTM方式(圧力
法)に基づき、透過気体の成分をガスクロマトグ
ラフにより分離、検出、定量を行うことによつて
求めた。
The amount of gas permeation and the separation rate were determined based on the ASTM method (pressure method) by separating, detecting, and quantifying the components of the permeated gas using a gas chromatograph.

より具体的には、透過セル中に膜をはさみ、膜
の両側の空間を真空ポンプによつて排気した後
1.1Kg/cm2に加圧された空気、水素あるいはヘリ
ウムをそれぞれ膜の片側に導入し、所定時間内に
膜を透過した気体を一時トラツプし、次にガスク
ロマトグラフに導き、モレキユラーシーブ型のカ
ラムで各成分に分離し、その各々の量を予め作製
した検量線より求めH2透過速度、He透過速度、
O2透過速度、N2透過速度を算出した。
More specifically, after sandwiching the membrane in a permeation cell and evacuating the space on both sides of the membrane using a vacuum pump,
Air, hydrogen, or helium pressurized to 1.1 Kg/cm 2 is introduced into one side of the membrane, and the gas that permeates through the membrane within a predetermined period of time is temporarily trapped, then guided to a gas chromatograph and then transferred to a molecular sieve type. Separate each component using a column, and calculate the amount of each component using a pre-prepared calibration curve.H2 permeation rate, He permeation rate,
The O 2 permeation rate and N 2 permeation rate were calculated.

以下、実施例により説明する。 Examples will be explained below.

なお、本実施例で使用したプラズマ発生装置の
断面概略を図に示す。このプラズマ発生装置は頂
部に直径約7cmの突起11を有する高さ約50cm、
底部直径約30cmのガラス製ジヤー1とこのジヤー
1の底を構成する金属製の台2および突起11の
上部および下部に巻きつけられた銅板製の電極3
とよりなる。台2にはモノマーガス導入用の通路
21とジヤー1内の気体を排出するための通路2
2が設けられ、ジヤー1内には金属製の試料台4
が設けられている。プラズマ重合により高分子薄
膜を形成する基体5はジヤー1内の内部の試料台
4の上(これをA位置とする)、突起11の電極
3.3の間(これをB位置とする)、ジヤー1の
肩部(これをC位置とする)、ジヤー1の中央部
(これをD位置とする)およびジヤー1の下部
(これをE位置とする)のいずれかに置いた。な
お基体5の大きさは7cm×10cmの大きさで、同一
の位置に2個の基体を並べて配置した。
A schematic cross-sectional view of the plasma generator used in this example is shown in the figure. This plasma generator has a height of about 50 cm and a protrusion 11 with a diameter of about 7 cm on the top.
A glass jar 1 with a bottom diameter of about 30 cm, a metal base 2 forming the bottom of the jar 1, and copper plate electrodes 3 wrapped around the upper and lower parts of the projections 11.
It becomes more. The stand 2 includes a passage 21 for introducing monomer gas and a passage 2 for discharging the gas in the jar 1.
2, and inside the jar 1 there is a metal sample stage 4.
is provided. The substrate 5 on which a thin polymer film is formed by plasma polymerization is placed on the sample stage 4 inside the jar 1 (this is the A position), between the electrodes 3.3 of the protrusion 11 (this is the B position), It was placed on either the shoulder of the jar 1 (this is the C position), the center of the jar 1 (this is the D position), or the bottom of the jar 1 (this is the E position). The size of the substrate 5 was 7 cm x 10 cm, and two substrates were placed side by side at the same position.

プラズマ重合は、まず基体を上記A、B、C、
DおよびEの位置の少なくとも1カ所に配置し、
真空ポンプ(図示せず)によりジヤー1内の空気
を通路22を通して脱気した。次に真空ポンプに
より脱気を続けた状態で通路21より有機モノマ
ーとして所定のオルガノシラン化合物を導入しジ
ヤー内の気圧を約0.1〜0.3トールに保つた。この
状態で電極3.3間に所定入力の高周波電圧をか
けプラズマ重合を起させ、所定時間継続して基体
5の表面にオルガノシラン樹脂薄膜を形成した。
次に、オルガノシラン樹脂薄膜を担持した複合膜
をプラズマ発生装置内の上記A、B、C、Dおよ
びEの位置の少なくとも1カ所に配置し、真空ポ
ンプ(図示せず)によりジヤー1内の空気を通路
22を通して脱気した。真空ポンプにより脱気を
続けた状態で通路21より有機モノマーとして所
定のオレフイン炭化水素や芳香族炭化水素あるい
はこれらの誘導体を導入しジヤー内の気圧を約
0.1〜0.3トールに保つた。この状態で電極3.3
間に所定入力の高周波電圧をかけプラズマ重合を
起こさせ、所定時間継続して複合膜の表面に高分
子薄膜を形成した。実施例中で使用した基体は厚
さ25マイクロメーターの多孔質ポリプロピレン膜
で、200×2000オングストロームの大きさの矩形
孔を多数有しているものである。実施例ではモノ
マーの種類とプラズマ重合条件のみを記載するに
とどめる。
In plasma polymerization, the substrate is first treated with the above A, B, C,
placed in at least one of the positions D and E;
Air in the jar 1 was evacuated through passage 22 by a vacuum pump (not shown). Next, while degassing was continued using a vacuum pump, a predetermined organosilane compound was introduced as an organic monomer through passage 21, and the pressure inside the jar was maintained at about 0.1 to 0.3 Torr. In this state, a high frequency voltage of a predetermined input was applied between the electrodes 3 and 3 to cause plasma polymerization, which continued for a predetermined period of time to form an organosilane resin thin film on the surface of the substrate 5.
Next, the composite membrane supporting the organosilane resin thin film is placed in at least one of the positions A, B, C, D, and E in the plasma generator, and the membrane is heated in the jar 1 using a vacuum pump (not shown). Air was vented through passage 22. While degassing is continued using a vacuum pump, a predetermined olefin hydrocarbon, aromatic hydrocarbon, or a derivative thereof is introduced as an organic monomer through the passage 21, and the pressure inside the jar is reduced to approx.
Keep it at 0.1-0.3 Torr. In this state, electrode 3.3
During this period, a high frequency voltage of a predetermined input was applied to cause plasma polymerization, and a thin polymer film was formed on the surface of the composite membrane for a predetermined period of time. The substrate used in the examples was a porous polypropylene membrane 25 micrometers thick, having a large number of rectangular pores measuring 200 x 2000 angstroms. In the Examples, only the types of monomers and plasma polymerization conditions are described.

実施例 1 基体を試料位置Aで有機モノマーとしてヘキサ
メチルジシロキサンを使用し、モノマー圧力0.2
トール電極間入力50ワツトで20分間反応させ、基
体上にオルガノシラン樹脂薄膜を形成させた。こ
の複合膜を試料位置Aで有機モノマーとしてシク
ロヘキセンを使用し、モノマー圧力0.2トール電
極間入力50ワツトで20分反応させ複合膜上に高分
子薄膜を形成させた。この気体分離部材の気体透
過速度および分離率を前述したASTM方式で測
定した。その結果は次の通りであつた。
Example 1 The substrate was sampled at position A using hexamethyldisiloxane as the organic monomer, and the monomer pressure was 0.2.
The reaction was carried out for 20 minutes at a power of 50 watts between the electrodes to form an organosilane resin thin film on the substrate. This composite membrane was reacted at sample position A using cyclohexene as an organic monomer at a monomer pressure of 0.2 torr and an interelectrode input of 50 watts for 20 minutes to form a polymer thin film on the composite membrane. The gas permeation rate and separation rate of this gas separation member were measured using the ASTM method described above. The results were as follows.

H2透過速度:3.3×10-5cm3/秒、cm2、cmHg He透過速度:3.0×10-5cm3/秒、cm2、cmHg O2透過速度:2.3×10-6cm3/秒、cm2、cmHg N2透過速度:6.7×10-7cm3/秒、cm2、cmHg H2/N2分離率:49 He/N2分離率:44 実施例 2 実施例1と同じ方法で作製したオルガノシラン
樹脂薄膜を担持した複合膜を試料位置Cで有機モ
ノマーとして1−ヘキセンを使用し、モノマー圧
力0.2トール電極間入力50ワツトで20分反応させ
複合膜上に高分子薄膜を形成させた。この気体分
離部材の気体透過速度および分離率は次のとおり
であつた。
H2 permeation rate: 3.3 x 10-5 cm3 /sec, cm2 , cmHg He permeation rate: 3.0 x 10-5 cm3 /sec, cm2 , cmHg O2 permeation rate: 2.3 x 10-6 cm3 / sec, cm 2 , cmHg N 2 permeation rate: 6.7×10 -7 cm 3 /sec, cm 2 , cmHg H 2 /N 2 separation rate: 49 He/N 2 separation rate: 44 Example 2 Same as Example 1 The composite membrane supporting the organosilane resin thin film prepared by the above method was reacted at sample position C using 1-hexene as an organic monomer at a monomer pressure of 0.2 Torr and an interelectrode input of 50 W for 20 minutes to form a polymer thin film on the composite membrane. formed. The gas permeation rate and separation rate of this gas separation member were as follows.

H2透過速度:9.4×10-5cm3/秒、cm2、cmHg He透過速度:8.1×10-5cm3/秒、cm2、cmHg O2透過速度:1.3×10-5cm3/秒、cm2、cmHg N2透過速度:3.1×10-6cm3/秒、cm2、cmHg H2/N2分離率:31 He/N2分離率:26 実施例 3 基体を試料位置Aで有機モノマーとしてオクタ
メチルシクロテトラシロキサンを使用し、モノマ
ー圧力0.2トール電極間入力50Wで30分反応させ、
基体上にオルガノシラン樹脂薄膜を形成させた。
この複合膜を試料位置Cで有機モノマーとしてシ
クロヘキセンを使用し、モノマー圧力0.2トール
電極間入力50ワツトで5分間反応させ複合膜上に
高分子薄膜を形成させた。この気体分離部材の気
体透過速度および分離率は次のとおりであつた。
H2 permeation rate: 9.4 x 10-5 cm3 /sec, cm2 , cmHg He permeation rate: 8.1 x 10-5 cm3 /sec, cm2 , cmHg O2 permeation rate: 1.3 x 10-5 cm3 / sec, cm 2 , cmHg N 2 transmission rate: 3.1×10 -6 cm 3 /sec, cm 2 , cmHg H 2 /N 2 separation rate: 31 He/N 2 separation rate: 26 Example 3 Place the substrate at sample position A Using octamethylcyclotetrasiloxane as an organic monomer, the reaction was carried out for 30 minutes at a monomer pressure of 0.2 Torr and an interelectrode input of 50 W.
An organosilane resin thin film was formed on the substrate.
This composite membrane was reacted at sample position C using cyclohexene as an organic monomer at a monomer pressure of 0.2 torr and an interelectrode input of 50 watts for 5 minutes to form a polymer thin film on the composite membrane. The gas permeation rate and separation rate of this gas separation member were as follows.

H2透過速度:9.1×10-5cm3/秒、cm2、cmHg He透過速度:7.5×10-5cm3/秒、cm2、cmHg O2透過速度:1.1×10-5cm3/秒、cm2、cmHg N2透過速度:3.4×10-6cm3/秒、cm2、cmHg H2/N2分離率:27 He/N2分離率:22 実施例 4 基体を試料位置Aで有機モノマーとしてヘキサ
メチルジシロキサンを使用し、モノマー圧力0.2
トール電極間入力50Wで30分反応させ、基体上に
オルガノシラン樹脂薄膜を形成させた。この複合
膜を試料位置Dで有機モノマーとしてトルエンを
使用し、モノマー圧力0.2トール電極間入力50ワ
ツトで5分間反応させ複合膜上に高分子薄膜を形
成させた。この気体分離部材の気体透過速度およ
び分離率は次のとおりであつた。
H2 permeation rate: 9.1 x 10-5 cm3 /sec, cm2 , cmHg He permeation rate: 7.5 x 10-5 cm3 /sec, cm2 , cmHg O2 permeation rate: 1.1 x 10-5 cm3 / sec, cm 2 , cmHg N 2 transmission rate: 3.4×10 -6 cm 3 /sec, cm 2 , cmHg H 2 /N 2 separation rate: 27 He/N 2 separation rate: 22 Example 4 Place the substrate at sample position A using hexamethyldisiloxane as the organic monomer at a monomer pressure of 0.2
A reaction was carried out for 30 minutes at a power input of 50 W between the electrodes to form an organosilane resin thin film on the substrate. This composite membrane was reacted at sample position D using toluene as an organic monomer at a monomer pressure of 0.2 torr and an interelectrode input of 50 watts for 5 minutes to form a polymer thin film on the composite membrane. The gas permeation rate and separation rate of this gas separation member were as follows.

H2透過速度:8.1×10-5cm3/秒、cm2、cmHg He透過速度:7.2×10-5cm3/秒、cm2、cmHg O2透過速度:8.4×10-6cm3/秒、cm2、cmHg N2透過速度:3.1×10-6cm3/秒、cm2、cmHg H2/N2分離率:26 He/N2分離率:23 実施例 5 実施例4と同じ方法で作製したオルガノシラン
樹脂薄膜を担持した複合膜を試料位置Dで有機モ
ノマーとしてスチレンを使用し、モノマー圧力
0.2トール電極間入力50ワツトで5分反応させ複
合膜上に高分子薄膜を形成させた。この気体分離
部材の気体透過速度および分離率は次のとおりで
あつた。
H2 permeation rate: 8.1 x 10-5 cm3 /sec, cm2 , cmHg He permeation rate: 7.2 x 10-5 cm3 /sec, cm2 , cmHg O2 permeation rate: 8.4 x 10-6 cm3 / sec, cm 2 , cmHg N 2 transmission rate: 3.1×10 -6 cm 3 /sec, cm 2 , cmHg H 2 /N 2 separation rate: 26 He/N 2 separation rate: 23 Example 5 Same as Example 4 The composite membrane supporting the organosilane resin thin film prepared by the method was placed at sample position D using styrene as an organic monomer, and the monomer pressure was
A thin polymer film was formed on the composite membrane by reacting for 5 minutes at an input power of 50 watts between the electrodes of 0.2 torr. The gas permeation rate and separation rate of this gas separation member were as follows.

H2透過速度:3.2×10-5cm3/秒、cm2、cmHg He透過速度:3.2×10-5cm3/秒、cm2、cmHg O2透過速度:2.9×10-6cm3/秒、cm2、cmHg N2透過速度:7.5×10-7cm3/秒、cm2、cmHg H2/N2分離率:43 He/N2分離率:43 実施例 6 実施例4と同じ方法で作製したオルガノシラン
樹脂薄膜を担持した複合膜を試料位置Eで有機モ
ノマーとしてアクリル酸エチルを使用し、モノマ
ー圧力0.2トール電極間入力50ワツトで20分反応
させ複合膜上に高分子薄膜を形成させた。この気
体分離部材の気体透過速度および分離率は次のと
おりであつた。
H2 permeation rate: 3.2 x 10-5 cm3 /sec, cm2 , cmHg He permeation rate: 3.2 x 10-5 cm3 /sec, cm2 , cmHg O2 permeation rate: 2.9 x 10-6 cm3 / sec, cm 2 , cmHg N 2 transmission rate: 7.5×10 -7 cm 3 /sec, cm 2 , cmHg H 2 /N 2 separation rate: 43 He/N 2 separation rate: 43 Example 6 Same as Example 4 The composite membrane supporting the organosilane resin thin film prepared by the above method was reacted at sample position E using ethyl acrylate as an organic monomer at a monomer pressure of 0.2 Torr and an interelectrode input of 50 W for 20 minutes to form a polymer thin film on the composite membrane. formed. The gas permeation rate and separation rate of this gas separation member were as follows.

H2透過速度:9.8×10-5cm3/秒、cm2、cmHg He透過速度:9.4×10-5cm3/秒、cm2、cmHg O2透過速度:9.7×10-6cm3/秒、cm2、cmHg N2透過速度:3.9×10-6cm3/秒、cm2、cmHg H2/N2分離率:26 He/N2分離率:25 実施例 7 実施例4と同じ方法で作製したオルガノシラン
樹脂薄膜を担持した複合膜を試料位置Aで有機モ
ノマーとしてフランを使用し、モノマー圧力0.2
トール電極間入力50ワツトで20分反応させ複合膜
上に高分子薄膜を形成させた。この気体分離部材
の気体透過速度および分離率は次のとおりであつ
た。
H2 permeation rate: 9.8 x 10-5 cm3 /sec, cm2 , cmHg He permeation rate: 9.4 x 10-5 cm3 /sec, cm2 , cmHg O2 permeation rate: 9.7 x 10-6 cm3 / sec, cm 2 , cmHg N 2 permeation rate: 3.9×10 -6 cm 3 /sec, cm 2 , cmHg H 2 /N 2 separation rate: 26 He/N 2 separation rate: 25 Example 7 Same as Example 4 The composite membrane supporting the organosilane resin thin film prepared by the method was placed at sample position A using furan as an organic monomer, and the monomer pressure was 0.2.
A thin polymer film was formed on the composite membrane by reacting for 20 minutes at a power of 50 watts between the electrodes. The gas permeation rate and separation rate of this gas separation member were as follows.

H2透過速度:8.8×10-5cm3/秒、cm2、cmHg He透過速度:7.6×10-5cm3/秒、cm2、cmHg O2透過速度:7.8×10-6cm3/秒、cm2、cmHg N2透過速度:2.0×10-6cm3/秒、cm2、cmHg H2/N2分離率:44 He/N2分離率:39 実施例 8 実施例4と同じ方法で作製したオルガノシラン
樹脂薄膜を担持した複合膜を試料位置Eで有機モ
ノマーとしてアセチレンを使用し、モノマー圧力
0.2トール電極間入力50ワツトで2分反応させ複
合膜上に高分子薄膜を形成させた。この気体分離
部材の気体透過速度および分離率は次のとおりで
あつた。
H2 permeation rate: 8.8 x 10-5 cm3 /sec, cm2 , cmHg He permeation rate: 7.6 x 10-5 cm3 /sec, cm2 , cmHg O2 permeation rate: 7.8 x 10-6 cm3 / sec, cm 2 , cmHg N 2 transmission rate: 2.0×10 -6 cm 3 /sec, cm 2 , cmHg H 2 /N 2 separation rate: 44 He/N 2 separation rate: 39 Example 8 Same as Example 4 The composite membrane supporting the organosilane resin thin film prepared by the method was placed at sample position E using acetylene as an organic monomer, and the monomer pressure was
A thin polymer film was formed on the composite membrane by reacting for 2 minutes at a 0.2 torr interelectrode input of 50 watts. The gas permeation rate and separation rate of this gas separation member were as follows.

H2透過速度:9.5×10-5cm3/秒、cm2、cmHg He透過速度:9.3×10-5cm3/秒、cm2、cmHg O2透過速度:4.4×10-6cm3/秒、cm2、cmHg N2透過速度:1.8×10-6cm3/秒、cm2、cmHg H2/N2分離率:54 He/N2分離率:53 実施例 9 実施例4と同じ方法で作製したオルガノシラン
樹脂薄膜を担持した複合膜を試料位置Dで有機モ
ノマーとしてベンゾニトリルを使用し、モノマー
圧力0.2トール電極間入力50ワツトで1分反応さ
せ複合膜上に高分子薄膜を形成させた。この気体
分離部材の気体透過速度および分離率は次のとお
りであつた。
H2 permeation rate: 9.5 x 10-5 cm3 /sec, cm2 , cmHg He permeation rate: 9.3 x 10-5 cm3 /sec, cm2 , cmHg O2 permeation rate: 4.4 x 10-6 cm3 / sec, cm 2 , cmHg N 2 transmission rate: 1.8×10 -6 cm 3 /sec, cm 2 , cmHg H 2 /N 2 separation rate: 54 He/N 2 separation rate: 53 Example 9 Same as Example 4 The composite film supporting the organosilane resin thin film prepared by the above method was reacted at sample position D using benzonitrile as an organic monomer at a monomer pressure of 0.2 Torr and an interelectrode input of 50 W for 1 minute to form a polymer thin film on the composite film. I let it happen. The gas permeation rate and separation rate of this gas separation member were as follows.

H2透過速度:4.6×10-5cm3/秒、cm2、cmHg He透過速度:5.5×10-5cm3/秒、cm2、cmHg O2透過速度:2.8×10-6cm3/秒、cm2、cmHg N2透過速度:1.2×10-6cm3/秒、cm2、cmHg H2/N2分離率:38 He/N2分離率:45 H2 permeation rate: 4.6 x 10-5 cm3 /sec, cm2 , cmHg He permeation rate: 5.5 x 10-5 cm3 /sec, cm2 , cmHg O2 permeation rate: 2.8 x 10-6 cm3 / sec, cm 2 , cmHg N 2 permeation rate: 1.2×10 -6 cm 3 /sec, cm 2 , cmHg H 2 /N 2 separation rate: 38 He/N 2 separation rate: 45

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例で使用されたプラズマ重合
装置の断面を示す図である。図中符号1はジヤ
ー、2は台、3は電極、4は試料台、5は基体あ
るいは有機硅素化合物からなる樹脂薄膜を担持し
た複合膜を示す。
The figure is a cross-sectional view of a plasma polymerization apparatus used in an example of the present invention. In the figure, reference numeral 1 indicates a jar, 2 a stand, 3 an electrode, 4 a sample stand, and 5 a substrate or a composite film supporting a thin resin film made of an organic silicon compound.

Claims (1)

【特許請求の範囲】 1 膜状あるいは壁状の多孔質基体と、該基体の
表面にプラズマ重合によつて層状に形成された少
なくとも2種類の高分子薄膜とよりなり、該基体
の表面に直接接触して形成された第1層の高分子
薄膜が有機珪素化合物からなる樹脂薄膜であり、
第1層の高分子薄膜上に形成される第2層の高分
子薄膜が飽和炭化水素、不飽和炭化水素、芳香族
炭化水素、カルボン酸、カルボン酸エステル、ニ
トリル化合物、あるいは複素環式化合物をプラズ
マ重合させた少なくとも1層で形成されたもので
あることを特徴とする気体分離部材。 2 基体の孔が円形の場合には、その直径が数千
オングストローム以下、また孔が矩形あるいは楕
円形の場合にはその短径が1000オングストローム
以下である特許請求の範囲第1項記載の気体分離
部材。
[Scope of Claims] 1. Consisting of a porous substrate in the form of a film or wall, and at least two types of polymer thin films formed in a layered manner on the surface of the substrate by plasma polymerization, which are directly applied to the surface of the substrate. The first layer of polymer thin film formed in contact is a resin thin film made of an organosilicon compound,
The second layer of polymer thin film formed on the first layer of polymer thin film contains saturated hydrocarbons, unsaturated hydrocarbons, aromatic hydrocarbons, carboxylic acids, carboxylic acid esters, nitrile compounds, or heterocyclic compounds. A gas separation member characterized in that it is formed of at least one layer subjected to plasma polymerization. 2. Gas separation according to claim 1, wherein when the pores in the substrate are circular, the diameter thereof is several thousand angstroms or less, and when the pores are rectangular or elliptical, the minor axis is 1000 angstroms or less. Element.
JP10536480A 1980-07-30 1980-07-30 Vapor-separating member Granted JPS5730528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10536480A JPS5730528A (en) 1980-07-30 1980-07-30 Vapor-separating member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10536480A JPS5730528A (en) 1980-07-30 1980-07-30 Vapor-separating member

Publications (2)

Publication Number Publication Date
JPS5730528A JPS5730528A (en) 1982-02-18
JPH0258970B2 true JPH0258970B2 (en) 1990-12-11

Family

ID=14405662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10536480A Granted JPS5730528A (en) 1980-07-30 1980-07-30 Vapor-separating member

Country Status (1)

Country Link
JP (1) JPS5730528A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57150423A (en) * 1981-03-13 1982-09-17 Mitsubishi Chem Ind Ltd Gas separating film
JPS5959214A (en) * 1982-09-28 1984-04-05 Asahi Glass Co Ltd Gas separating composite membrane
GB2144344B (en) * 1983-08-02 1986-11-26 Shell Int Research Composite dense membrane
JPS6075320A (en) * 1983-10-03 1985-04-27 Agency Of Ind Science & Technol Permeselective composite membrane for gas and its preparation
JPS61111121A (en) * 1984-11-02 1986-05-29 Toray Ind Inc Composite membrane for separating gas
JPS61129008A (en) * 1984-11-28 1986-06-17 Sanyo Chem Ind Ltd Composite membrane for separating gas and its preparation
JPS61153122A (en) * 1984-12-27 1986-07-11 Nippon Denso Co Ltd Oxygen separating member and its manufacture
JPH03178318A (en) * 1989-12-04 1991-08-02 Iwatani Internatl Corp Wet pollution-removing method for hydride-based waste gas
JP4521358B2 (en) * 2004-01-15 2010-08-11 株式会社エス・エフ・シー Hydrogen or helium permeable membrane, storage membrane and method of forming the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134129U (en) * 1974-09-03 1976-03-13
JPS5640591Y2 (en) * 1976-06-22 1981-09-22
JPS5819088Y2 (en) * 1976-06-24 1983-04-19 いすゞ自動車株式会社 Automobile brake lock device

Also Published As

Publication number Publication date
JPS5730528A (en) 1982-02-18

Similar Documents

Publication Publication Date Title
CA1139680A (en) Gas separating members and a method of making the same
US4483901A (en) Selectively gas-permeable composite membrane and process for production thereof
US4594079A (en) Gas separating member and method for manufacture thereof
EP0690743B1 (en) Gas plasma polymerized permselective membrane
US5013338A (en) Plasma-assisted polymerization of monomers onto polymers and gas separation membranes produced thereby
US4032440A (en) Semipermeable membrane
JPH0258970B2 (en)
Doucoure et al. Plasma polymerization of fluorinated monomers on mesoporous silica membranes and application to gas permeation
JPS61153122A (en) Oxygen separating member and its manufacture
JPH01274875A (en) Method for manufacturing non-porous membrane layer
JPS60232205A (en) Gas separating molded body
US4976856A (en) Process for preparing non-porous, selective membrane layers
JPS61153105A (en) Manufacture of gas permselective composite membrane
JPS59169507A (en) Gas separation membrane
Kamada et al. Gas Permeation Properties of Conducting Polymer/Porous Media Composite Membranes I.
JPH01306569A (en) Method and device for forming thin film
JPS60257807A (en) Gas separating molded body
Lo et al. Plasma deposition of tetraethoxysilane on polycarbonate membrane for pervaporation of tetrafluoropropanol aqueous solution
JPH0451222B2 (en)
JPS61149210A (en) Preparation of gas permselective composite membrane
Inagaki et al. Gas separation membrane made by plasma polymerization of 1, 3‐ditrifluoromethylbenzene/CF4 mixture
JPH0262294B2 (en)
US5053243A (en) Preparation of adsorbent layers
JP4002965B2 (en) Method for producing porous silicon oxide thin film
CA2183664A1 (en) Barrier films having carbon-coated high energy surfaces