JPS61153105A - Manufacture of gas permselective composite membrane - Google Patents

Manufacture of gas permselective composite membrane

Info

Publication number
JPS61153105A
JPS61153105A JP27927884A JP27927884A JPS61153105A JP S61153105 A JPS61153105 A JP S61153105A JP 27927884 A JP27927884 A JP 27927884A JP 27927884 A JP27927884 A JP 27927884A JP S61153105 A JPS61153105 A JP S61153105A
Authority
JP
Japan
Prior art keywords
gas
plasma
nitrogen
org
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27927884A
Other languages
Japanese (ja)
Inventor
Shigeru Asako
茂 浅古
Koichi Okita
晃一 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27927884A priority Critical patent/JPS61153105A/en
Publication of JPS61153105A publication Critical patent/JPS61153105A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled gas permselective membrane having excellent resistance to heat and chemicals by plasma-polymerizing a mixed vapor of an org. silane compd. consisting of a saturated hydrocarbonic group and gaseous nitrogen or ammonia or a nitrogen-contg. org. compd. on a high molecular supporting body. CONSTITUTION:A high molecular supporting body such as polysulfone and polyphenylene oxide having excellent resistance to heat and chemicals is set in a reaction vessel of a plasma polymerization device, and the vessel is evacuated to <=0.01torr vacuum. A mixed vapor of the monomer vapors of an org. silane compd. consisting of a saturated hydrocarbonic group and gaseous nitrogen or ammonia or a nitrogen-contg. org. compd. such as allylamine, secondary butylamine, diethylamine, aniline, pyridine, etc., is introduced under <=5torr vacuum. Electric power of 10-200W is impressed to produce glow discharge for a specified time, a plasma-polymerized thin film having necessary thickness is deposited and the operation is completed.

Description

【発明の詳細な説明】 「発明の目的」 「産業上の利用分野」 本発明は、ガス選択透過性複合膜の製造方法に関し、更
に詳しくは、高分子支持体表面にプラズマ重合膜を堆積
させてなるガス選択透過性複合膜の製造方法に関する。
Detailed Description of the Invention "Object of the Invention""Industrial Application Field" The present invention relates to a method for producing a gas-selective permselective composite membrane, and more specifically, to a method for producing a gas-selective permselective composite membrane, and more specifically, a method for producing a plasma-polymerized membrane on the surface of a polymer support. The present invention relates to a method for producing a gas-selective permselective composite membrane.

「従来の技術」 近年省エネルギーの見地から高分子膜を用いたガス分離
精製技術の開発が盛んに進められている。
"Conventional Technology" In recent years, gas separation and purification technology using polymer membranes has been actively developed from the standpoint of energy conservation.

例えば大型工業技術研究rCi化学」では、水素と一酸
化炭素の分離を行う水素選択透過性膜の開発が進められ
、また医療用や燃焼システム用に用いられる酸素富化膜
は酸素、窒素が分離対象となる。これらのガス選択透過
性膜に必要な特性は、高い分離特性と透過性はもちろん
であるが、耐熱性、耐薬品性、機械的強度を合わせもつ
ことが実用化に有用である。これら諸特性を満すべく、
ガス選択透過性膜の開発に、種々の製法が今までに検討
されてきているが、その中で注目すべきはプラズマ重合
を利用した製膜法である。プラズマ重合は、減圧下で操
作が行われるため、製膜中の塵埃混入の問題がなく、ま
た湿式法と異なり溶剤の使用や加熱手段を必要とせず、
支持体表面に極めて薄いピンホールレスの膜を作ること
・ができる。
For example, large-scale industrial technology research rCi Chemistry is progressing with the development of hydrogen selectively permeable membranes that separate hydrogen and carbon monoxide, and oxygen enrichment membranes used for medical purposes and combustion systems separate oxygen and nitrogen. Targeted. The properties required for these gas selective permeable membranes include not only high separation properties and permeability, but also heat resistance, chemical resistance, and mechanical strength, which are useful for practical use. In order to meet these characteristics,
Various manufacturing methods have been studied for the development of gas-selective permeable membranes, but the most noteworthy among them is a membrane-forming method that utilizes plasma polymerization. Plasma polymerization is operated under reduced pressure, so there is no problem with dust contamination during film formation, and unlike wet methods, it does not require the use of solvents or heating means.
It is possible to create an extremely thin pinhole-free film on the surface of the support.

文献J、of Appl、Polym、Sci、150
5項16巻(1972)には、主としてシアノ基を含む
化合物を用いたガス選択透過性複合膜の例が報告されて
いる。ボリフェニレンオキサイドにシアン化臭素のプラ
ズマ重合膜を堆積し水素/CH,の分離特性を向上させ
ているが、ここで好適に用いられているシアン化合物は
猛毒で取扱いに注意が必要であり、また得られた重合膜
は、可撓性に乏しく、分離特性も測定温度の上昇と共に
著しく低下する欠点を有する。
Reference J, of Appl, Polym, Sci, 150
Section 5, Volume 16 (1972) reports examples of gas selectively permeable composite membranes mainly using compounds containing cyano groups. A plasma-polymerized film of bromine cyanide is deposited on polyphenylene oxide to improve the separation characteristics of hydrogen/CH, but the cyanide compound used here is highly toxic and must be handled with care. The resulting polymeric membrane has the disadvantage of poor flexibility and separation properties that decrease significantly as the measurement temperature rises.

また特開昭57−30528は、多孔質基体上に2種類
のプラズマ重合薄膜を層状に形成させた例を呈示してい
る。ここでは第1層にオルガノシランを用いた重合膜を
形成し、続いて飽和炭化水素、不飽和炭化水素、芳香族
炭化水素あるいはこれらの誘導体をプラズマ重合させて
第2層を積層している。
Furthermore, JP-A-57-30528 presents an example in which two types of plasma polymerized thin films are formed in layers on a porous substrate. Here, a polymer film using organosilane is formed as the first layer, and then a second layer is laminated by plasma polymerizing saturated hydrocarbons, unsaturated hydrocarbons, aromatic hydrocarbons, or derivatives thereof.

第1層のオルガノシラン重合体は、透過性と□機械的特
性に優れているが、選択透過性が不十分であり、一方第
2層の重合膜は、選択透過性が高いものの、機械的強度
が十分でなく透過性も低いと述べている。この例では、
一種のプラズマ重合膜では、全ての必要特性を満すこと
ができず二種類のプラズマ重合膜を積層するという頻雑
な操作を行なっている。
The organosilane polymer in the first layer has excellent permeability and mechanical properties, but has insufficient selective permselectivity, while the polymer membrane in the second layer has high permselectivity but has poor mechanical properties. It is said that the strength is not sufficient and the permeability is low. In this example,
One type of plasma-polymerized membrane cannot satisfy all the required characteristics, and a frequent operation of laminating two types of plasma-polymerized membranes is performed.

「発明が解決しようとする問題点」 本発明の目的はプラズマ技術を利用した優れたガス選択
透過性複合膜の製造方法を提供することにあり、更に詳
しくは、飽和炭化水素基より成る有機シラン化合物と窒
素ガス又はアンモニア又は窒素原子を含む有機化合物の
混合蒸気を用い、その組成比を調整して高分子支持体上
にプラズマ重合させることで、所望するガス選択透過特
性を有し、かつ耐熱性、耐薬品性、機械的強度を合わせ
もつ優れたガス選択透過性複合膜を与える製造方法を提
供することにある。
"Problems to be Solved by the Invention" The purpose of the present invention is to provide a method for producing an excellent gas selectively permeable composite membrane using plasma technology. By using a mixed vapor of a compound and nitrogen gas, ammonia, or an organic compound containing a nitrogen atom, adjusting the composition ratio, and performing plasma polymerization on a polymer support, it is possible to create a product that has the desired gas selective permeation characteristics and is heat resistant. The object of the present invention is to provide a manufacturing method that provides a gas selectively permeable composite membrane having excellent properties such as durability, chemical resistance, and mechanical strength.

「発明の構成」 「手段」 本発明によるガス選択透過性複合膜の製造方法は、飽和
炭化水素基よりなる有機シラン化合物と窒素ガス又はア
ンモニア又は窒素原子を含む有機化合物の混合蒸気を5
 torr以下の減圧雰囲気に供給し、グロー放電下に
プラズマ重合させて高分子支持体表面に堆積させてなる
。本発明の特徴であるプラズマ重合の操作手順を以下に
詳述する。
``Structure of the Invention''``Means'' The method for manufacturing a gas-selective permselective membrane according to the present invention is to produce a mixed vapor of an organic silane compound consisting of a saturated hydrocarbon group and a nitrogen gas or ammonia or an organic compound containing a nitrogen atom.
The material is supplied to a reduced pressure atmosphere of torr or less, subjected to plasma polymerization under glow discharge, and deposited on the surface of the polymer support. The operating procedure for plasma polymerization, which is a feature of the present invention, will be described in detail below.

(1)プラズマ重合装置の反応容器内に高分子支持体を
セットし、反応容器内を真空ポンプで少くとも0.01
torr以下に排気する。
(1) Set the polymer support in the reaction vessel of the plasma polymerization apparatus, and use a vacuum pump to pump at least 0.01% of the inside of the reaction vessel.
Exhaust to below torr.

(2)排気を続けながら、飽和炭化水素基より成る有機
シラン化合物のモノマー蒸気と窒素ガス又はアンモニア
又は窒素原子を含む有機化合物の蒸気を反応容器内に供
給する。この時窒素ガス又はアンモニアを用いる時は、
これを、キャリアガスとして、即ち有機シラン化合物を
貯わえる容器中にガス管を配し、窒素ガス又はアンモニ
アを導き、有機シラン化合物中でバブリングさせて、有
機シラン化合物の蒸気と窒素ガス又はアセチレンの混合
したガスを反応容器内に導くこともできる。一般には有
機シラン化合物と窒素ガス又はアンモニア又は窒素原子
を含む有機化合物を独立に別々に制御して供給してもよ
い。これらガス流量の制御は、マスフローコントローラ
ーを介して行う。また有機シラン化合物と窒素ガス又は
アンモニア又は窒素原子を含む有機化合物の供給比率は
、所望する膜の透過特性並びに高分子支持体の材質を考
案して決められる。窒素原子は、ポリマーに極性を付与
し、選択性、接着性等の機能を発現させる一方、有機シ
ラン化合物は、優れた機械的強度と透過性を与える。
(2) While continuing evacuation, monomer vapor of an organic silane compound consisting of a saturated hydrocarbon group and nitrogen gas or vapor of ammonia or an organic compound containing a nitrogen atom are supplied into the reaction vessel. When using nitrogen gas or ammonia at this time,
This is used as a carrier gas, that is, by placing a gas pipe in a container storing the organic silane compound, introducing nitrogen gas or ammonia, and bubbling it in the organic silane compound, so that the vapor of the organic silane compound and the nitrogen gas or acetylene It is also possible to introduce a mixed gas into the reaction vessel. In general, the organic silane compound and the nitrogen gas or ammonia or the organic compound containing a nitrogen atom may be supplied independently and separately under control. These gas flow rates are controlled via a mass flow controller. Further, the supply ratio of the organic silane compound and the nitrogen gas, ammonia, or an organic compound containing a nitrogen atom is determined by considering the desired permeation characteristics of the membrane and the material of the polymer support. The nitrogen atom imparts polarity to the polymer and allows it to exhibit functions such as selectivity and adhesiveness, while the organic silane compound imparts excellent mechanical strength and permeability.

これらのガスを導入し、排気速度を調整して反応容器内
の圧力を5 torr以下に設定する。圧力が高いと放
電は不安定な状態となり、反応に必要なエネルギーが不
足する。
These gases are introduced and the exhaust speed is adjusted to set the pressure inside the reaction vessel to 5 torr or less. If the pressure is high, the discharge becomes unstable and the energy required for the reaction is insufficient.

(4)電力を印加し、グロー放電を行う。電力は、装置
因子(電極構造、反応器の容積など)や他の操作条件(
圧カモツマー流量など)で最適な値は変るが、過小に与
えると重合体は低分子量化し、十分な特性が発現せず、
過大に与えると高分子支持体の劣化をひき起すので、一
般に10 Wa t t sから200 Wa t t
 sの間で操作される。
(4) Apply electric power and perform glow discharge. Power depends on equipment factors (electrode construction, reactor volume, etc.) and other operating conditions (
The optimum value changes depending on the pressure camotum flow rate, etc.), but if it is too low, the polymer will have a low molecular weight and will not exhibit sufficient properties.
If too much is given, it will cause deterioration of the polymer support, so generally 10 Watts to 200 Watts
It operates between s.

(5)所定時間続けて行い、高分子支持体上に必要厚さ
のプラズマ重合薄膜を堆積した後、操作を完了する。
(5) The process is continued for a predetermined period of time to complete the operation after depositing a plasma-polymerized thin film of the required thickness on the polymer support.

本発明で用いられる有機シラン化合物は、次の構造式で
示される。
The organic silane compound used in the present invention is represented by the following structural formula.

Rn  S+  f(4−n     n  ;  2
〜4の整数R; CHs −9CH3CH!1− これら飽和炭化水素基より成る有機シラン化合物は、プ
ラズマ重合により可撓性に富みガス透過性に優れた薄膜
を与える。
Rn S+ f(4-n n ; 2
Integer R of ~4; CHs -9CH3CH! 1- These organic silane compounds consisting of saturated hydrocarbon groups can be plasma-polymerized to provide a thin film with high flexibility and excellent gas permeability.

具体的にはテトラメチルシラン、トリメチルシラン、ジ
エチルシラン、トリエチルシランが挙げられる。これら
の有機シラン化合物を一成分とし、もう一方の成分を窒
素ガス又はアンモニア又は窒素原子を含む有機化合物か
ら選択する。窒素原子を含む有機化合物としては、例え
ばアリルアミン、第ニブチルアミン、ジエチルアミン、
アニリン、ピリジン、ピコリン、ルチジン等を挙げるこ
とができる。この二つの成分を同時に重合させて、ガス
選択透過性ならびに高分子支持体との接着性ば浸れた薄
膜を形成する。
Specific examples include tetramethylsilane, trimethylsilane, diethylsilane, and triethylsilane. These organic silane compounds are used as one component, and the other component is selected from nitrogen gas, ammonia, or an organic compound containing a nitrogen atom. Examples of organic compounds containing nitrogen atoms include allylamine, nibutylamine, diethylamine,
Aniline, pyridine, picoline, lutidine, etc. can be mentioned. The two components are polymerized simultaneously to form a thin film that is permeable to gases and has excellent adhesion to the polymeric support.

これらプラズマ重合薄膜が堆積される高分子支持体は、
使用条件を・考案して各種素材を用いることができる。
The polymeric supports on which these plasma-polymerized thin films are deposited are
Various materials can be used by devising usage conditions.

耐熱性、耐薬品性、機械的強度が優れた素材として、例
えばポリスルホン、ポリフェニレンオキサイド、ポリ芳
香族エステル、ポリイミド、ポリテトラフルオロエチレ
ン、ポリジメチルシセキサン、ポリフェニルシロキサン
等ヲ挙げることができる。また汎用素材としてポリエチ
レン、ポリプロピレンあるいは酢酸セルロース等を挙げ
ることもできる。これら素材を用いた高分子支持体はガ
ス透過性の面から一般に多孔質体であることが有利であ
る。しかしプラズマ重合だけでその孔を閉塞するのが困
難である様な大きい孔径をとになる。
Examples of materials with excellent heat resistance, chemical resistance, and mechanical strength include polysulfone, polyphenylene oxide, polyaromatic ester, polyimide, polytetrafluoroethylene, polydimethylsisexane, and polyphenylsiloxane. Moreover, polyethylene, polypropylene, cellulose acetate, etc. can also be mentioned as general-purpose materials. It is generally advantageous for polymer supports made of these materials to be porous from the viewpoint of gas permeability. However, plasma polymerization alone results in pores so large that it is difficult to block them.

「作用」 プラズマ重合は、モノマーが減圧系内の電場の作用によ
り、ラジカル、イオンあるいは励起種と活性化し、逐次
結合して高分子量化する特異な重合方式である。その重
合体は非品性で、分子構造に枝分れ構造や架橋構造が富
み、一般に耐熱性、耐薬品性に優れているが、まに膨張
方向の内部応力が発生し易く、厚く堆積させるとクラッ
ク等の欠陥が生じやすいという欠点もある。しかるに種
々の有機化合物の中で珪素を含む化合物は、一般に内部
応力の小さい可撓性に優れたプラズマ重合膜を形成する
傾向にある。特に飽和炭化水素基より成る有機シラン化
合物からの重合膜は、可撓性に富みガス透過性の優れた
薄膜を与える。−力量素原子は、酸素原子に較ベプラズ
マ重合)罠中によくとりこまれて、極性を示し、選択機
能や接着性を与える。いま高分子支持体上にプラズマ重
合膜を堆積しガス選択透過性複合膜を形成する場合、高
分子支持体とプラズマ重合膜界面の接着性も実用上重要
な特性になる。またガスの透過機構は溶解と拡散の積で
表わされるが、窒素原子の極性は、ガスの種類による溶
解の差を拡大する。
"Operation" Plasma polymerization is a unique polymerization method in which monomers are activated with radicals, ions, or excited species by the action of an electric field in a reduced pressure system, and are sequentially combined to increase the molecular weight. The polymer is inferior and has a molecular structure rich in branched and cross-linked structures, and generally has excellent heat and chemical resistance, but tends to generate internal stress in the direction of expansion and can be deposited thickly. Another drawback is that defects such as cracks are likely to occur. However, among various organic compounds, compounds containing silicon generally tend to form plasma polymerized films with low internal stress and excellent flexibility. In particular, a polymer film made of an organic silane compound comprising saturated hydrocarbon groups provides a thin film with high flexibility and excellent gas permeability. - The atomic atoms are better incorporated into plasma polymerization traps (compared to oxygen atoms), exhibit polarity, and provide selectivity and adhesive properties. When a plasma-polymerized membrane is deposited on a polymer support to form a gas selectively permeable composite membrane, the adhesion between the polymer support and the plasma-polymerized membrane interface becomes a practically important property. Furthermore, the gas permeation mechanism is expressed as the product of dissolution and diffusion, and the polarity of nitrogen atoms magnifies the difference in dissolution depending on the type of gas.

この様に飽和炭化水素基より成る有機シラン化合物と窒
素ガス又はアンモニア又は窒素原子を含む有機化合物を
共にプラズマ重合することで高いガス選択透過性と、ま
た機械的強度や支持体との接着性ンで優れたガス選択透
過性複合膜を作ることができる。
In this way, plasma polymerization of an organosilane compound consisting of a saturated hydrocarbon group and an organic compound containing nitrogen gas, ammonia, or a nitrogen atom results in high gas selective permeability, as well as improved mechanical strength and adhesion to the support. It is possible to create a composite membrane with excellent gas selective permeability.

更に本発明による製造方法は、二つの成分を独立に制御
することで、その膜質、ガス選択透過性を広範囲に調整
することが可能である。
Further, in the production method according to the present invention, by controlling the two components independently, it is possible to adjust the membrane quality and gas selective permeability over a wide range.

次に実施例を示し、本発明を具体的に説明する。Next, examples will be shown to specifically explain the present invention.

なお、実施例で示した透過速度および分離係数はAST
M方式(圧力法)シで基づき、透過成分をガスクロマト
グラフにより分離、検出し、定量を行うことによって求
めた。また測定は30℃の雰囲気でおこなった。なおガ
ス透過速度の″単位はan”(STP)/aIIffi
・sec−CmHgであり、分離係数は各カスの透過速
度の比である。
In addition, the permeation rate and separation coefficient shown in the examples are AST
Based on the M method (pressure method), permeated components were separated and detected using a gas chromatograph, and determined by quantitative determination. Moreover, the measurement was performed in an atmosphere at 30°C. The unit of gas permeation rate is an (STP)/aIIffi.
-sec-CmHg, and the separation coefficient is the ratio of the permeation speed of each scum.

実施例1 ポリエーテルイミド樹脂(ULTEM ;日本エンジニ
アリングプラスチック■阪売)20重量%をNメチル2
ピロリドン80重量%に溶解・させて、ドープ液を調整
しに0このドープ液?平滑ナカラス板上にドクターナイ
フで厚さ300μに流延し、ガラス板ごと蒸留水中に浸
漬し、膜が凝固はく離した後、2時間水洗し、45°C
にて24時間、更に80℃にて24時間乾燥して厚さ約
170μの非対称孔径膜を得た。この非対称孔径膜のガ
ス選択透過性を測定し1次の値を得た 酸素透過速度   Qo、I= 1.2 x 10−5
窒素透過速度  QNg = 1.I X 10−5分
離係数  (zOt/Nt = 1.1この非対称孔径
膜を高分子支持体として、平行平板電極を内部に有する
ペルジャー型プラズマ反応容器内にセットした。装置に
は13.56MH2の高周波電源が接続され、またモノ
マー供給用のガスラインは2系列反応容器内に導入され
ており、その2つの吐出口は近接している。反応容器内
を0.01torr以下に十分に排気後、1つのガスラ
イン、からジエチルシランを5an3/minの流量で
、他の1つのガスラインからN2を5an3/minの
流量で供給し、20Wの出力で15分間グロー放電を行
いプラズマ重合膜を支持体上に堆積させた。得られた複
合膜のガス選択透過性は以下の通りであった。
Example 1 20% by weight of polyetherimide resin (ULTEM; Japan Engineering Plastics ■Hanuri) was mixed with N-methyl 2
Dissolve it in 80% by weight of pyrrolidone and adjust the dope solution.This dope solution? It was cast onto a smooth Nakara glass plate to a thickness of 300μ using a doctor knife, and the glass plate was immersed in distilled water. After the film had coagulated and peeled off, it was washed with water for 2 hours and heated to 45°C.
The mixture was dried for 24 hours at 80° C. and then for 24 hours at 80° C. to obtain an asymmetric pore membrane with a thickness of about 170 μm. The gas selective permeability of this asymmetric pore membrane was measured and the first-order value was obtained: oxygen permeation rate Qo, I = 1.2 x 10-5
Nitrogen permeation rate QNg = 1. I x 10-5 separation factor (zOt/Nt = 1.1) This asymmetric pore diameter membrane was set as a polymer support in a Pelger type plasma reaction vessel having parallel plate electrodes inside. A high frequency power source is connected, and a gas line for monomer supply is introduced into a two-line reaction vessel, and the two discharge ports are close to each other.After the inside of the reaction vessel is sufficiently evacuated to 0.01 torr or less, Diethylsilane was supplied from one gas line at a flow rate of 5 an3/min, and N2 was supplied from the other gas line at a flow rate of 5 an3/min, and glow discharge was performed for 15 minutes at an output of 20 W to attach the plasma polymerized membrane to the support. The gas selective permeability of the resulting composite membrane was as follows.

酸素透過速度  Qo2= 5.I X 10−6窒素
透過速度  QN2= 9..6 X 10−’分離係
数 α04/N2 = 5.3 実施例2〜3 実施例1で得られた非対称孔径膜の高分子支持体上に表
−1に示す。飽和炭化水素基よりなる有機シラン化合物
と、窒素原子を含む有機化合物を用い、プラズマ重合を
行なった。得られた複合膜のガス選択透過性を表−2に
示す。
Oxygen permeation rate Qo2=5. I x 10-6 nitrogen permeation rate QN2=9. .. 6 x 10-' Separation coefficient α04/N2 = 5.3 Examples 2 to 3 The asymmetric pore diameter membrane obtained in Example 1 was deposited on a polymer support as shown in Table 1. Plasma polymerization was performed using an organic silane compound consisting of a saturated hydrocarbon group and an organic compound containing a nitrogen atom. Table 2 shows the gas selective permeability of the composite membrane obtained.

表−1プラズマ重合操作条件 表−2複合膜のガス選択透過性 「本発明の効果」 本発明のプラズマ重合を用いたガス選択透過性複合膜の
製造方法は、可撓性に優れ、高いガス透過性を示す重合
膜を与えるところの飽和炭化水素基よりなる有機シラン
化合物と極性を示し、高い選択性と接着性を与えるとこ
ろの窒素ガス又はアンモニア又は窒素原子を含む有機化
合物との二種類の成分を用いることで膜質並びにガス選
択透過性を広範囲に調整することが可能な方法を与える
Table 1: Plasma polymerization operation conditions Table: 2: Gas selective permselectivity of composite membrane ``Effects of the present invention'' The method for producing a gas selectively permeable composite membrane using plasma polymerization of the present invention has excellent flexibility and high gas permeability. Two types of organic compounds are used: an organic silane compound consisting of a saturated hydrocarbon group that provides a polymeric membrane that exhibits permeability, and an organic compound containing nitrogen gas or ammonia or a nitrogen atom that exhibits polarity and provides high selectivity and adhesion. A method is provided in which membrane quality and gas selective permeability can be adjusted over a wide range by using components.

Claims (1)

【特許請求の範囲】[Claims] (1)構造式;R_n−Si−H_4_−_n n;2
〜4の整数R;CH_3−、CH_3CH_2− で示される有機シラン化合物と窒素ガス又はアンモニア
又は窒素原子を含む有機化合物の蒸気を5torr以下
の雰囲気に供給し、グロー放電下にプラズマ重合させて
高分子支持体表面に堆積させてなることを特徴とするガ
ス選択透過性複合膜の製造方法。
(1) Structural formula; R_n-Si-H_4_-_n n;2
An integer R of ~4; CH_3-, CH_3CH_2- An organic silane compound represented by CH_3-, CH_3CH_2- and nitrogen gas or ammonia or a vapor of an organic compound containing a nitrogen atom are supplied to an atmosphere of 5 torr or less, and plasma polymerized under glow discharge to form a polymer. A method for producing a gas selectively permeable composite membrane, which comprises depositing it on the surface of a support.
JP27927884A 1984-12-25 1984-12-25 Manufacture of gas permselective composite membrane Pending JPS61153105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27927884A JPS61153105A (en) 1984-12-25 1984-12-25 Manufacture of gas permselective composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27927884A JPS61153105A (en) 1984-12-25 1984-12-25 Manufacture of gas permselective composite membrane

Publications (1)

Publication Number Publication Date
JPS61153105A true JPS61153105A (en) 1986-07-11

Family

ID=17608934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27927884A Pending JPS61153105A (en) 1984-12-25 1984-12-25 Manufacture of gas permselective composite membrane

Country Status (1)

Country Link
JP (1) JPS61153105A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0216633A2 (en) * 1985-09-25 1987-04-01 Sumitomo Electric Industries Limited Composite membrane comprising porous hollow fibers and process for producing the same
JPS63200209U (en) * 1987-06-12 1988-12-23
JPH0321336A (en) * 1989-06-01 1991-01-30 E I Du Pont De Nemours & Co Amine-modified polyimide film
JP2015112502A (en) * 2013-12-07 2015-06-22 住友化学株式会社 Laminate and gas separation membrane, and method of manufacturing the laminate
CN111437731A (en) * 2020-04-02 2020-07-24 重庆化工职业学院 Single gas permeable membrane and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0216633A2 (en) * 1985-09-25 1987-04-01 Sumitomo Electric Industries Limited Composite membrane comprising porous hollow fibers and process for producing the same
JPS63200209U (en) * 1987-06-12 1988-12-23
JPH0321336A (en) * 1989-06-01 1991-01-30 E I Du Pont De Nemours & Co Amine-modified polyimide film
JP2015112502A (en) * 2013-12-07 2015-06-22 住友化学株式会社 Laminate and gas separation membrane, and method of manufacturing the laminate
CN111437731A (en) * 2020-04-02 2020-07-24 重庆化工职业学院 Single gas permeable membrane and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US4483901A (en) Selectively gas-permeable composite membrane and process for production thereof
US5013338A (en) Plasma-assisted polymerization of monomers onto polymers and gas separation membranes produced thereby
EP0690743B1 (en) Gas plasma polymerized permselective membrane
EP0021422B1 (en) Gas separating member
JPS6261329B2 (en)
JPS61153105A (en) Manufacture of gas permselective composite membrane
JPS588517A (en) Preparation of composite film with selective permeability for gas
JPS6312316A (en) Gas permselective composite film manufactured by plasma polymerization coating technique
US4607088A (en) Shaped body for gas separation
Weichart et al. Plasma polymerization of silicon organic membranes for gas separation
JPH01274875A (en) Method for manufacturing non-porous membrane layer
Matsuyama et al. Plasma polymerized membranes from organosilicon compounds for separation of oxygen over nitrogen
JPS61149210A (en) Preparation of gas permselective composite membrane
JPH0387B2 (en)
KR101683776B1 (en) Method of Preparing Gas Separation Membrane Using iCVD Process
JPS5924843B2 (en) Method for producing gas selectively permeable composite membrane
JPH0262294B2 (en)
JPH038808B2 (en)
JPH0330416B2 (en)
JPS6121718A (en) Hydrogen permselective composite membrane and preparation thereof
JPH0479690B2 (en)
JPS6025507A (en) Gas permselective composite membrane and preparation thereof
Sakata et al. Plasma‐polymerized membranes and gas permeability III
JPS6025508A (en) Gas permselective composite membrane and preparation thereof
JPS6391123A (en) Porous hollow yarn composite membrane and its production