JPS62299857A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPS62299857A
JPS62299857A JP14132986A JP14132986A JPS62299857A JP S62299857 A JPS62299857 A JP S62299857A JP 14132986 A JP14132986 A JP 14132986A JP 14132986 A JP14132986 A JP 14132986A JP S62299857 A JPS62299857 A JP S62299857A
Authority
JP
Japan
Prior art keywords
layer
conductive
undercoat layer
resin
silicone resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14132986A
Other languages
Japanese (ja)
Other versions
JPH055351B2 (en
Inventor
Masabumi Hisamura
久村 正文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14132986A priority Critical patent/JPS62299857A/en
Priority to FR878708530A priority patent/FR2602065B1/en
Publication of JPS62299857A publication Critical patent/JPS62299857A/en
Priority to US07/462,913 priority patent/US4948690A/en
Publication of JPH055351B2 publication Critical patent/JPH055351B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/14Inert intermediate or cover layers for charge-receiving layers
    • G03G5/142Inert intermediate layers

Abstract

PURPOSE:To coat a conductive substrate with a coating material and to enhance surface property without treating the surface of the conductive substrate by incorporating a fine silicone resin powder in an undercoat layer. CONSTITUTION:The undercoat layer 3 mixed with the fine silicone resin powder is formed on the conductive substrate 6, and on this layer 3 a photosensitive layer composed of an electric charge generating layer 4 and a charge transfer layer 5 is laminated. The conductive substrate 6 has a laminate structure obtained by laminating an electrically conductive layer 2 on a conductive or nonconductive support 1. As the resin to be used for the undercoat layer 3, polyvinyl alcohol, a phenol resin, and a phenol resin containing a butyral resin are suitable. The layer 3 is obtained by mixing the fine silicone resin powder, preferably, in an amount of 10-20wt% into the resin to be used for the layer 3, and sufficiently dispersed with a sand mill or the like.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明は導電性支持体上に少なくとも下引き層および感
光層を有する電子写真感光体に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor having at least an undercoat layer and a photosensitive layer on a conductive support.

また、本発明は像形成時の入射光に可干渉光を用いる電
子写真感光体に関する。
The present invention also relates to an electrophotographic photoreceptor that uses coherent light as incident light during image formation.

[従来の技術] これまで、セレン、硫化カドミウム、醇化亜鉛などの無
機光導電体を感光体成分として利用した電子写真感光体
は公知である。
[Prior Art] Electrophotographic photoreceptors using inorganic photoconductors such as selenium, cadmium sulfide, and zinc chloride as photoreceptor components have been known.

一方、特定の有機化合物が光導電性を小すことが発見さ
れてから数多くの有機光導電体が開発さてきた。例えば
、ポリ−N−ビニルカルバソール、ポリビニルアントラ
センなどの有機光導電P1ポリマー、カルバゾール、ア
ントラセン、ピラソリン類、オキサゾール類、ヒドラゾ
ン類、ボリアリールアルカン類などの低分子の有機光導
電体やフタロシアニン顔料、アゾ顔料、シアこン染料、
多環キノン顔料、ペリレン系顔料、インジゴ染才゛1、
チオインジゴ染料あるいはスクエアリック酪メチン染料
などの有機顔料や染料が知られている。
On the other hand, many organic photoconductors have been developed since it was discovered that certain organic compounds reduce photoconductivity. For example, organic photoconductive P1 polymers such as poly-N-vinylcarbasol and polyvinylanthracene; low-molecular organic photoconductors such as carbazole, anthracene, pyrazolines, oxazoles, hydrazones, and polyarylalkane; and phthalocyanine pigments; Azo pigment, cyanide dye,
Polycyclic quinone pigments, perylene pigments, indigo dyes 1,
Organic pigments and dyes such as thioindigo dyes and squaric butymethine dyes are known.

特に光導電性を有する有機顔料や染ネ1は無機材料に比
べて合成が容易で、しかも適当な波長域に光導電性を示
す化合物を選釈できるバリエーションが拡大されたこと
などから数多くの光導電に1有機顔料や染料が提案され
ている。例えば米国特許第4123270号明細書、同
第4247614号明細書4同ff14251613$
315+細書、同第4251614号明細書、同第42
56821号明細書、同第4260672号明細書、同
第4268596号明細書、同)14278747号明
細書、同第4293628号明細書に開示されたように
、電荷発生層と電荷輸送層に機能分離した感光層におけ
る電荷発生物質として光導電性を示すジスアゾ顔料を用
いた電子写真感光体などが知られている。
In particular, organic pigments and dyes 1 that have photoconductivity are easier to synthesize than inorganic materials, and the variety of compounds that exhibit photoconductivity in an appropriate wavelength range has been expanded. 1 Organic pigments and dyes have been proposed for conductivity. For example, US Pat. No. 4,123,270, US Pat. No. 4,247,614, US Pat.
315+ Specification, Specification No. 4251614, No. 42
As disclosed in 56821, 4260672, 4268596, 14278747, and 4293628, a charge generation layer and a charge transport layer are separated in function. Electrophotographic photoreceptors using a photoconductive disazo pigment as a charge-generating substance in a photosensitive layer are known.

また、レーザーに代表される可干渉光を光源とする電子
写真方式プリンターの感光体としては、セレン、セレン
系合金、硫化カドミウム樹脂分散系、ポリビニルカルバ
ゾールとトリニトロフルオレノンとの電荷移動錯体など
が用いられてきた。
In addition, photoreceptors for electrophotographic printers that use coherent light, such as a laser, as a light source include selenium, selenium-based alloys, cadmium sulfide resin dispersions, and charge-transfer complexes of polyvinyl carbazole and trinitrofluorenone. I've been exposed to it.

また、レーザーとしてはヘリウム−カドミ、アルゴン、
ヘリウム−ネオンなどのガスレーザーが用いられてきた
が、最近、小型低コストで直接変調が可能な半導体レー
ザーが用いられるようになった。
In addition, lasers include helium-cadmium, argon,
Gas lasers such as helium-neon have been used, but recently semiconductor lasers, which are small, low cost, and capable of direct modulation, have come into use.

しかし、半導体レーザーは発振波長が750nm以」−
のものが多く、−J−記のような感光体はその波長領域
で光感度が低く、使用が困難であった。
However, semiconductor lasers have an oscillation wavelength of 750 nm or more.
The photoreceptor shown in -J- had low photosensitivity in that wavelength range and was difficult to use.

そのため、感光波長領域を比較的自由に選べる電荷発生
層と電荷輸送層との積層型感光体が、半導体レーザープ
リンター用感光体として注目されてきている。
Therefore, a laminated type photoreceptor including a charge generation layer and a charge transport layer, which allows a relatively freely selected photosensitive wavelength region, is attracting attention as a photoreceptor for semiconductor laser printers.

積層型感光体の電荷発生層は、光を吸収して自由電荷を
発生させる役割を持ち、その厚さは1発生したホト・キ
ャリアの飛程を短くするために0.5〜5終と薄いのが
通例である。
The charge generation layer of the laminated photoreceptor has the role of absorbing light and generating free charges, and its thickness is as thin as 0.5 to 5 mm in order to shorten the range of the generated photo carriers. It is customary.

このことは、入射光量の大部分が電荷発生層で吸収され
て多くのホト・キャリアを生成すること、さらには発生
したホト・キャリアを再結合や捕獲により失活すること
なく電荷輸送層に注入する必要があることに起因してい
る。
This means that most of the incident light is absorbed by the charge generation layer, generating many photocarriers, and that the generated photocarriers are injected into the charge transport layer without being deactivated by recombination or capture. This is due to the need to do so.

電荷輸送層は、静電荷の受容と自由電荷の輸送の役割を
持ち、像形成光を殆ど吸収しないものを用い、その厚さ
は通例は5〜30.である。
The charge transport layer has the role of receiving static charges and transporting free charges, and is made of a material that hardly absorbs image forming light, and its thickness is usually 5 to 30 mm. It is.

このような積層型感光体を用い、レーザープリンターで
レーザー光をライン走査して画像を出してみると1文字
などのライン画像では問題にならないが、ベタ画像の場
合、干渉縞状の濃度むらが現われた。この原因は、電荷
発生層が前述のように薄層で形成されているために、こ
の層で吸収される光最が制限され、そのために電荷発生
層を通過した光が導電性支持体表面で反射し、この反射
光と感光層表面での反射光との干渉を生じたことによる
ものと考えられる。
When using such a laminated photoreceptor and producing an image by scanning a line of laser light with a laser printer, there is no problem with line images such as single characters, but with solid images, density unevenness like interference fringes occurs. appeared. The reason for this is that the charge generation layer is formed as a thin layer as mentioned above, which limits the amount of light absorbed by this layer, which causes the light that passes through the charge generation layer to reach the surface of the conductive support. This is thought to be due to interference between the reflected light and the reflected light on the surface of the photosensitive layer.

積層型電子写真感光体は、従来の電子写真感光体の断面
図を表わす第2図に示すように、導電性支持体6の上に
、電荷発生層4と電荷輸送層5とが積層された構成にな
っている。
As shown in FIG. 2, which shows a cross-sectional view of a conventional electrophotographic photoreceptor, the laminated electrophotographic photoreceptor has a charge generation layer 4 and a charge transport layer 5 laminated on a conductive support 6. It is configured.

従来の電子写真感光体に入射する光の光路を説明する第
3図に示すように、積層型感光体にレーザー光7(発振
波長は半導体レーザーで約780nm、ヘリウム−ネオ
ンレーザ−で約630nm)が入射した場合、電荷輸送
層5に侵入した感光体内部への入射光8と、この入射光
8が導電性支持体6の表面で反射され、電荷輸送層5の
表面から出てくる導電性支持体表面での反射光9との干
渉が生ずる。
As shown in FIG. 3, which explains the optical path of light incident on a conventional electrophotographic photoreceptor, a laser beam 7 (oscillation wavelength is approximately 780 nm for a semiconductor laser and approximately 630 nm for a helium-neon laser) is applied to a laminated photoreceptor. When incident light 8 enters the charge transport layer 5 into the photoreceptor, this incident light 8 is reflected by the surface of the conductive support 6, and the conductive light 8 comes out from the surface of the charge transport layer 5. Interference with the reflected light 9 on the support surface occurs.

電荷発生層と電荷輸送層との積層の屈折率をn、厚さを
d、レーザー光の波長をλとすると、ndが入/2の整
数倍のときは、反射光の強度が極大、即ち、電荷輸送層
の内部へ入ってゆく光の強度が極小(エネルギー保存則
による)、ndが入/4の奇数倍のときは、反射光が極
小、即ち、内部へ入ってゆく光が極大となる。
If the refractive index of the laminated layer of the charge generation layer and the charge transport layer is n, the thickness is d, and the wavelength of the laser beam is λ, then when nd is an integral multiple of /2, the intensity of the reflected light is maximum, i.e. , the intensity of the light entering the charge transport layer is minimal (according to the law of conservation of energy), and when nd is an odd multiple of input/4, the reflected light is minimal, that is, the light entering the layer is maximal. Become.

ところで、dには製造上0.2色以]二の厚みムラは避
けられない。
By the way, thickness unevenness of 0.2 colors or more in d is unavoidable due to manufacturing reasons.

一方、  レーf−光ハtJi色性がよく、コヒーレン
トなため、dの厚みムラに対応して前記干渉条件が変化
し、電荷発生層でのレーザー光の吸収量の場所むらが生
じ、それかへ夕画像の濃淡の干渉縞状のむらとなって現
われると考えられる。
On the other hand, since the laser f-light has good chromaticity and is coherent, the above-mentioned interference conditions change in response to the thickness unevenness of d, causing unevenness in the amount of laser light absorbed in the charge generation layer. It is thought that this appears as interference fringe-like unevenness in shading in the evening image.

なお、通常の複写機では、光源が単色光でないため、波
長によって干渉縞状の濃度むらの幅が変わり、平均化さ
れて見えなくなる。
Note that in a normal copying machine, since the light source is not monochromatic, the width of the interference fringe-like density unevenness changes depending on the wavelength, and is averaged out and becomes invisible.

従来、レーザーを用いる電子写真法においては、例えば
導電性支持体の反射面、下引き層や感光層の積層界面に
おける表面状態を粗にし凹凸を設けて、反射光に位相差
を生じさせることにより、干渉縞状の濃度むらの発生を
防止していた。
Conventionally, in the electrophotographic method using a laser, for example, the reflective surface of the conductive support, the undercoat layer, and the laminated interface of the photosensitive layer are roughened and roughened to create a phase difference in the reflected light. , the occurrence of density unevenness in the form of interference fringes was prevented.

しかしながら、このような粗面化方法は、積層型感光体
の場合、凹凸面上に形成される感光層が均一にならず、
従って画像欠陥や電子写真特性を著しく低下させる。
However, in the case of a laminated photoreceptor, such a surface roughening method does not result in a uniform photosensitive layer formed on the uneven surface.
Therefore, image defects and electrophotographic properties are significantly deteriorated.

上記問題点の改善のため、導電性支持体を表面加工する
ことなく、塗料を塗布して、その表面性を向上させるこ
とが行なわれている。
In order to improve the above-mentioned problems, it has been attempted to coat the conductive support with a paint to improve its surface properties without surface treatment.

−に記塗料としては、(1)電気抵抗が低くて、特性上
残留電荷が蓄積しないこと、(2)電子写真特性に悪影
響を及ぼさないこと、(3)導電性支持体にかかる接着
性が十分にあること、(4)その上に塗布される塗料に
対する耐溶剤性が十分であることなどの条件が挙げられ
る。
- The paint described in (1) has low electrical resistance and does not accumulate residual charge due to its characteristics, (2) has no adverse effect on electrophotographic properties, and (3) has good adhesion to the conductive support. and (4) sufficient solvent resistance for the paint applied thereon.

従来、下引き層を形成する材料としては、ポリビニルア
ルコール、ポリビニルメチルエーテル、ポリ−N−ビニ
ルイミダゾール、エチルセルロース、メチルセルロース
、エチレナクリル酸コポリマー、カゼイン、ゼラチン、
ポリアミドなどが知られている。
Conventionally, materials for forming the undercoat layer include polyvinyl alcohol, polyvinyl methyl ether, poly-N-vinylimidazole, ethyl cellulose, methyl cellulose, ethylene acrylic acid copolymer, casein, gelatin,
Polyamide etc. are known.

[発明が解決しようとする問題点] 本発明の目的は、前述した従来技術の欠点を解決した電
子写真感光体を提供することである。
[Problems to be Solved by the Invention] An object of the present invention is to provide an electrophotographic photoreceptor that overcomes the drawbacks of the prior art described above.

即ち、導電性支持体を表面加工することなく、導電性支
持体に塗料を塗布してその表面性を向上させた電子写真
感光体を提供することである。
That is, an object of the present invention is to provide an electrophotographic photoreceptor in which the surface properties of a conductive support are improved by coating the conductive support with a paint without subjecting the conductive support to surface treatment.

さらに、簡便な方法で画像形成光の可干渉を取り除き、
干渉により発生する濃淡むらの発生を防止するレーザー
プリンター用電子写真感光体を提供することである。
Furthermore, by removing the interference of the image forming light using a simple method,
An object of the present invention is to provide an electrophotographic photoreceptor for a laser printer that prevents the occurrence of uneven density caused by interference.

[問題点を解決する手段、作用] 本発明は導電性支持体上に少なくとも下引き層および感
光層を有する電子写真感光体において、下引き層が、シ
リコーン樹脂微粉末を含有することを特徴とする電子写
真感光体から構成される。
[Means and effects for solving the problems] The present invention provides an electrophotographic photoreceptor having at least an undercoat layer and a photosensitive layer on a conductive support, wherein the undercoat layer contains fine silicone resin powder. It consists of an electrophotographic photoreceptor.

本発明の電子写真感光体は、第1図に示すように、導電
性支持体6の上にシリコーン樹脂微粉末を混入した下引
き層3を設け、その上に電荷発生層4と電荷輸送層5と
からなる感光層が積層されている。
As shown in FIG. 1, the electrophotographic photoreceptor of the present invention is provided with an undercoat layer 3 containing fine silicone resin powder on a conductive support 6, and a charge generation layer 4 and a charge transport layer on top of the undercoat layer 3. A photosensitive layer consisting of 5 is laminated.

導電性支持体6は、支持体1の4−に導電層2を有する
積層構造からなり、支持体1の導電性、非導電性は問わ
ない、なお、支持体lが導電性であれば導電R2は積層
しない場合がある。
The conductive support 6 has a laminated structure having a conductive layer 2 on the 4-layer of the support 1, and it does not matter whether the support 1 is conductive or non-conductive.If the support 1 is conductive, it is conductive. R2 may not be laminated.

導電性の支持体lとしては、例えばアルミシリンダー、
アルミシートまた非導電性の支持体1としては、例えば
ポリマーフィルム、ポリマーシリンダー、紙プラスチッ
ク、金属などのコンポジット素材などが挙げられる。
As the conductive support l, for example, an aluminum cylinder,
Examples of the aluminum sheet or non-conductive support 1 include polymer films, polymer cylinders, paper plastics, composite materials such as metals, and the like.

導電性顔料粉末および必要に応じて表面凹凸形成用粒子
を分散する樹脂は、(1)導電性支持体6に対する密着
性が強固であること、(2)粉体の分散性が良好である
こと、(3)耐溶剤性が十分であること、などの条件を
満たすものであれば使用できるが、特に硬化性ゴム、ポ
リウレタン、エポキシ樹脂、アルキド樹脂、ポリエステ
ル、シリコーン樹脂、アクリル−メラミン樹脂などの熱
硬化性樹脂が好適である。導電性粉末を分散した樹脂の
体積抵抗率は 1(H3Ωcm以下、好ましくは、l 
9120cm以下が適している。
The resin in which the conductive pigment powder and, if necessary, the particles for forming surface irregularities are dispersed must (1) have strong adhesion to the conductive support 6, and (2) have good dispersibility of the powder. (3) It can be used as long as it has sufficient solvent resistance, but in particular, curable rubber, polyurethane, epoxy resin, alkyd resin, polyester, silicone resin, acrylic-melamine resin, etc. Thermosetting resins are preferred. The volume resistivity of the resin in which the conductive powder is dispersed is 1 (H3Ωcm or less, preferably l
9120cm or less is suitable.

そのため、塗膜において導電性粉末は、塗膜中10〜6
0重量%の割合で含有されていることが好ましい。分散
にはロールミル1、振動ボールミル、アトライター、サ
ンドミル、コロイドミルなどの常法による。塗布は、導
電性支持体6がシート状である場合にはワイヤーバーコ
ード、ブレードコート、ナイフコート、ロールコート、
スクリーンコートなどが適しており、導電性支持体6が
円筒状である場合には浸漬塗布法が適している。
Therefore, in the coating film, the conductive powder contains 10 to 6
It is preferable that the content is 0% by weight. For dispersion, conventional methods such as roll mill 1, vibrating ball mill, attritor, sand mill, colloid mill, etc. are used. When the conductive support 6 is in the form of a sheet, coating may be performed by wire barcode coating, blade coating, knife coating, roll coating, or
Screen coating is suitable, and when the conductive support 6 is cylindrical, dip coating is suitable.

下引き層3に用いられる樹脂としては、例えばポリビニ
ルアルコール、ポリビニルメチルエーテル、ポリ−N−
ビニルイミダゾール、エチルセルロース、メチルセルロ
ース、エチレン−アクリル酸コポリマー、カゼイン、ゼ
ラチン、ポリアミド、フェノール樹脂、ブチラール樹脂
、ポリウレタン、ポリアクリロニトリルなどが挙げられ
、特にポリアミド、フェノール樹脂、さらにフェノール
樹脂にブチラール樹脂を添加したものが適している。
Examples of the resin used for the undercoat layer 3 include polyvinyl alcohol, polyvinyl methyl ether, and poly-N-
Examples include vinyl imidazole, ethyl cellulose, methyl cellulose, ethylene-acrylic acid copolymer, casein, gelatin, polyamide, phenolic resin, butyral resin, polyurethane, polyacrylonitrile, etc., especially polyamide, phenolic resin, and phenolic resin with butyral resin added. is suitable.

本発明の電子写真感光体は、下引き層中にシリコーン樹
脂微粉末を混入している。
In the electrophotographic photoreceptor of the present invention, fine silicone resin powder is mixed in the undercoat layer.

シリコーン樹脂微粉末の特徴として、(1)撥水性が優
れている、(2)潤滑性が優れている、(3)無機系微
粉末よりも比重が小さい、(4)有機系微粉末より耐熱
性が優れている、(5)有機系の溶剤に不溶である、な
どが挙げられる。
The characteristics of silicone resin fine powder are (1) excellent water repellency, (2) excellent lubricity, (3) lower specific gravity than inorganic fine powder, and (4) heat resistance than organic fine powder. and (5) insolubility in organic solvents.

下引き層3には、上記シリコーン樹脂微粉末を好ましく
は10〜20重量%混入している。
The undercoat layer 3 preferably contains 10 to 20% by weight of the silicone resin fine powder.

その配合方法としては、前述の下引き層に用いられる樹
脂中にシリコーン樹脂微粉末を混入させて、例えばプロ
ペラ攪拌機あるいはサンドミルなどで十分に分散させる
As for its compounding method, fine silicone resin powder is mixed into the resin used for the above-mentioned undercoat layer and sufficiently dispersed using, for example, a propeller stirrer or a sand mill.

下引き層にシリコーン樹脂微粉末を混入、分散すること
により、導電性支持体6の表面で反射したレーザー光9
は、下引き層3中で拡散され、入射してきたレーザー光
7に対して干渉されず、画像上で干渉縞による濃度むら
が見られなくなる。
By mixing and dispersing silicone resin fine powder in the undercoat layer, the laser beam 9 reflected on the surface of the conductive support 6 is
is diffused in the undercoat layer 3 and does not interfere with the incident laser light 7, so that density unevenness due to interference fringes is no longer seen on the image.

本発明において用いるシリコーン樹脂微粉末の粒径(平
均粒径)は、5#L以下、特には0.1〜2ルの範囲が
適当である。5膳以上では、下引き層の面が粗くなり、
下引き層の上に後述する電荷発生層を設けるわけである
が、その電荷発生層の面が粗くなり、画像欠陥の原因と
なる。O,ip以下では、下引き層中でのレーザー光の
拡散硬化が落ちるため、干渉縞による濃度むらを防ぎき
れない場合がある。
The particle size (average particle size) of the silicone resin fine powder used in the present invention is suitably 5#L or less, particularly in the range of 0.1 to 2L. If more than 5 pieces are used, the surface of the undercoat layer will become rough,
A charge generation layer, which will be described later, is provided on the undercoat layer, but the surface of the charge generation layer becomes rough, causing image defects. If it is less than O.ip, the diffusion hardening of the laser light in the undercoat layer will be degraded, so that it may not be possible to prevent density unevenness due to interference fringes.

下引き層の膜厚としては、0.1〜10μ、好ましくは
0.3〜6pLの範囲が適当である。
The thickness of the undercoat layer is suitably in the range of 0.1 to 10 μL, preferably 0.3 to 6 pL.

0.1以下の場合、シリコーン樹脂部粉末を混入された
下引き層は、むらになりやすく、下引き層上に設けられ
る電荷発生層も膜厚が薄いため、そのむらを拾いやすく
、画像欠陥の原因となりやすい、10pL以上では、特
に問題はないが、シリコーン樹脂微粉末の混入量を20
重量%以上添加しないと効果が現われず、下引き層に用
いられる樹脂のコストおよびシリコーン樹脂微粉末のコ
ストが高くつき、あまり好ましくない。
If it is less than 0.1, the undercoat layer mixed with the silicone resin powder tends to become uneven, and since the charge generation layer provided on the undercoat layer is also thin, it is easy to pick up the unevenness, resulting in image defects. There is no particular problem if the amount is 10 pL or more, which is likely to cause
If it is not added in an amount of more than % by weight, no effect will be obtained, and the cost of the resin used in the undercoat layer and the cost of the silicone resin fine powder will be high, which is not very preferable.

従って、本発明において&fましい下引き層3の条件と
して、膜厚は0.1〜6JLの範囲内、混入するシリコ
ーン樹脂微粉末の粒径(平均粒径)は0.1〜2ル、I
シ入縫は10〜20重量%としたとき、像露光用光源と
してレーザーを用いる電子写真感光体として干渉縞によ
る濃度むら、その他画像欠陥を導電性支持体表面を粗に
することなく対処することが可能となった。
Therefore, in the present invention, the desirable conditions for the undercoat layer 3 are that the film thickness is within the range of 0.1 to 6 JL, the particle size (average particle size) of the mixed silicone resin fine powder is 0.1 to 2 JL, I
When the embossed stitching is 10 to 20% by weight, it is possible to deal with uneven density due to interference fringes and other image defects without roughening the surface of the conductive support as an electrophotographic photoreceptor that uses a laser as a light source for image exposure. became possible.

上記下引き層3の上に設ける電荷発生層4は、スーダン
レッド、グイアンプル−、ジェナスグリーンBなどのア
ゾ顔料、アルゴールイエロー、ピレンキノン、インダン
スレンブリリアントバイオレッ)RRPなとのキノン顔
料、キノシアニン顔料、ペリレン顔料、インジゴ、チオ
インジゴなどのインジゴ顔料、インドファーストオレン
ジトナーなどのビスベンゾイミダゾール顔料、銅フタロ
シアニン、アルミニウムクロライド−フタロシアニンな
どのフタロシアニン顔料、キナクリドン顔料などの電荷
発生物質を、ポリエステル、ポリスチレン、ポリビニル
ブチラール、ポリビニルピロリドン、メチルセルロース
、ポリアクリル酸エステル類、セルロースエステルなど
の結着剤樹脂に分散した塗工液を塗布、乾燥させること
によって形成される。その膜厚は0.01〜1ル、好ま
しくは0.05〜0.5Ji、程度である。
The charge generation layer 4 provided on the undercoat layer 3 is made of azo pigments such as Sudan Red, Guianpoule, and Jenas Green B, quinone pigments such as Algol Yellow, Pyrene Quinone, Indanthrene Brilliant Violet) RRP, and quinocyanine pigments. , indigo pigments such as perylene pigments, indigo, thioindigo, bisbenzimidazole pigments such as India Fast Orange toner, phthalocyanine pigments such as copper phthalocyanine, aluminum chloride-phthalocyanine, charge generating substances such as quinacridone pigments, polyester, polystyrene, polyvinyl butyral. , polyvinylpyrrolidone, methylcellulose, polyacrylic esters, cellulose esters, or the like is applied and dried. The film thickness is about 0.01 to 1 μl, preferably 0.05 to 0.5 Ji.

電荷輸送層5は、主鎖または側鎖に、アントラセン、ピ
レン、フェナンスレン、コロネンなどの多環芳香族化合
物またはインドール、カルバゾール、オキサゾール、イ
ンオキサゾール、チアゾール、イミダゾール、ピラゾー
ル、オキサジアゾール、ピラゾリン、チアジアゾール、
トリアゾールなどの含窒素環化合物を有する化合物、ヒ
ドラゾン化合物などの電荷輸送物質を成膜性のある樹脂
に溶解または分散させた塗工液を塗布、乾燥させること
によって形成される。その膜厚は5〜2゜ル程度である
The charge transport layer 5 contains a polycyclic aromatic compound such as anthracene, pyrene, phenanthrene, and coronene, or indole, carbazole, oxazole, inoxazole, thiazole, imidazole, pyrazole, oxadiazole, pyrazoline, and thiadiazole in the main chain or side chain. ,
It is formed by applying a coating liquid in which a compound having a nitrogen-containing ring compound such as a triazole, or a charge transporting substance such as a hydrazone compound is dissolved or dispersed in a resin with film-forming properties, and then drying it. The film thickness is about 5 to 2 degrees.

[実施例] 実施例1 導電性酸化チタン粉末(チタン工業■製)100部(重
量部、以下同様)、酸化チタン粉末(堺工業■製)10
0部、フェノール樹脂(商品名ブライオーフェン、イン
ギ■製)125部を、メタノール50部とメチルセロソ
ルブ50部の溶剤に混合し、次いでボールミルにより6
時間に亘り分散した。この分散液を60φX 260 
m mのアルミニウムシリンダー上に浸漬塗布法で塗布
し、150℃、30分間熱硬化し、膜厚20ルの導電層
を設けた。
[Example] Example 1 Conductive titanium oxide powder (manufactured by Titan Kogyo ■) 100 parts (parts by weight, the same applies hereinafter), titanium oxide powder (manufactured by Sakai Kogyo ■) 10
0 parts, 125 parts of phenol resin (trade name: Bleiofen, manufactured by Ingi ■) were mixed with a solvent of 50 parts of methanol and 50 parts of methyl cellosolve, and then mixed in a ball mill with 6
distributed over time. This dispersion liquid is 60φX 260
It was applied by dip coating onto a 20 mm aluminum cylinder and heat cured at 150° C. for 30 minutes to form a conductive layer with a thickness of 20 μm.

次に、共重合ナイロン(商品名アミランCM−8000
、東し鞠製)20部Wをメタノール60部、ブタノール
40部の混合液に溶解した。この共重合ナイロンを溶解
した液中に、共重合ナイロンに対して、予め平均粒径0
.3pLに粉砕されたシリコーン樹脂微粉末(使用した
商品としては、XC99−501平均粒径2k、東芝シ
リコーン■V)を15重量%混入し、プロペラ攪拌機で
2時間分散した。この液を上記導電層上に塗布して50
°Cl2O分間熱風乾燥をして、3に厚の下引き層を形
成した。
Next, copolymerized nylon (trade name Amilan CM-8000)
, manufactured by Azuma Shimari) was dissolved in a mixed solution of 60 parts of methanol and 40 parts of butanol. In the solution in which this copolymerized nylon is dissolved, the average particle size of the copolymerized nylon is 0.
.. 15% by weight of silicone resin fine powder pulverized to 3 pL (product used: XC99-501 average particle size 2k, Toshiba Silicone ■V) was mixed in and dispersed for 2 hours using a propeller stirrer. This solution was applied on the conductive layer for 50 minutes.
A 3-thick undercoat layer was formed by drying with hot air for 3 minutes with Cl2O.

次に、ε型銅フタロシアニン(インキ■製)を100部
、ブチラール樹脂(積木化学■製)50部およびシクロ
ヘキサン1350部を1φガラスピーズを用いたサンド
ミル装置で200時間分散た。この分散液にメチルエチ
ルケトン2700部を加え、」−記下引き層上に浸漬塗
布し50°C110分刊加熱乾燥して、0.15g/m
2の塗布料の電荷発生層を設けた。
Next, 100 parts of ε-type copper phthalocyanine (manufactured by Ink ■), 50 parts of butyral resin (manufactured by Tsukiki Kagaku ■) and 1350 parts of cyclohexane were dispersed for 200 hours in a sand mill apparatus using 1φ glass beads. Add 2,700 parts of methyl ethyl ketone to this dispersion, dip coat it onto the undercoat layer, heat dry at 50°C for 110 minutes, and give 0.15 g/m
A charge generation layer of coating material No. 2 was provided.

次いで、p−ジエチルアミノベンズアルデヒド−N−β
−ナフチル−N−フェニルヒドラゾンを10部およびス
チレン−メタクリル酸メチルコポリマー(商品名MS2
00、製鉄化学■製)15部をトルエン80部に溶解し
た。この液を上記電荷発生層上に塗布して100℃、1
時間熱風乾燥をして16牌厚の電荷輸送層を形成した。
Then, p-diethylaminobenzaldehyde-N-β
- 10 parts of naphthyl-N-phenylhydrazone and styrene-methyl methacrylate copolymer (trade name MS2)
00, manufactured by Seitetsu Kagaku ■) was dissolved in 80 parts of toluene. This solution was applied onto the charge generation layer at 100°C for 1 hour.
A charge transport layer having a thickness of 16 tiles was formed by drying with hot air for an hour.

こうして作成した積層型感光体をガリウムーアルミーヒ
素半導体レーザー(発振波長780nm出力5 m W
 )を有し、コロナ帯電器(帯電は負極性)、現像器、
転写帯電器、クリーナーを備えたレーザープリンター実
験機につけて画像出しを行なった。その結果、ベタ画像
部の画像濃度が均一でライン画像もシャープな画像が得
られた。
The laminated photoreceptor thus created was used as a gallium-aluminum arsenide semiconductor laser (oscillation wavelength: 780 nm, output: 5 mW).
), a corona charger (charging is negative polarity), a developer,
Images were produced using an experimental laser printer equipped with a transfer charger and cleaner. As a result, an image with uniform image density in the solid image area and sharp line images was obtained.

実施例2 実施例1と同様な方法で導電層を塗布し、その上にフェ
ノール樹脂(商品名プライオーフェンJ−325、大日
木インキ■製)20部、ブチラール樹脂(商品名工スレ
ツクB、BH−3、積木化学■製)5部をメタノール6
0部およびブタノール30部の混合液に溶解した。この
液中に、フェノール樹脂およびブチラール樹脂混合に対
して、予め平均粒径1=に粉砕されたシリコーン樹脂微
粉末(使用した商品と1. テは、XC99−301平
均粒径4jL、東芝シリコーン■製)を12重量%混入
し、ボールミルで2時間分nkシた。この液を上記導電
層上に塗布して150°0.30分間熱風乾燥をして5
角厚の下引き層を形成した。
Example 2 A conductive layer was applied in the same manner as in Example 1, and 20 parts of phenol resin (trade name Pryophen J-325, manufactured by Dainichi Ink ■) and butyral resin (trade name Kosuretsuk B, BH) were applied on top of the conductive layer. -3, manufactured by Building Block Chemical ■) 5 parts methanol 6
0 parts and 30 parts of butanol. In this liquid, for the phenol resin and butyral resin mixture, silicone resin fine powder that has been crushed in advance to an average particle size of 1 (products used and 1. 12% by weight was mixed in with 12% by weight of 100% of the product (manufactured by the company) and milled in a ball mill for 2 hours. This solution was applied on the conductive layer and dried with hot air at 150° for 0.30 minutes.
A square thick undercoat layer was formed.

以下、電荷発生層および電荷輸送層については、実施例
1と同様のものを用いて形成した。
Hereinafter, the charge generation layer and charge transport layer were formed using the same materials as in Example 1.

この電子写真感光体を実施例1と同様の方法で画像出し
を行なった結果、ベタ画像部の画像濃度が均一であった
。ライン画像は、実施例1に比べ、やや落ちるがシャー
プな画像が得られた。
Images were formed on this electrophotographic photoreceptor in the same manner as in Example 1, and as a result, the image density in the solid image area was uniform. Although the line image was slightly lower than that of Example 1, a sharp image was obtained.

比較例1 下引き層においてシリコーン樹脂微粉末を除いた他は、
実施例1と全く同じ方法で導電層、下引き層、電荷発生
層、電荷輸送層を塗布し、比較用感光体を作成した。
Comparative Example 1 Except for removing the silicone resin fine powder in the undercoat layer,
A conductive layer, an undercoat layer, a charge generation layer, and a charge transport layer were coated in exactly the same manner as in Example 1 to prepare a comparative photoreceptor.

この比較用感光体を前記と同一のレーザープリンター実
験機につけて画像を出したところ、ライン画像は問題が
ないが、ベタ画像部に干渉による濃淡むらを発生した。
When this comparative photoreceptor was attached to the same laser printer experimental machine as described above and an image was produced, there was no problem with the line image, but uneven density occurred in the solid image area due to interference.

比較例2 下引き層においてはシリコーン樹脂微粉末に代え酸化亜
鉛粉末(平均粒径2ル)を実施例1に用いた樹脂中にl
O重景%混入し、塗工した後、50℃で20分間、熱風
乾燥をして51L厚の下引き層を実施例1と同じ導電層
上に設けた。さらに、この下引き層の上に実施例1と同
様に電荷発生層および電荷輸送層を設け、比較用感光体
を作成した。
Comparative Example 2 In the undercoat layer, zinc oxide powder (average particle size 2 l) was added to the resin used in Example 1 instead of fine silicone resin powder.
After coating and drying with hot air at 50° C. for 20 minutes, a 51 L thick undercoat layer was formed on the same conductive layer as in Example 1. Further, a charge generation layer and a charge transport layer were provided on this undercoat layer in the same manner as in Example 1 to prepare a comparative photoreceptor.

この比較用感光体を実施例1と同様な方法で画出しを行
なった結果、ベタ画像部において干渉による濃度むらは
見られないが、この感光体により連続画出し耐久を50
0枚連続で行なったところ、ピンホールによる黒ポチが
現われた。
As a result of performing image printing using this comparative photoreceptor in the same manner as in Example 1, no density unevenness due to interference was observed in the solid image area.
When this was done with 0 sheets in a row, black spots due to pinholes appeared.

[発明の効果] 本発明の電子写真感光体によれば、像露光Φ現像後の干
渉縞状の濃度むらが生ぜず、鮮明な電子写真が得られる
。このような効果は、特に可干渉光とりわけレーザーを
像露光用光源として用いる場合に顕著であり、レーザー
プリンター用電子写真感光体として極めて有利に応用す
ることができる。しかも感光体の導電性支持体や感光層
の積層界面を粗面化するなどの方法によらず、表面状態
は平滑であるので、欠陥が極めて少ない、従って画質が
向上し、耐久後の画像濃度低下、ピンホールの発生が起
こらない。
[Effects of the Invention] According to the electrophotographic photoreceptor of the present invention, no density unevenness in the form of interference fringes occurs after image exposure Φ development, and clear electrophotographs can be obtained. Such an effect is particularly remarkable when coherent light, especially a laser, is used as a light source for image exposure, and it can be extremely advantageously applied as an electrophotographic photoreceptor for a laser printer. Moreover, since the surface condition is smooth without using methods such as roughening the conductive support of the photoreceptor or the laminated interface of the photosensitive layer, there are extremely few defects, resulting in improved image quality and image density after durability. No deterioration or pinholes occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の電子写真感光体の断面図および入射
する光の光路を示す説明図、第2図は、従来の電子写真
感光体の断面図、第3図は、従来の電子写真感光体に入
射する光の光路を示す説明図である。 上記各図面中の符号lは支持体、2は導電層、3はシリ
コーン樹脂微粉床入下引き層、3°は下引き層、4は電
荷発生層、5は電荷輸送層、6は導電性支持体(1の支
持体が導電性であれば、2の導電層は積層しない場合が
ある)、7は入射レーザー光、8は感光体内部への入射
光、9は導電性支持体表面での反射光、10は下引き層
3で拡散されたレーザー光を示す。
FIG. 1 is a cross-sectional view of the electrophotographic photoreceptor of the present invention and an explanatory diagram showing the optical path of incident light. FIG. 2 is a cross-sectional view of a conventional electrophotographic photoreceptor. FIG. FIG. 3 is an explanatory diagram showing an optical path of light incident on a photoreceptor. In each of the above drawings, reference numeral 1 indicates a support, 2 indicates a conductive layer, 3 indicates a subbing layer containing silicone resin fine powder, 3° indicates an undercoating layer, 4 indicates a charge generation layer, 5 indicates a charge transport layer, and 6 indicates a conductive layer. Support (If the support 1 is conductive, the conductive layer 2 may not be laminated), 7 is the incident laser beam, 8 is the incident light inside the photoreceptor, 9 is the surface of the conductive support The reflected light 10 indicates the laser light diffused by the undercoat layer 3.

Claims (3)

【特許請求の範囲】[Claims] (1)導電性支持体上に少なくとも下引き層および感光
層を有する電子写真感光体において、下引き層が、シリ
コーン樹脂微粉末を含有することを特徴とする電子写真
感光体。
(1) An electrophotographic photoreceptor having at least an undercoat layer and a photosensitive layer on a conductive support, wherein the undercoat layer contains fine silicone resin powder.
(2)下引き層の膜厚が0.1〜10μの範囲である特
許請求の範囲第1項に記載の電子写真感光体。
(2) The electrophotographic photoreceptor according to claim 1, wherein the undercoat layer has a thickness in the range of 0.1 to 10 μm.
(3)像露光光源としてレーザーを用いる電子写真法に
適用する特許請求の範囲第1項に記載の電子写真感光体
(3) The electrophotographic photoreceptor according to claim 1, which is applied to electrophotography using a laser as an image exposure light source.
JP14132986A 1986-06-19 1986-06-19 Electrophotographic sensitive body Granted JPS62299857A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14132986A JPS62299857A (en) 1986-06-19 1986-06-19 Electrophotographic sensitive body
FR878708530A FR2602065B1 (en) 1986-06-19 1987-06-18 PHOTOSENSITIVE ELECTROPHOTOGRAPHIC SUPPORT.
US07/462,913 US4948690A (en) 1986-06-19 1990-01-11 Electrophotographic photosensitive member with fine spherical resin powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14132986A JPS62299857A (en) 1986-06-19 1986-06-19 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPS62299857A true JPS62299857A (en) 1987-12-26
JPH055351B2 JPH055351B2 (en) 1993-01-22

Family

ID=15289409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14132986A Granted JPS62299857A (en) 1986-06-19 1986-06-19 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPS62299857A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8901301A (en) * 1988-07-23 1990-02-16 Samsung Electronics Co Ltd BORDERLESS MOTHER DISC SEMICONDUCTOR DEVICE.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4990679B2 (en) * 2007-05-22 2012-08-01 株式会社リコー Electrophotographic photosensitive member, image forming apparatus, and process cartridge for image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8901301A (en) * 1988-07-23 1990-02-16 Samsung Electronics Co Ltd BORDERLESS MOTHER DISC SEMICONDUCTOR DEVICE.

Also Published As

Publication number Publication date
JPH055351B2 (en) 1993-01-22

Similar Documents

Publication Publication Date Title
US4766048A (en) Electrophotographic photosensitive member having surface layer containing fine spherical resin powder and apparatus utilizing the same
US4904557A (en) Electrophotographic photosensitive member having a roughened surface
US4675262A (en) Multilayer electrophotographic photosensitive element having charge transport layer containing powdered material having specified refractive index
US5725985A (en) Charge generation layer containing mixture of terpolymer and copolymer
JPS6319869B2 (en)
JPS5917557A (en) Electrophotographic receptor
JPH0453424B2 (en)
JP3008601B2 (en) Electrophotographic photoreceptor
JPS58100138A (en) Electrophotographic receptor
JPS62299857A (en) Electrophotographic sensitive body
JPS62192754A (en) Electrophotographic sensitive body
JPH0282263A (en) Electrophotographic sensitive body
US7384718B2 (en) Charge generating composition and imaging member
JPS60256153A (en) Electrophotographic sensitive body
JPH0549219B2 (en)
JPS60172047A (en) Photoreceptor and process for forming its picture image
JPS60186850A (en) Electrophotographic photoreceptor and its manufacturing method
JPS63113459A (en) Electrophotographic sensitive body having fine particle which can prevent interference
JP2825679B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
JP2546249B2 (en) Electrophotographic photoreceptor
JPS61117558A (en) Electrophotographic sensitive body
JPS6118963A (en) Electrophotographic sensitive body
JPH01217360A (en) Image forming method
JPS60218660A (en) Electrophotographic sensitive body
JPH01106065A (en) Photosensitive body and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees