JPS62265722A - Optical system for illumination - Google Patents

Optical system for illumination

Info

Publication number
JPS62265722A
JPS62265722A JP61109983A JP10998386A JPS62265722A JP S62265722 A JPS62265722 A JP S62265722A JP 61109983 A JP61109983 A JP 61109983A JP 10998386 A JP10998386 A JP 10998386A JP S62265722 A JPS62265722 A JP S62265722A
Authority
JP
Japan
Prior art keywords
luminous flux
emitted
splitting
polarized component
illuminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61109983A
Other languages
Japanese (ja)
Other versions
JPH0666246B2 (en
Inventor
Chigusa Oouchi
千種 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61109983A priority Critical patent/JPH0666246B2/en
Publication of JPS62265722A publication Critical patent/JPS62265722A/en
Publication of JPH0666246B2 publication Critical patent/JPH0666246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To uniformly illuminate the surface of split prism to be illuminated by introducing a luminous flux to a luminous flux splitting member having two split prisms made of a plurality of reflecting surfaces and an optical element disposed between the prisms and guiding the luminous flux emitted from the member to the surface to be illuminated to alleviate a speckle. CONSTITUTION:A split prism 5 is composed of a plurality of reflecting surfaces 5-1, 5-2, 5-3, ...reflecting an incident luminous flux of an S-polarized component at a predetermined rate and a full-reflecting surface 50. The luminous flux of a P-polarized component is rotated at a polarizing surface by an optical element 6 at 90 deg. to introduce it as the luminous flux of the S-polarized component to a split prism 7. The luminous fluxes divided in a plurality of the S- polarized component become the luminous flux of the P-polarized component, mostly reflected on a full-reflecting surface 70 to be emitted. After the flux is noninterfered to be emitted, the flux is guided to a fly eye lens 8, with the condensing point as a secondary light source surface, and the surface 10 to be illuminated is uniformly illuminated by a condenser lens 9 by using the luminous flux of uniform intensity distribution emitted from the light source surface by alleviating a speckle.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は照明光学系に関し、特に半導体製造において可
干渉性の良い高輝度のレーザー等の光源金円いて被照射
面である電子回路等の微細パターンを照明する際に元の
干渉による被照射面の照明むら等の悪影響全軽減し均一
なる照明全可能とした照明光学系に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to illumination optical systems, and in particular, in semiconductor manufacturing, illumination of electronic circuits and other irradiated surfaces using a light source such as a high-intensity laser with good coherence. The present invention relates to an illumination optical system that completely reduces adverse effects such as uneven illumination on an irradiated surface due to original interference when illuminating a fine pattern, and enables uniform illumination.

(従来の技術) 最近の半導体製造技術には電子回路の高集積化に伴い・
高密度の回路パターンが形成可能のリングラフィ技術が
請求されている。
(Conventional technology) Recent semiconductor manufacturing technology includes high integration of electronic circuits.
Lingraphy technology is claimed to be capable of forming high-density circuit patterns.

一般にマスク又はレチクル面上の回路バターy全りエ・
・面上に転写する場合・ウニ・・面上に転写される回路
パターンの解像線幅は光源の波長に比例してくる。この
為波長200〜300 nmの遠紫外(ディープUV領
域)の短い波長を元型する例えば超高圧水銀灯やキセノ
ン水銀ランプ等が用いられている。しかし2からこれら
の光源は低輝度で指向性もなくしかもウニ八面上に塗布
するフォトレジストの感光性も低い為露光時間が長くな
りスルーグツ+−1−低下させる原因となっていた。
Generally, the circuit butter on the mask or reticle surface is completely removed.
- When transferring onto a surface - Sea urchin... The resolution line width of a circuit pattern transferred onto a surface is proportional to the wavelength of the light source. For this reason, for example, ultra-high pressure mercury lamps, xenon mercury lamps, etc., which use short wavelengths in the far ultraviolet (deep UV region) of 200 to 300 nm, are used. However, these light sources have low brightness and lack directivity, and the photoresist coated on the eight surfaces of the sea urchins also has low photosensitivity, resulting in a long exposure time and a decrease in throughput.

両方最近エキ77(exClmar )レーザーという
ディープUV領域に発振波長を有する光源が開発され1
その、%f4度性)単色性1指向註等の良さからリング
ラフィ技術への応用が種々研究されている。しかしなが
らエキ/マレ−ブーを用いると多くの場合レーザー特有
の可干渉性によシマスフ面やウェー面の不完全さや照明
系の光学特性等が原因して、マスク面やクエ・・面等の
被照射面上に不規則な干渉縞、所謂スペックルが発生し
てくる。このスペックルは照”Aム5や焼付は誤差を起
こしマスクパターン像の解像力を低下させる原因となっ
てくる。
Recently, a light source with an oscillation wavelength in the deep UV region called the exClmar laser has been developed1.
Due to its advantages such as monochromaticity (%f4 degree) and 1-direction, various applications to phosphorography technology have been studied. However, when using an exhaust/malebou, there are many cases where the mask surface, square surface, etc. are covered due to the inherent coherency of the laser, imperfections in the striped surface or wafer surface, optical characteristics of the illumination system, etc. Irregular interference fringes, so-called speckles, occur on the irradiated surface. These speckles cause errors in illumination and printing and reduce the resolution of the mask pattern image.

(発明が解決しようとする問題点) 本発明はレーザー寺の可干渉性の良い高輝度の光源を用
いた際に被照射面に生じるスペックルの軽減を図9被照
射面の均一照明を可能とじ九照明光学系の提供を目的と
する。
(Problems to be solved by the invention) The present invention enables uniform illumination of the irradiated surface by reducing speckles that occur on the irradiated surface when a high-intensity light source with good laser coherence is used. The purpose is to provide a Tojiku illumination optical system.

本発明の更なる目的はエキシマレーザ−等の可干渉性の
良い光源を用いた際にマスク面やウニ・・面に生ずるス
ペックルの平均化71i−図クマスクパターン像の高y
fI像力化を可能とした半導体製造用の露光装置に好適
な照明光学系の提供にある。
A further object of the present invention is to average the speckles that occur on the mask surface or sea urchin surface when using a light source with good coherence such as an excimer laser.
An object of the present invention is to provide an illumination optical system suitable for an exposure apparatus for semiconductor manufacturing that enables fI image power.

(問題点t−4決する為の手段) 光源からの光束を所定の反射率金有する複数の反射面よ
り成る2つの分割プリズムと該2つの分割プリズムの間
に配置した偏光面を90度可回転せる光学素子と金有す
る光束分割部材に入射させ・該光束分割部材から射出し
±光束を被照射面に導光させ九ことである。
(Means for resolving problem t-4) Two split prisms made up of a plurality of reflective surfaces each having a predetermined reflectance for the luminous flux from the light source, and a polarization plane placed between the two split prisms that can be rotated by 90 degrees. The beam is made incident on a beam splitting member having an optical element and a gold plate, and the beam emitted from the beam splitting member is guided to a surface to be irradiated.

この池水発明の特徴は実施例において記載されている。The features of this pond water invention are described in the Examples.

(実施例) 第1図は本発明の一実施例の光学系のvi略図である。(Example) FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention.

同図において1け光源で例えば可視域のNe−No 、
 Ar  レーザーや不可視域のエキシマレーザ−等か
ら成っている。2は光源1から放射された光束、3は光
束2の光束径を以後の光学系に適合させる為に拡大若し
くは縮少する光束整形器、4は光束分割部材で入射光束
全複数に分割し・かつ複数の光束間に各々異った光路差
を付与して射出させている。5,7は各々光束分割部材
4の一部全構成する分割プリズムで複数の反射面を有し
・これらの反射面により所定の偏光成分を有し念入射光
束を複数に分割し、かつ分割しt複数の光束間に各々光
路差を与えて射出させている。6け光束分割部材4の一
部を構成する光学素子で入射光束の偏光面t−90度回
転させる例えば1Atf!i、長板や90”旋光子等か
ら成っている。8け曵数の微少レンズより成る7ライア
イレンズでh92次光源面を形成している。9はコンデ
ンサーレンズ、10けマスクやレチクル等の被照射面で
ある。
In the same figure, one light source is used, for example, Ne-No in the visible range,
It consists of Ar laser, invisible excimer laser, etc. 2 is a light beam emitted from the light source 1, 3 is a beam shaper that expands or reduces the diameter of the light beam 2 in order to adapt it to the subsequent optical system, and 4 is a beam splitting member that divides the entire incident light beam into a plurality of beams. In addition, the plurality of light beams are emitted with different optical path differences between them. Denoted at 5 and 7 are splitting prisms that each constitute part or all of the beam splitting member 4, and each has a plurality of reflecting surfaces.These reflecting surfaces divide the incident beam into a plurality of beams having predetermined polarization components, and t A plurality of light beams are emitted by giving an optical path difference to each of them. For example, the polarization plane of the incident light beam is rotated by t-90 degrees by an optical element that constitutes a part of the 6-piece light beam splitting member 4. For example, 1Atf! i, consists of a long plate, a 90" optical rotator, etc. 7 Lia's eye lenses consisting of 8-digit microlenses form the h92-order light source surface. 9 is a condenser lens, a 10-digit mask, a reticle, etc. is the irradiated surface.

本実m例では光源1から放射されるS偏光成分とPIJ
2光成分金有するランダムな偏光状態の光5J、2を光
束整形器3で適当な大きさの光束径に整形して元来分′
41)部材4の分割プリズム5に入射させている。特に
本実施例では分割プリズム5t−比較的製造が各易なS
偏光成分の入射光束を所定の割合で反射させることので
きる複数の反射面5−1 、5−2 、5−3 、・・
・と全反射面父上り!成している。これにより入射光束
のうちS偏光成分の″/l、!X、t−複数の反射面5
−1゜5−2.・・・で強度的に等分割して一味な強度
分布の光束として反射させ更に複数の反射面5−1.5
−2.・・・の各反射面間の距、@全適切に保ち、好ま
しくは可干渉距離よりも長くしてインコヒーレント化、
所謂非可干渉化を凹9射出させている。
In this example, the S polarized light component emitted from light source 1 and the PIJ
A beam shaper 3 shapes the randomly polarized light 5J, 2 with two light components into a beam diameter of an appropriate size, so that the beam diameter is
41) The light is made incident on the splitting prism 5 of the member 4. Particularly, in this embodiment, the split prism 5t - S, which is relatively easy to manufacture.
A plurality of reflective surfaces 5-1, 5-2, 5-3, .
・The total reflection surface is raised! has been completed. As a result, the S-polarized component of the incident light beam is ``/l,!
-1°5-2. . . . divides the intensity into equal parts and reflects it as a light beam with a uniform intensity distribution, and further divides it into multiple reflective surfaces 5-1.5
-2. The distance between each reflective surface of ... should be maintained appropriately, preferably longer than the coherence distance to make it incoherent,
The so-called incoherence is emitted from the concave 9.

一万P偏光成分の光束はその大部分が分Jflプリズム
5の全反射面50で反射して射出する。そこでP偏光成
分の光束?光学素子6により偏光面を90度可回転せて
分割プリズム5と同様の分割プリズム7にS偏光成分の
光束として入射させている。これにより分割プリズム5
と同様にS月元成分の光束を複数の反射説7−1゜7−
2.7−3.・−・で強度的に等分割し、更に非可干渉
化を図って射出させている。
Most of the 10,000P polarized light beam is reflected by the total reflection surface 50 of the Jfl prism 5 and exits. So, what about the luminous flux of the P-polarized component? The plane of polarization is rotatably rotated by 90 degrees by the optical element 6, and the beam is made to enter a splitting prism 7 similar to the splitting prism 5 as a beam of S-polarized light. As a result, the split prism 5
Similarly, the light flux of the S lunar component is subject to multiple reflection theory7-1゜7-
2.7-3. The beam is divided into equal parts in terms of strength, and the beam is emitted after making it incoherent.

このとき分割プリズム5から射出したS偏光成分の複数
に分割され九光束は偏光素子6によシP偏光成分の光束
となシその大部分は分割プリズム7の全反射C1j70
で反射して射出する。
At this time, the nine luminous fluxes emitted from the splitting prism 5 are divided into a plurality of S-polarized components, and the nine luminous fluxes are transferred to the polarizing element 6 to become a luminous flux of the P-polarized components.The majority of them are totally reflected by the splitting prism 7 C1j70.
It is reflected and ejected.

このように本実施例では光束分割部材4に入射するS偏
光成分及びP偏光成分の光束を各々強度的に等分割して
面積的に一様な強度分布を有する帯状の光束とし、更に
非可干渉化を図って射出させた後嘱フライアイレンズ8
に導jtシている。
In this way, in this embodiment, the S-polarized light component and the P-polarized light component incident on the light beam splitting member 4 are divided equally in terms of intensity to form a band-shaped light beam having an area-uniform intensity distribution. Fly-eye lens 8 that is emitted with interference
I am leading the way.

そしてプライアイレンズ8の集光点全第2次光源面とし
て1これより射出した一様なg度分布の光束を用い、コ
ンデンサーレンズ9により被照射面10をスペックルの
発生全軽減して均一照射している。
Then, using the light beam with a uniform g-degree distribution emitted from the condensing point of the primary eye lens 8 as the secondary light source surface 1, the condenser lens 9 completely reduces the occurrence of speckles on the irradiated surface 10 and makes it uniform. It is irradiating.

尚不実施グjにおいて分割プリズム7の複数の反射面を
P偏光成分に対して等分割する反射面で溝底しても良く
これによれば光学素子6は不要となる。
In addition, in case of non-implementation, the groove bottom may be formed by a plurality of reflecting surfaces of the dividing prism 7 that equally divide the P-polarized light component, thereby eliminating the need for the optical element 6.

第2図は第1図の光束分割部材4の把の一実施例の説明
図である。
FIG. 2 is an explanatory diagram of an embodiment of the grip of the light beam splitting member 4 shown in FIG. 1.

同図において20は光束分割部材、21.23は各々第
1図と同様の分割プリズムであり、光の進行方向に対し
て反射面が互いに直交するように配置されている。22
は第1図と同様の光学素子である。
In the figure, 20 is a light beam splitting member, and 21 and 23 are splitting prisms similar to those shown in FIG. 1, which are arranged so that their reflecting surfaces are perpendicular to each other with respect to the direction in which the light travels. 22
is an optical element similar to that shown in FIG.

第1図の実施例では光束分割部材4より射出する光束径
は帯状となっている。これに対して本実施例では分割プ
リズム21 、23 t−前述の如く配置することによ
り入射光束を縦方向と横方向に拡大して射出させている
In the embodiment shown in FIG. 1, the diameter of the beam emitted from the beam splitting member 4 is band-shaped. On the other hand, in this embodiment, the splitting prisms 21 and 23t are arranged as described above, so that the incident light beam is expanded in the vertical and horizontal directions and then emitted.

尚本実施例では光束分割部材20に置台偏光のレーザ又
は予め偏光板等を用いて一方向の偏光状態の光束−例え
ばS偏光成分の光束を入射させている。そして分割プリ
ズム21から一次元方向に強度的に等分割して射出させ
る。そして偏光索子22で偏光面を90度可回転せて分
割プリズム23に対してS偏光成分の光束となるように
入射させている。これによシ光束t−2次元的に一様な
強度分布を有する光束径に拡大すると共に光束の非可干
渉化を効率的に行っている。
In this embodiment, a light beam having a polarization state in one direction, for example, a light beam having an S-polarized component, is made incident on the light beam splitting member 20 using a stand-polarized laser or a polarizing plate in advance. Then, the light is emitted from the dividing prism 21 by dividing the light into equal parts in one-dimensional direction. Then, the plane of polarization is rotated by 90 degrees using the polarization cable 22, and the light beam is made incident on the splitting prism 23 so as to become an S-polarized light beam. As a result, the diameter of the light beam t-2 is expanded to have a two-dimensionally uniform intensity distribution, and the light beam is effectively rendered incoherent.

第2図に示す光束分割部材には一方向に偏光している偏
光成分の光束全入射させて光束径の拡大を図っているが
ランダムな偏元成分金有する光束に対して第2図の笑施
りIJと同様に2次元的な光束径の拡大を図るには・飼
えば第1図に示した光束分割部材4を2つ第3図に示す
ように互いに光束の拡大方向が直交するように配置すれ
ば良い。同図において30 、40は各々光束分割部材
S31 、33 、 、il 、 43は分割プリズム
、32゜42は偏光面金90”回転させる光学素子であ
る。
The beam splitting member shown in Figure 2 is designed to expand the diameter of the beam by making all the beams of polarized light that are polarized in one direction incident on the beam splitting member shown in Figure 2. In order to expand the luminous flux diameter two-dimensionally in the same way as the IJ, use two luminous flux splitting members 4 shown in Fig. 1 so that the directions of luminous flux expansion are orthogonal to each other as shown in Fig. 3. It should be placed in . In the figure, reference numerals 30 and 40 denote beam splitting members S31, 33, il, and 43, respectively, dividing prisms, and 32.degree. 42 an optical element for rotating the polarizing plane by 90''.

第3図では入射光束を光束分割部材30により一方向に
拡大し、更に光束分割部材40により光束分割部材30
による光束の拡大方向と直交する方向に光束全拡大し全
体的に2次元的な光束径の拡大を行っている。
In FIG. 3, the incident light beam is expanded in one direction by the light beam splitting member 30, and then the light beam splitting member 40 is used to expand the incident light beam in one direction.
The luminous flux is fully expanded in a direction perpendicular to the direction in which the luminous flux is expanded, thereby enlarging the diameter of the luminous flux two-dimensionally as a whole.

(発明の効果) 本発明によれば前述の構成を有する光束分割部材を光学
系中に設けることにより可干渉性の良いレーザー光束等
音用いたときの光束匝の拡大を図りつつ光束強度の一様
化を図り被照射面上ニ生じるスペックル?経減させ・か
つ被照射面の均一照明を可能とじ九特に半導体製造装置
に好適な照明光学系全達成することができる。
(Effects of the Invention) According to the present invention, by providing a beam splitting member having the above-mentioned configuration in an optical system, it is possible to expand the beam size when using a laser beam with good coherence and to reduce the beam intensity. Speckles that occur on the irradiated surface to improve the appearance? This makes it possible to uniformly illuminate the irradiated surface while reducing the time required, thereby making it possible to achieve an entire illumination optical system particularly suitable for semiconductor manufacturing equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例]の光字系の概略図・第2図
、第3図は各々第1図の一部分の他の実施例の説明図で
ある。図中1)−を光源、2け光束、3け光束整形器、
4,20,30.40は各々光束分割部材1s 、 7
12+ 、 23 、31 、33 、41 、43は
分割プリズム、6 、22.32.42は偏光面’i 
90’回転させる光学素子、8はフライアイレンズ・9
けコンデンサーレンズ、10は被照射面である。 特許出題人 キャノン株式会社
FIG. 1 is a schematic diagram of an optical system according to one embodiment of the present invention, and FIGS. 2 and 3 are explanatory diagrams of other embodiments of a portion of FIG. 1, respectively. In the figure, 1) - is the light source, 2-digit luminous flux, 3-digit luminous flux shaper,
4, 20, 30.40 are luminous flux splitting members 1s and 7, respectively.
12+, 23, 31, 33, 41, 43 are split prisms, 6, 22.32.42 are polarization planes 'i
Optical element that rotates 90', 8 is a fly eye lens, 9
10 is a surface to be illuminated. Patent questioner: Canon Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)光源からの光束を所定の反射率を有する複数の反
射面より成る2つの分割プリズムと該2つの分割プリズ
ムの間に配置した偏光面を90度回転させる光学素子と
を有する光束分割部材に入射させ、該光束分割部材から
射出した光束を被照射面に導光させたことを特徴とする
照明光学系。
(1) A luminous flux splitting member that includes two splitting prisms that are composed of a plurality of reflective surfaces having a predetermined reflectance for the luminous flux from a light source, and an optical element that rotates the plane of polarization by 90 degrees, which is placed between the two splitting prisms. 1. An illumination optical system characterized in that a luminous flux is made incident on a luminous flux splitting member and a luminous flux emitted from the luminous flux splitting member is guided to an irradiated surface.
(2)前記分割プリズムの複数の反射面は一方向の偏光
成分の光束を強度的に等分割して反射させるように構成
されていることを特徴とする特許請求の範囲第1項記載
の照明光学系。
(2) The illumination according to claim 1, wherein the plurality of reflecting surfaces of the splitting prism are configured to equally divide and reflect a luminous flux of polarized light components in one direction in terms of intensity. Optical system.
(3)前記2つの分割プリズムを該分割プリズムの反射
面が光束の進行方向に対して互いに直交するように配置
したことを特徴とする特許請求の範囲第1項記載の照明
光学系。
(3) The illumination optical system according to claim 1, wherein the two splitting prisms are arranged such that the reflecting surfaces of the splitting prisms are orthogonal to each other with respect to the traveling direction of the light beam.
JP61109983A 1986-05-14 1986-05-14 Illumination optics Expired - Fee Related JPH0666246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61109983A JPH0666246B2 (en) 1986-05-14 1986-05-14 Illumination optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61109983A JPH0666246B2 (en) 1986-05-14 1986-05-14 Illumination optics

Publications (2)

Publication Number Publication Date
JPS62265722A true JPS62265722A (en) 1987-11-18
JPH0666246B2 JPH0666246B2 (en) 1994-08-24

Family

ID=14524104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61109983A Expired - Fee Related JPH0666246B2 (en) 1986-05-14 1986-05-14 Illumination optics

Country Status (1)

Country Link
JP (1) JPH0666246B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100280431B1 (en) * 1998-01-20 2001-04-02 김영환 Method aligning wafer for exposure system
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100280431B1 (en) * 1998-01-20 2001-04-02 김영환 Method aligning wafer for exposure system
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9581911B2 (en) 2004-01-16 2017-02-28 Carl Zeiss Smt Gmbh Polarization-modulating optical element
US9316772B2 (en) 2004-01-16 2016-04-19 Carl Zeiss Smt Gmbh Producing polarization-modulating optical element for microlithography system
US8861084B2 (en) 2004-01-16 2014-10-14 Carl Zeiss Smt Ag Polarization-modulating optical element
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method

Also Published As

Publication number Publication date
JPH0666246B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
US5048926A (en) Illuminating optical system in an exposure apparatus
JP2655465B2 (en) Reflection type homogenizer and reflection type illumination optical device
US20170351100A1 (en) Beam transforming optical system, illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thickness to rotate linear polarization direction
US5153773A (en) Illumination device including amplitude-division and beam movements
JP3275575B2 (en) Projection exposure apparatus and device manufacturing method using the projection exposure apparatus
JP2002359176A (en) Luminaire, illumination control method, aligner, device and manufacturing method thereof
JP2001284228A (en) Exposure system and device manufacturing method
JP2590510B2 (en) Lighting equipment
JPWO2005010963A1 (en) Illumination optical apparatus, exposure apparatus, and exposure method
JPH11312631A (en) Illuminating optical device and aligner
JPS61212816A (en) Lighting equipment
JP2619473B2 (en) Reduction projection exposure method
JP2969718B2 (en) Illumination device and circuit manufacturing method using the same
JPS62265722A (en) Optical system for illumination
JPH01114035A (en) Aligner
JPH11174365A (en) Illumination optical device, exposure device provided therewith and exposure method
JP2765162B2 (en) Lighting equipment
JPH0769576B2 (en) Lighting optics
JPS6225483A (en) Illuminating device
JP2679337B2 (en) Illumination optical device, exposure apparatus including the same, and exposure method
JPS61279822A (en) Illuminating optical system
JPH0684760A (en) Formation of zonal luminous flux and illuminating optical device
JPS6381420A (en) Illuminating device
JP3111476B2 (en) Illumination optics
JPS58222522A (en) Projection aligner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees