JPS6225069B2 - - Google Patents

Info

Publication number
JPS6225069B2
JPS6225069B2 JP58179824A JP17982483A JPS6225069B2 JP S6225069 B2 JPS6225069 B2 JP S6225069B2 JP 58179824 A JP58179824 A JP 58179824A JP 17982483 A JP17982483 A JP 17982483A JP S6225069 B2 JPS6225069 B2 JP S6225069B2
Authority
JP
Japan
Prior art keywords
welding
electrode
heat input
layer
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58179824A
Other languages
Japanese (ja)
Other versions
JPS6072667A (en
Inventor
Tadamasa Yamaguchi
Noboru Nishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17982483A priority Critical patent/JPS6072667A/en
Publication of JPS6072667A publication Critical patent/JPS6072667A/en
Publication of JPS6225069B2 publication Critical patent/JPS6225069B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は厚肉ベンデイングロール鋼管の高能率
溶接方法に関し、詳しくは、厚肉ベンデイングロ
ール鋼管を高能率に溶接し、かつ溶接欠陥の無い
溶接部を得るための溶接方法であつて、とくに、
内面溶接における初層形成方法に関するものであ
る。 大径鋼管の製造方法としてはUOE方式、スパ
イラル方式、ベンデイングロール方式がある。こ
のうちベンデイングロール方式は、ベンデイング
後の真円度を良くするために鋼板の両端を油圧プ
レス等で端曲げを行い、その後、ロールにより通
常は6〜10回転圧成形して所定の管径にし、溶接
を行う方式であり、比較的厚肉管鋼の製造に適し
ている。 一般的には、1は内面開先どり、2は端曲げ、
3はベンデイングロール成形、4は外面側部分仮
付、5は内面側多層溶接、6は外面ガウジング、
7外面側多層溶接、8寸法修正、の手順で造管さ
れる。溶接法としてはサブマージアーク溶接方法
が用いられるが、これは、同方法が溶込みが深
く、溶着速度も大きく、かつ外観の良好なビード
を得るのに適しているからである。しかしなが
ら、内外面とも多層溶接しなければならないた
め、溶接に要する時間が非常に長く、生産性はこ
れによつて律速されている。 UOEパイプやスパイラルパイプの場合には、
多電極サブマージアーク溶接法による両面−層溶
接が一般的に行われており、溶接速度もはやいた
め、多層溶接を必要とするものに比較すると、溶
接の効率は非常に高い。このような両面一層溶接
法が可能となるためには、UOEパイプのように
開先精度が良好でなければならず、この点ベンデ
イングロール鋼管では開先突合せ精度が良好とは
いい難く、肉厚も大きいため必然的に多層溶接と
ならざるを得ないが、開先形状が第2図に示す如
く点接触でルート部がほとんど存在しないもので
あるため、多層溶接をするのには、次の通りの問
題点がある。 ベンデイングロール方式によつて造管するとき
には、第1図に示す如く、素鋼板1に角度αの内
面側開先4をとつてから、ベンデイングロール等
で成形する。この成形後の開先形状は第2図に示
す如く一点でしか接触しない型式のもので、外面
側3の突合せ部に角度θのすきまが生じる。この
すきまθはプレスのかけ方により多数変動する
が、第1図に示す如く、素鋼板1の両端に内面開
先をとる限り幾何学上避け難く、このすきま角度
θ、つまり、第2図に示す如きルート部が点接触
する開先の形状によつて内面側の初層溶接条件は
大きな影響を受ける。 すなわち、第2図に示す形状の開先を内面側2
から初層溶接すると、点接触でルート部がほとん
ど存在しないため、溶接条件によつては溶落ちし
やすく、このため、初層溶接は、低電流、低入熱
のもとで行なつて溶落ちを防止することになり、
通常は1電極法を用い、低電流で行なわれてい
る。しかし、このように形成された内面初層ビー
ドでは溶着金属量が少なく、第2層目で入熱量を
上げすぎると、アークが初層溶接金属を貫通し、
第2層目に溶落ちが生じる。このため、初層を第
1電極法によつて低電流溶接するときには、第2
層目も1電極法によつて低電流溶接を行なうこと
になり、入熱量を大きくした溶接は第3層目以降
とならざるを得ず、溶接能率は極めて悪いという
問題点があつた。 そこで、本発明者等は、ベンデイングロール鋼
管の溶接能率の向上を目的として溶接速度の向上
と溶接パス数の低減をはかるために、第2図に示
す如き開先の内面を多電極サブマージアーク溶接
することとし、この溶接条件を開先形状との関連
のもとで詳細に検討した。 その結果、多電極溶接であつても開先形状、と
くに、すきま角θに応じて溶接条件を変化させる
と、溶落ちを防止できかつ溶着量の多いビードを
高速度で形成できる事がわかつた。 まず、第2図に示すような開先形状を内面から
初層溶接するときに、溶落ちさせないためにはす
きま角θの大きさに応じて溶接入熱量をコントロ
ールしなければならない。 次に、先行極の電流を大きくしすぎると、たと
え溶接速度が速くて溶接入熱量を低下させても、
アークの掘削作用が強すぎて容易に溶落ちする。
このため、先行電流は大きすぎない事が重要であ
る。また、電流が小さくても細径のワイヤを用い
ると、電流密度が大きくなり結果的には大きな電
流を流した事と同じになる。このため、使用する
ワイヤ径は一定以上の直径を有するものが有利で
ある。 次に、多電極溶接においてスラグ巻込みなどの
欠陥を防止し、かつ形状の良好なビードを得るた
めには各電極の電流比を一定の範囲内に設定する
事が重要である。 本発明は以上のような知見に基ずいてなされた
ものである。 そこで、以下、本発明について初層溶接条件等
を通じて説明する。 まず、本発明では例えば板厚が25〜60mmの如く
比較的厚い鋼管用素材の内面側にのみ板厚の0.4
〜0.6倍で、角度25゜〜40゜の開先加工を施し、
これをベンデイングロール方式において成型して
外面側を部分仮付してから内面側を多電極サブマ
ージアーク溶接を行い、外面側をはつつた後に外
面溶接を行なつて造管する。 すなわち、UOE方式やスパイラル方式のよう
に、主として板厚があまり厚くない鋼管を対象と
している造管法では、うらはつりをしないで、し
かも内外面各1パスで溶接する方法がもつとも能
率的であり、事実そのような方法が採用されてい
る。とくにUOE鋼管では開先精度も良く比較的
大入熱までの内外面1層溶接が行われている。こ
れに対しベンデイングロール方式は薄物から厚物
までの造管が可能であるが、比較的薄いものいつ
いてはどうしてもUOE方式よりも能率が悪い。
また同じベンデイングロール方式で製造される鋼
管どうしを比較した場合、薄物では溶接パス数も
さほど多くならないため、溶接能率が問題になる
事は少ない。溶接能率が問題となるのは厚鋼板の
場合であるが、厚鋼板といつても、60mmを超える
ようなものの如く極厚に近いものでは、後記する
溶接条件で初層溶接を行つても、全体のパス数が
非常に多くなるため、初層や2層目の溶接能率向
上効果は全体からみると比較的小さくなり、この
ため、本発明では板厚は25mm〜60mmの範囲のもの
を対象とする。 ところで、厚物で溶接能率をあげるためには、
内外面開先としてルートフエースの突合せ精度を
良くし、大入熱でも溶落ちないようにすることが
望ましいが、機械による両面開先どりをするため
には高価な設備が必要となるし、またガス切断で
両面開先どりをしようとすると、極めて手間がか
かる。このため、本発明法においてベンデイング
ロール方式によつて造管するときには、一般の場
合と同様に、第1図に示す如く、ガス切断によつ
て内面開先加工のみを行なつて両面開先どりは行
なわないが、このときに内面開先の深さは板厚の
0.4〜0.6倍程度の開先深さにする。すなわち、板
厚の0.4倍未満の開先深さで内面溶接を行ない、
外面側をはつつて外面溶接を行おうとすると外面
側の開先面積が大きくなり、結果的には溶接に要
する時間が長くなり、溶接能接の向上の面から好
ましくない。また深さが0.6倍を超える場合には
第3図に示した内面側突合せ開先面積Sが大きく
なり、この場合も溶接に要する時間が長くなり好
ましくない。 また、内面開先角度α(第1図参照)が25゜未
満では次のような問題点がある。すなわち素鋼板
を成型して鋼管状にしたときに第2図に示した内
面側の実際の突合せ角度βはβ=(2α−θ)と
なりαが25゜未満のときは突合せ角度はかなり狭
くなる。開先角度が狭い程パス数の低減には有利
であるが、角度が狭い場合には溶接後のスラグが
剥離しいくく、とくにパイプ内面においてはその
除去が極めて大きな問題となる。しかも角度が狭
いところで入熱の大きい溶接を行うと、ビード5
のろ断面が第4図のような梨の実状となり凝固割
れ5aが発生しやすい。従つて素鋼板の開先角度
は25゜以上必要である。一方、その値が40゜を超
えるとスラグ剥離や、凝固割れの心配は無いもの
の、成形後の開先面積が広くなり、溶接パス数の
増加を招くことになる。従つて素鋼板に加工する
ときの内面側開先角度は25゜〜40゜の範囲が好ま
しい。 また、上記の如く、内面側を多電極サブマージ
アーク溶接して初層を形成するときには、直径
4.0〜4.8mmの電極ワイヤを用い、第1電極の電流
を750A以下に設定し、第2電極以降の電流をそ
の直前の電極電流の0.70〜0.90倍に設定し、更
に、第2図で示すすきま角θによつて入熱量を後
記範囲に調整して初層ビードを形成する。 まず、電極ワイヤとしては、その経が4.0〜4.8
mmφ程度のものを用いるのが好ましい。後記する
電極電流との関係において、ワイヤ径が4.0mmφ
未満の場合には、電流密度が大きくなりすぎ、そ
の結果アークの堀削作用も強くなるため溶落ちの
危険があり、一方、4.8mmφを超える場合には後
記する溶接電流では短落して安定な溶接が行えな
いという問題がある。したがつて後記する溶接電
流との関係でワイヤ径は4.0〜4.8mmφであること
が好ましい。 次に電極電流であるが、多電極溶接における第
1電極の役割には十分な溶込み深さを確保するこ
とにあり、そのために一般には高電流を流すが、
本発明においてこのような条件を採用すると容易
に溶落ちするため、第1電極の電流は750A以下
にする必要がある。第1電極は上記のごとくアー
クのドクリング作用で母材を堀削するため第1電
極によつてできるビード底部には多数のスラグが
残留するが、第2電極以降でこれらのスラグを浮
上させ、かつビード形状を整えることが行われる
のであるが、第2電極電流を大きくしすぎると溶
込み深さが増加しすぎて溶落ちの危険性が増すと
ともに溶落ちしなくても第2電極によつても多数
のスラグが残留する。また第2電極電流が小さす
ぎると第1電極によつて形成されたビード底部に
残留しているスラグが浮上せず、結果的にスラグ
巻込み欠陥となる。これらの欠陥を防止して、か
つ形状の良好なビードを得るためには第2電極電
流を第1電極の0.70〜0.90倍に設定する必要があ
る。また3電極溶接の場合も形状が良好で欠陥の
無いビードを得るためには、第3電極電流を第2
電極電流の0.70〜0.90倍に設定する必要があり、
更に、これ以後の電極を用いる場合にも、前の電
極電流の0.70〜0.90倍に設定する。 次に、開先形状が第2図で示す如き形状である
故に、その成形時に生じる外面側のすきま角θを
求め、この角度θから次の関係式によつて溶接入
熱量(H.I KJ/cm)を調整する。 θ≦10゜のとき −3.67θ+69≦H.I.≦−3.67θ+99 10゜≦θ≦18゜のとき 32≦H.I.≦−3.67θ+99 18゜≦θのとき H.I.≦32 とする必要がある。この理由を示すと、次の通り
である。 溶接入熱量は電流、電圧ならびに溶接速度の関
数であり、これらの条件によつて入熱量は決めら
れる。しかし、本発明は開先形状が第2図に示す
通りであつて、この開先を溶接するときに溶落ち
を起さない条件は、上記の如く、すきま角θに関
連させて入熱量をコントロールすることであつ
て、そこで、この関係を具体的に求めたところ、
第5図に示す通りの関係が得られた。第5図はす
きま角θと投入可能な溶接入熱量との関係を示し
たもので、第5図において斜線で囲まれたイなら
びにロのところが高能率で溶落ちなく内側初層溶
接ができる範囲である。この際に、上限をはずれ
ると溶落ちが生じ、下限をはずれると溶接能率が
低下する。 すなわち、溶接入熱量(H.I KJ/cm)が H.I.≦−3.67θ+99 の関係を満していれば溶落ちせず、しかも形状が
良好なビードを得ることが可能である。したがつ
て、上記のθで決定される入熱量以下で溶接すれ
ばよい。しかし、この上に多電極法による溶接能
率を考慮する必要があり、これを併せると、 θ≦10゜のとき −3.67θ+69≦H.I.≦−3.67θ+99θ 10゜≦θ≦18゜のとき 32≦H.I.≦−3.67θ+99θ 18゜≦θのとき H.I.≦32 の関係を満たす必要がある。即ち、θが10゜より
小さい場合、溶接入熱量は−3.67θ+69(KJ/
cm)より大きくなれば多電極化による高速溶接の
メリツトは期待できない。 また、10゜≦θ≦18゜のときには内面初層最低
溶接入熱量は32KJ/cmとして、最大−3.67θ+
99KJ/cmまで変化させることができる。θ≧18
゜のときには溶落ちの確率は極めて大きくなる
が、32KJ/cm以下の入熱にしておけば溶鉄の表
面張力により溶落ち防止ははかれる。 以上の通りの条件で初層溶接し、その後、つま
り第2層以降の溶接が必要な場合には、板厚に応
じて入熱量を設定して溶接すると、この多電極溶
接法により高能率に内面溶接を行なうことができ
る。 このように本発明方法によれば、従来能率の悪
かつたベンデイングロール鋼管の内面溶接を高能
率に行うことができる。 つぎに本発明を実施例によりさらに詳しく説明
する。 実施例 1 第6図に示すように板厚(t=38mm)、長さ1m
のAPI規格で×−60級鋼板に角度β(第1図でい
えば、2αに相当)、深さ(t1)20mmの内面相当
開先をとり、外面側に角度θのすきまを作り、Si
−Mn系ワイヤとSiO2−TiO2−AlO3系溶融型フラ
ツクスを用いて多電極サブマージアーク溶接を行
つた。溶接は全て3電極法で行ない、溶接時の溶
落ち現象を調べた。溶接条件と結果を第1表(た
だし、溶接入熱量は3電極L,M,Tの合量であ
る。)に示すが、本発明法ではワイヤ径、溶接電
流、およびθで決る溶接入熱量がすべて必要な条
件を満たしているため、いずれの場合も良好なビ
ードが得られ、かつ次層を溶接しても溶落ちしな
いだけの十分な溶着量が得られた。 これに対し比較例ではいずれの場合にも初層溶
接で溶落ちが発生し、最後まで溶接することが不
可能であつた。すなわち、B1ではθで求められ
る溶接入熱量範囲は満足しているものの溶接電流
が大きすぎるため溶落ちした。B2では溶接電
流、溶接入熱量は必要な条件を満足しているもの
の、ワイヤ径が細いため結果的に電流密度が大き
く、溶込み深さが大となり溶落ちした。B3,B4
はθで求められる入熱量よりも大きすぎるため溶
落ちした。
The present invention relates to a high-efficiency welding method for thick-walled bending roll steel pipes, and more particularly, to a welding method for highly efficient welding of thick-walled bending-roll steel pipes and for obtaining a welded portion free of weld defects. ,
This invention relates to a method for forming an initial layer in internal welding. Methods for manufacturing large diameter steel pipes include the UOE method, spiral method, and bending roll method. Among these, the bending roll method involves bending both ends of the steel plate using a hydraulic press, etc. to improve the roundness after bending, and then pressure-forming with rolls, usually 6 to 10 revolutions, to obtain the specified pipe diameter. This method involves welding and welding, and is suitable for manufacturing comparatively thick-walled steel pipes. In general, 1 is an inner beveling, 2 is an end bending,
3 is bending roll forming, 4 is external partial tacking, 5 is internal multilayer welding, 6 is external gouging,
The pipe is manufactured using the following steps: 7. External multilayer welding, 8. Dimension correction. The submerged arc welding method is used as the welding method because it has deep penetration, high welding speed, and is suitable for obtaining beads with good appearance. However, since multiple layers must be welded on both the inner and outer surfaces, the time required for welding is extremely long, which limits productivity. In the case of UOE pipes and spiral pipes,
Double-sided layer welding by multi-electrode submerged arc welding is commonly performed, and the welding speed is fast, so welding efficiency is very high compared to those requiring multi-layer welding. In order to enable such double-sided single-layer welding, the groove precision must be as good as in UOE pipes.In this respect, bending roll steel pipes cannot be said to have good groove butt precision, and the Since the thickness is large, multi-layer welding is inevitably required, but since the groove shape is point contact as shown in Figure 2 and there is almost no root, the following steps are required to perform multi-layer welding. There are problems with the street. When making a pipe by the bending roll method, as shown in FIG. 1, a steel plate 1 is provided with an inner groove 4 at an angle α, and then formed using a bending roll or the like. As shown in FIG. 2, the groove shape after molding is of a type in which the two contact only at one point, and a gap of an angle θ is created at the abutting portion on the outer surface side 3. This clearance θ varies depending on how the press is applied, but as shown in Fig. 1, it is geometrically difficult to avoid as long as inner bevels are provided at both ends of the raw steel plate 1. As shown, the conditions for welding the first layer on the inner surface are greatly influenced by the shape of the groove with which the root portion makes point contact. That is, the groove of the shape shown in FIG.
When the first layer is welded, it is a point contact and there is almost no root part, so burn-through is likely to occur depending on the welding conditions.For this reason, the first layer welding is performed under low current and low heat input to prevent melting. This will prevent it from falling,
Usually, a one-electrode method is used and a low current is used. However, in the inner first layer bead formed in this way, the amount of weld metal is small, and if the heat input in the second layer is increased too much, the arc will penetrate the first layer weld metal.
Burn-through occurs in the second layer. Therefore, when welding the first layer with a low current using the first electrode method, the second
Low current welding was also performed for the layers using the one-electrode method, and welding with a large amount of heat input had to be carried out from the third layer onwards, posing the problem of extremely poor welding efficiency. Therefore, in order to increase the welding speed and reduce the number of welding passes in order to improve the welding efficiency of bending roll steel pipes, the present inventors applied a multi-electrode submerged arc to the inner surface of the groove as shown in Figure 2. Welding was performed, and the welding conditions were examined in detail in relation to the groove shape. The results showed that even in multi-electrode welding, by changing the welding conditions according to the groove shape, especially the gap angle θ, it was possible to prevent burn-through and form a bead with a large amount of welding at high speed. . First, when welding the first layer from the inner surface of a groove shape as shown in FIG. 2, the amount of welding heat input must be controlled according to the size of the gap angle θ in order to prevent burn-through. Next, if the current in the leading electrode is made too large, even if the welding speed is high and the welding heat input is reduced,
The digging action of the arc is too strong and it burns through easily.
For this reason, it is important that the preceding current is not too large. Furthermore, even if the current is small, if a wire with a small diameter is used, the current density will increase, resulting in the same result as passing a large current. For this reason, it is advantageous to use a wire having a diameter greater than a certain value. Next, in multi-electrode welding, it is important to set the current ratio of each electrode within a certain range in order to prevent defects such as slag entrainment and to obtain a well-shaped bead. The present invention has been made based on the above findings. Therefore, the present invention will be explained below through initial layer welding conditions and the like. First, in the present invention, 0.4 mm of the plate thickness is applied only to the inner surface of a relatively thick steel pipe material, such as a plate thickness of 25 to 60 mm.
~0.6x, beveled at an angle of 25° to 40°,
This is molded using a bending roll method, the outer surface is partially tacked, the inner surface is subjected to multi-electrode submerged arc welding, the outer surface is peeled off, and the outer surface is welded to form a pipe. In other words, in pipe manufacturing methods such as the UOE method and the spiral method, which are mainly used for steel pipes whose plate thickness is not very thick, it is more efficient to weld the inner and outer surfaces in one pass without lifting the back. In fact, such a method has been adopted. In particular, UOE steel pipes have good groove precision and single-layer welding on the inner and outer surfaces with relatively high heat input. On the other hand, the bending roll method is capable of making pipes from thin to thick materials, but it is inevitably less efficient than the UOE method when producing relatively thin products.
Furthermore, when comparing steel pipes manufactured using the same bending roll method, the number of welding passes is not so large for thin products, so welding efficiency is rarely a problem. Welding efficiency becomes a problem when it comes to thick steel plates, but for thick steel plates that are close to extremely thick, such as those over 60 mm, even if the first layer is welded under the welding conditions described below, Since the total number of passes becomes very large, the effect of improving welding efficiency for the first and second layers is relatively small from the overall perspective.For this reason, the present invention targets plates with a thickness in the range of 25 mm to 60 mm. shall be. By the way, in order to increase welding efficiency with thick materials,
It is desirable to improve the butt precision of the root face as a groove on the inner and outer surfaces and to prevent burn-through even with large heat input, but expensive equipment is required to prepare the groove on both sides mechanically. Attempting to create a double-sided bevel using gas cutting is extremely time consuming. Therefore, when forming pipes by the bending roll method in the method of the present invention, as shown in FIG. No drilling is performed, but at this time the depth of the inner groove is determined by the thickness of the plate.
Make the groove depth about 0.4 to 0.6 times. In other words, internal welding is performed with a groove depth less than 0.4 times the plate thickness,
If an attempt is made to weld the outer surface by cutting the outer surface, the groove area on the outer surface will become larger, and as a result, the time required for welding will become longer, which is undesirable from the standpoint of improving welding performance. Moreover, if the depth exceeds 0.6 times, the inner surface side butt groove area S shown in FIG. 3 becomes large, and the time required for welding becomes longer in this case as well, which is not preferable. Further, if the inner surface groove angle α (see Fig. 1) is less than 25°, the following problems occur. In other words, when raw steel plates are formed into a steel tube, the actual butt angle β on the inner surface shown in Figure 2 is β = (2α - θ), and if α is less than 25°, the butt angle will be quite narrow. . The narrower the groove angle, the more advantageous it is to reducing the number of passes, but if the angle is narrow, the slag after welding tends to peel off, and its removal becomes an extremely serious problem, especially on the inner surface of the pipe. Moreover, when welding with a large heat input at a narrow angle, the bead 5
The cross section becomes pear-shaped as shown in FIG. 4, and solidification cracks 5a are likely to occur. Therefore, the groove angle of the raw steel plate must be 25° or more. On the other hand, if the value exceeds 40°, there is no fear of slag separation or solidification cracking, but the groove area after forming becomes wider, leading to an increase in the number of welding passes. Therefore, when processing into a raw steel plate, the inner surface groove angle is preferably in the range of 25° to 40°. In addition, as mentioned above, when forming the first layer by multi-electrode submerged arc welding on the inner surface, the diameter
Using a 4.0 to 4.8 mm electrode wire, set the first electrode current to 750 A or less, set the second and subsequent electrode currents to 0.70 to 0.90 times the previous electrode current, and further, as shown in Figure 2. The initial layer bead is formed by adjusting the amount of heat input within the range described below by adjusting the clearance angle θ. First, as an electrode wire, its diameter is 4.0 to 4.8.
It is preferable to use a diameter of approximately mmφ. In relation to the electrode current described later, the wire diameter is 4.0mmφ
If the current density is less than 4.8mmφ, the current density will become too large, and as a result, the digging action of the arc will also become stronger, leading to the risk of burn-through.On the other hand, if the welding current exceeds 4.8mmφ, the welding current described below will be short and stable. There is a problem that welding cannot be performed. Therefore, the wire diameter is preferably 4.0 to 4.8 mmφ in relation to the welding current described later. Next, regarding electrode current, the role of the first electrode in multi-electrode welding is to ensure sufficient penetration depth, and for this purpose, a high current is generally passed.
In the present invention, if such conditions are adopted, burn-through occurs easily, so the current of the first electrode needs to be 750 A or less. As mentioned above, the first electrode excavates the base material by the docking action of the arc, so a large number of slags remain at the bottom of the bead formed by the first electrode, but these slags are floated by the second and subsequent electrodes. At the same time, the bead shape is adjusted, but if the second electrode current is made too large, the penetration depth increases too much, increasing the risk of burn-through, and even if burn-through does not occur, the second electrode However, a large amount of slag remains. Furthermore, if the second electrode current is too small, the slag remaining at the bottom of the bead formed by the first electrode will not float, resulting in a slag entrainment defect. In order to prevent these defects and obtain beads with good shape, it is necessary to set the second electrode current to 0.70 to 0.90 times that of the first electrode. In addition, in the case of three-electrode welding, in order to obtain a bead with a good shape and no defects, the third electrode current must be
It should be set to 0.70-0.90 times the electrode current,
Furthermore, even when using subsequent electrodes, the current is set to 0.70 to 0.90 times the previous electrode current. Next, since the groove shape is as shown in Figure 2, the clearance angle θ on the outer surface side that occurs during forming is determined, and from this angle θ, the welding heat input (HI KJ/cm ). When θ≦10° -3.67θ+69≦HI≦−3.67θ+99 When 10°≦θ≦18° 32≦HI≦−3.67θ+99 When 18°≦θ HI≦32. The reason for this is as follows. Welding heat input is a function of current, voltage, and welding speed, and the heat input is determined by these conditions. However, in the present invention, the groove shape is as shown in Fig. 2, and the conditions for not causing burn-through when welding this groove are as described above, by adjusting the heat input in relation to the clearance angle θ. Therefore, when we specifically sought this relationship, we found that
The relationship shown in FIG. 5 was obtained. Figure 5 shows the relationship between the clearance angle θ and the amount of welding heat input that can be input.The areas A and B surrounded by diagonal lines in Figure 5 are the ranges where inner first layer welding can be performed with high efficiency and without burn-through. It is. At this time, if the upper limit is exceeded, burn-through occurs, and if the lower limit is exceeded, the welding efficiency decreases. In other words, if the welding heat input (HI KJ/cm) satisfies the relationship HI≦−3.67θ+99, it is possible to obtain a bead with good shape without burn-through. Therefore, it is sufficient to perform welding with a heat input amount less than or equal to the amount of heat determined by θ. However, in addition to this, it is necessary to consider the welding efficiency due to the multi-electrode method, and when this is combined, when θ≦10° -3.67θ+69≦HI≦−3.67θ+99θ When 10°≦θ≦18° 32≦HI ≦−3.67θ+99θ When 18°≦θ, it is necessary to satisfy the relationship HI≦32. In other words, when θ is less than 10°, the welding heat input is -3.67θ + 69 (KJ/
cm), the benefits of high-speed welding due to multiple electrodes cannot be expected. In addition, when 10°≦θ≦18°, the minimum welding heat input for the inner first layer is 32KJ/cm, and the maximum welding heat input is -3.67θ+
It can be changed up to 99KJ/cm. θ≧18
The probability of burn-through becomes extremely high when the temperature is 32 KJ/cm or less, but burn-through can be prevented by the surface tension of the molten iron if the heat input is kept below 32 KJ/cm. After welding the first layer under the above conditions, if it is necessary to weld the second layer or later, set the amount of heat input according to the plate thickness and weld. This multi-electrode welding method can achieve high efficiency. Internal welding can be performed. As described above, according to the method of the present invention, internal welding of bending roll steel pipes, which has conventionally been inefficient, can be performed with high efficiency. Next, the present invention will be explained in more detail with reference to Examples. Example 1 As shown in Figure 6, plate thickness (t = 38 mm), length 1 m
According to the API standard of ×-60 grade steel plate, an angle β (equivalent to 2α in Fig. 1) and a depth (t 1 ) of 20 mm are taken on the inner surface, and a gap with an angle θ is created on the outer surface. Si
Multi-electrode submerged arc welding was performed using -Mn wire and SiO 2 -TiO 2 -AlO 3 fused flux. All welding was performed using the three-electrode method, and the burn-through phenomenon during welding was investigated. The welding conditions and results are shown in Table 1 (however, the welding heat input is the total amount of the three electrodes L, M, and T). In the method of the present invention, the welding heat input is determined by the wire diameter, welding current, and θ. Since all of the required conditions were met, a good bead was obtained in all cases, and a sufficient amount of welding was obtained to prevent burn-through even when the next layer was welded. On the other hand, in the comparative examples, burn-through occurred in the first layer welding in all cases, making it impossible to weld all the way to the end. That is, in B1, although the welding heat input range determined by θ was satisfied, burn-through occurred because the welding current was too large. In B2, although the welding current and welding heat input satisfied the necessary conditions, the wire diameter was small, resulting in a high current density, resulting in a large penetration depth and burn-through. B3, B4
was too large than the heat input required by θ, so it burned through.

【表】 実施例 2 実施例1で用いた鋼板と同様の鋼板を内面開先
βとして55゜、深さ20mmの開先で外面側に生じる
角度θを8゜と一定にして溶接を行つた。この場
合内面初層溶接条件を種々変化させ、さらに2層
目を盛りあげた後、X線透過検査を実施した。用
いたワイヤフラツクスも実施例1の場合と同様で
ある。 第2表に溶接条件および溶接結果(ただし、入
熱量は3電極L,M,Tの合量である。)を示
す。
[Table] Example 2 A steel plate similar to the steel plate used in Example 1 was welded with an inner groove β of 55° and an angle θ formed on the outer surface of the groove with a depth of 20 mm constant at 8°. . In this case, the inner first layer welding conditions were varied, and after the second layer was heaped up, an X-ray transmission inspection was conducted. The wire flux used was also the same as in Example 1. Table 2 shows welding conditions and welding results (however, the amount of heat input is the total amount of the three electrodes L, M, and T).

【表】 本発明法では初層および2層目の溶接を行つて
もビード外観は良好であり、X線透過検査によつ
ても欠陥発生は認められなかつた。これに対し比
較例ではいろいろな問題が生じた。 すなわち、D1では初層溶接を1電極法で行つ
て、その上に第2層を溶接したが、初層の溶接金
属の量が少ないため第2層で溶落ちした。D2で
は初層3電極溶接法の溶接条件が悪いため、即ち
M極(第2電極)の電流が第1電極の電流に比し
て大きく、溶込み深さが大きくなつて初層溶接で
溶落ちした。D3では第2層目の溶接を行つても
良好なビード外観が得られたが、初層溶接におけ
る各電極電流比が悪いためX線透過検査を行つた
ところ、初層ビードに多数のスラグ巻込みが認め
られた。D4は初層入熱量が小さいため、溶着金
属量が少なく第2層目の溶接によつて溶落した。 実施例 3 実施例2で使用した鋼板と同様の鋼板、および
ワイヤ、フラツクスを用い内面溶接を最終パスま
で実施し、パス数および溶接を終了するまでの時
間を測定し、従来法と比較した。 第3表は溶接条件を示したもので、本発明法の
場合は初層から最終パスまで全て3電極法で行つ
た。ただし、第3表の入熱量は3電極L,M,T
の合量である。
[Table] In the method of the present invention, the bead appearance was good even when the first and second layers were welded, and no defects were observed even by X-ray inspection. On the other hand, various problems arose in the comparative example. That is, in D1, the first layer was welded using the one-electrode method, and the second layer was welded on top of it, but because the amount of weld metal in the first layer was small, burn-through occurred in the second layer. In D2, the welding conditions of the first layer three-electrode welding method are poor, that is, the current of the M pole (second electrode) is larger than the current of the first electrode, and the penetration depth becomes large, resulting in melting in the first layer welding. It fell. In D3, a good bead appearance was obtained even after welding the second layer, but due to the poor current ratio of each electrode in the first layer welding, an X-ray transmission inspection revealed that there were many slag coils on the first layer bead. Containment was recognized. In D4, the initial layer heat input was small, so the amount of weld metal was small and burned through when the second layer was welded. Example 3 Using a steel plate similar to that used in Example 2, wire, and flux, internal welding was performed up to the final pass, and the number of passes and time taken to complete welding were measured and compared with the conventional method. Table 3 shows the welding conditions, and in the case of the method of the present invention, everything from the first layer to the final pass was performed using a three-electrode method. However, the heat input in Table 3 is for the three electrodes L, M, T.
is the total amount of

【表】 これに対し比較例では従来行なわれていたごと
く初層第2層目を1電極法で行い3パス目以降を
3電極法で行つた。ワイヤは全て4.0mmφのもの
を使用した。 第4表は開先形状、積層法、溶接結果を示した
ものである。
[Table] On the other hand, in the comparative example, the first layer and the second layer were formed using the one-electrode method, and the third and subsequent passes were performed using the three-electrode method, as was conventionally done. All wires used were 4.0 mmφ. Table 4 shows the groove shape, lamination method, and welding results.

【表】 本発明法では溶接速度が速く、かつパス数も少
ないため、効率が良くパス間温度150゜では29分
で全て終了したのに対し、比較例では45分要し
た。 以上、実施例で示したように本発明によれば従
来法に比較して厚肉ベンデイングロール鋼管を能
率良く溶接することができ、溶接に要する時間は
大幅に短縮することができ、工業上貢献するとこ
ろ大なるものである。
[Table] The method of the present invention has a high welding speed and a small number of passes, so it is efficient and completed in 29 minutes at an interpass temperature of 150°, whereas it took 45 minutes in the comparative example. As shown in the examples above, according to the present invention, thick-walled bending roll steel pipes can be welded more efficiently than conventional methods, and the time required for welding can be significantly shortened, making it possible to weld industrially. This is a great contribution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はベンデイングロール鋼管用素材の側面
図、第2図はベンデイングロール後の開先突合せ
状況の説明図、第3図はベンデイングロール後の
開先面積の説明図、第4図は初層溶接金属の凝固
割れの説明図、第5図は外面側突合せ部のすきま
角度θと内面初層溶接の投入可能熱量の関係を示
すすグラフ、第6図は実施例を用いた開先形状の
一例の説明図である。 符号、1……鋼管用素鋼板、2……内面側表
面、3……外面側表面、4……内面側開先、5…
…ビード、5a……初層凝固割れ、α……素鋼板
内面開先角度、β……突合せ時内面開先角度、θ
……突合せ時外面すきま角度、S……内面突合せ
開先面積。
Figure 1 is a side view of the bending roll material for steel pipes, Figure 2 is an explanatory diagram of the groove butting situation after the bending roll, Figure 3 is an explanatory diagram of the groove area after the bending roll, and Figure 4 is an illustration of the groove area after the bending roll. is an explanatory diagram of solidification cracking in the first layer weld metal, FIG. 5 is a graph showing the relationship between the clearance angle θ of the outer surface side abutment part and the amount of heat that can be input for inner first layer welding, and FIG. It is an explanatory view of an example of tip shape. Code, 1... Steel plate for steel pipe, 2... Inner surface, 3... Outer surface, 4... Inner groove, 5...
...Bead, 5a...Initial solidification crack, α...Inner surface groove angle of raw steel plate, β...Inner surface groove angle at butt, θ
...External clearance angle at butt, S...Inner butt groove area.

Claims (1)

【特許請求の範囲】 1 鋼管用素鋼板の内面側を開先加工したのち
に、ベンデイングロール方式にて成形して外面側
を部分仮付し、その後、内面側に突合せ角β、外
面側にすきま角θを生じ、ルート部が点接触の状
態で突合せた開先を、内面ならびに外面から溶接
を行なつて造管する際に、この内面からの突合せ
溶接の初層ビードを、多電極サブマージアーク溶
接によつて形成し、この初層形成時に、第1電極
電流値を750A以下、第2電極以降の電流値をそ
の直前の電極電流値の0.70〜0.90倍に調整すると
共に、前記すきま角θにもとずいて以下の関係式
(1),(2),(3)の範囲内に、 θ≦10゜のとき −3.67θ+69≦溶接入熱量(H.I KJ/cm) ≦−3.67θ+99 …(1) 10゜≦θ≦18゜のとき 32≦溶接入熱量(H.I KJ/cm) ≦−3.67θ+99 …(2) 16゜≦θのとき 溶接入熱量(H.I KJ/cm)≦32 …(3) 溶接入熱量(H.I KJ/cm)を調整することを特
徴とする厚肉ベンデイングロール鋼管の高能率溶
接方法。
[Scope of Claims] 1. After groove-processing the inner side of a raw steel plate for steel pipes, it is formed using a bending roll method and partially tacked on the outer side, and then a butt angle β is formed on the inner side, and a butt angle β is formed on the outer side. When making a pipe by welding grooves that butt together with their roots in point contact, creating a clearance angle θ from the inner and outer surfaces, the initial bead of butt welding from the inner surface is welded using a multi-electrode It is formed by submerged arc welding, and when forming this first layer, the first electrode current value is adjusted to 750 A or less, the current value of the second electrode and subsequent electrodes is adjusted to 0.70 to 0.90 times the immediately preceding electrode current value, and the above-mentioned gap is adjusted. Based on the angle θ, the following relational expression
Within the range of (1), (2), and (3), when θ≦10°, −3.67θ+69≦Welding heat input (HI KJ/cm) ≦−3.67θ+99 …(1) 10°≦θ≦18° When 32≦Welding heat input (HI KJ/cm) ≦−3.67θ+99 …(2) When 16°≦θ Welding heat input (HI KJ/cm)≦32 …(3) Welding heat input (HI KJ/cm) ) A high-efficiency welding method for thick-walled bending roll steel pipes.
JP17982483A 1983-09-27 1983-09-27 Welding method of thick walled steel pipe for bending roll with high efficiency Granted JPS6072667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17982483A JPS6072667A (en) 1983-09-27 1983-09-27 Welding method of thick walled steel pipe for bending roll with high efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17982483A JPS6072667A (en) 1983-09-27 1983-09-27 Welding method of thick walled steel pipe for bending roll with high efficiency

Publications (2)

Publication Number Publication Date
JPS6072667A JPS6072667A (en) 1985-04-24
JPS6225069B2 true JPS6225069B2 (en) 1987-06-01

Family

ID=16072528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17982483A Granted JPS6072667A (en) 1983-09-27 1983-09-27 Welding method of thick walled steel pipe for bending roll with high efficiency

Country Status (1)

Country Link
JP (1) JPS6072667A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101885011A (en) * 2010-07-16 2010-11-17 潍坊长安铁塔股份有限公司 Making process of high strength steel straight seam steel tube
CN102620676B (en) * 2012-05-02 2014-03-05 中国石油集团渤海石油装备制造有限公司 Measuring method for welding heat cycle parameters of longitudinal seam submerged-arc welded pipe
CN103707002B (en) * 2012-09-29 2016-04-13 宁波江丰电子材料股份有限公司 Focusing ring and forming method thereof
CN102886593B (en) * 2012-10-17 2015-10-28 山东电力集团公司电力科学研究院 A kind of welding method of UHV transmission steel tube tower Q460 high-strength steel steel pipe
CN103357995B (en) * 2013-07-23 2015-11-18 江苏玉龙钢管股份有限公司 Heat resisting steel ERW welding method
CN104057186B (en) * 2014-05-30 2016-03-16 国家电网公司 A kind of welding method of UHV transmission steel tube tower Q690 high-strength steel steel pipe
CN105817844B (en) * 2016-05-20 2017-08-29 中国石油大学(华东) The manufacture method of X80 pipeline steel spiral welded pipes
CN106624612A (en) * 2016-08-22 2017-05-10 中石化石油工程机械有限公司沙市钢管厂 Thick-wall spiral steel pipe high-speed submerged arc welding process
CN112575624B (en) * 2019-09-27 2022-07-15 比亚迪股份有限公司 Butt welding plate group, turnout beam and processing method of butt welding plate group

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53130241A (en) * 1977-04-20 1978-11-14 Nippon Steel Corp Welding method for manufacture of thick walled steel pipe
JPS55112181A (en) * 1979-02-23 1980-08-29 Nippon Kokan Kk <Nkk> Welding method for production of large-diameter thick-walled steel pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53130241A (en) * 1977-04-20 1978-11-14 Nippon Steel Corp Welding method for manufacture of thick walled steel pipe
JPS55112181A (en) * 1979-02-23 1980-08-29 Nippon Kokan Kk <Nkk> Welding method for production of large-diameter thick-walled steel pipe

Also Published As

Publication number Publication date
JPS6072667A (en) 1985-04-24

Similar Documents

Publication Publication Date Title
JPS6225069B2 (en)
CN111390350A (en) Submerged-arc welding method for C-276 composite board
CN113878204A (en) Welding method of stainless steel composite plate
JP2015150597A (en) Submerged arc welding part excellent in low temperature toughness
CN111408824A (en) Composite welding method for preventing base material HAZ crystal grains from being coarsened
JPH05277740A (en) Welding method for clad steel pipe
JP3182672B2 (en) Internal welding method of clad steel pipe
JP3801186B2 (en) Ultra-thick welded material by multilayer submerged arc welding
JPH0623553A (en) Manufacture of welded steel tube
JPH08309527A (en) Production of clad welded steel pipe
JPH06155076A (en) Welding method for making thick and large-diameter welded steel pipe
JPH0428472B2 (en)
JPH067934A (en) Method for seal-welding end of double tubes
JP5672697B2 (en) Submerged arc welding method for steel
JPH07290244A (en) Method for welding clad steel pipe
JPH08276273A (en) Butt welding method for clad steel
JP3180257B2 (en) Inner surface seam welding method for clad steel pipe
JP3503191B2 (en) Large heat input multi-layer submerged arc welding method for thick steel plate
JPH0985447A (en) Submerged arc welding method of box column angle joint
JPS5946716B2 (en) Narrow gap submerged arc welding method
JPS61226187A (en) Production of high-alloy steel clad steel pipe
JPH11239879A (en) Multi-layer submerged arc welding method for super-thick steel plate, and super-thick welded member
JPH0342994B2 (en)
JPS6348627B2 (en)
JPS6030585A (en) Production of stainless clad steel pipe