JPH0623553A - Manufacture of welded steel tube - Google Patents

Manufacture of welded steel tube

Info

Publication number
JPH0623553A
JPH0623553A JP20311192A JP20311192A JPH0623553A JP H0623553 A JPH0623553 A JP H0623553A JP 20311192 A JP20311192 A JP 20311192A JP 20311192 A JP20311192 A JP 20311192A JP H0623553 A JPH0623553 A JP H0623553A
Authority
JP
Japan
Prior art keywords
welding
arc welding
speed
submerged arc
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP20311192A
Other languages
Japanese (ja)
Inventor
Fumei Fumei
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Spiral Pipe Co Ltd
Original Assignee
Sumitomo Metal Industries Ltd
Sumikin Spiral Pipe Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Sumikin Spiral Pipe Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP20311192A priority Critical patent/JPH0623553A/en
Publication of JPH0623553A publication Critical patent/JPH0623553A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To improve the applying capacity of the existing welding line by improving welding speed by using gaseous CO2 shielded arc welding in combination with submerged arc welding. CONSTITUTION:A steel strip is formed in a spiral state and submerged arc welding S1 is executed to the butting parts from an inner side. When the welded part holds >=150 deg.C, gaseous CO2 shielded arc welding G1 is executed from an outside, further, submerged arc welding S2 is executed. Consequently, load on the submerged arc weldings S1, G1 is reduced by gaseous CO2 arc shielded arc welding G1, high speed welding can be made, welding defects given when CO2 gas shielded arc welding G1 is applied at a high speed, can be prevented by the holding heat of the preceeding submerged arc welding part and the manufacturing speed of a welded steel tube can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高速で且つ健全な溶接
部が得られる溶接鋼管の製造方法に関し、特にスパイラ
ル鋼管の製造に適した方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a welded steel pipe capable of obtaining a high-speed and sound weld, and more particularly to a method suitable for producing a spiral steel pipe.

【0002】[0002]

【従来の技術】溶接鋼管は、電縫鋼管、鍛接鋼管、サブ
マージアーク溶接鋼管に大別される。サブマージアーク
溶接鋼管は通常大径鋼管であり、スパイラル鋼管はUO
E鋼管と共にサブマージアーク溶接鋼管の代表とされて
いる。
2. Description of the Related Art Welded steel pipes are roughly classified into electric resistance welded pipes, forged steel pipes and submerged arc welded steel pipes. Submerged arc welded steel pipe is usually large diameter steel pipe, spiral steel pipe is UO
It is considered to be a representative of submerged arc welded steel pipe together with E steel pipe.

【0003】スパイラル鋼管の製造は、周知のとおり、
鋼帯をスパイラル状に形成し、その側縁突き合わせ部を
内面側および外面側からそれぞれサブマージアーク溶接
することにより行われる。サブマージアーク溶接鋼管の
製造速度は、他の溶接鋼管の製造速度よりも遅く、スパ
イラル鋼管の製造では、内外面側の各電極を多電極化
し、内外1パスで溶接を行うことにより、能率向上を図
っている。
As is well known, the manufacture of spiral steel pipe is as follows.
It is performed by forming a steel strip in a spiral shape and subjecting side edge butting portions to submerged arc welding from the inner surface side and the outer surface side, respectively. The manufacturing speed of submerged arc welded steel pipes is slower than the manufacturing speed of other welded steel pipes, and in the manufacture of spiral steel pipes, each electrode on the inner and outer surfaces is made into multiple electrodes and welding is performed in one pass inside and outside to improve efficiency. I am trying.

【0004】しかしながら、板厚が厚くなると急激に溶
接速度が低下し、鋼管杭に使われるような厚肉のスパイ
ラル鋼管の製造では、ライン速度の低下を余儀なくさ
れ、ライン能力をフルに使うことができないのが現状で
ある。
However, as the plate thickness increases, the welding speed rapidly decreases, and in the manufacture of thick-walled spiral steel pipes used for steel pipe piles, the line speed must be reduced and full use of the line capacity is required. The current situation is that it cannot be done.

【0005】これは、板厚が厚くなると溶接入熱が増加
し、プールが増してその凝固に時間がかかるようになる
ため、高速でラインを動かすと未凝固のままで溶接部が
回転することによりプールが流動して溶接部形状の悪化
を招くからである。
This is because as the plate thickness increases, the welding heat input increases, the pool increases, and it takes time to solidify the pool. Therefore, if the line is moved at high speed, the welded part will rotate without being solidified. This causes the pool to flow and deteriorate the shape of the welded part.

【0006】この問題を解決するために、サブマージア
ーク溶接以外の溶接を併用したスパイラル鋼管の製造方
法が考えられている。サブマージアーク溶接以外の溶接
を併用すると、サブマージアーク溶接の負担が軽減さ
れ、板厚が厚くなってもサブマージアーク溶接における
溶接入熱は小さく抑えられ、そのプールは増加しない。
従って、溶接速度を速くできる。
In order to solve this problem, a method of manufacturing a spiral steel pipe using welding other than submerged arc welding has been considered. When welding other than submerged arc welding is used together, the load of submerged arc welding is reduced, and even if the plate thickness increases, the welding heat input in submerged arc welding is kept small and the pool does not increase.
Therefore, the welding speed can be increased.

【0007】このような考えを実現するものとして、電
縫溶接を併用したスパイラル鋼管の製造方法は、特開昭
60−21180号公報に開示されている。また、溶接
速度の向上を目的としたものではないが、交流MIG溶
接を併用することにより、溶接部の品質を向上させるU
O鋼管の製造方法は「鉄と鋼 第71年(1985)第
3号P505−507」に開示されている。
As a method of realizing such an idea, a method of manufacturing a spiral steel pipe using electric resistance welding together is disclosed in Japanese Patent Laid-Open No. 60-21180. Although not intended to improve the welding speed, the use of AC MIG welding together improves the quality of the welded area.
A method for manufacturing an O steel pipe is disclosed in "Iron and Steel No. 71 (1985) No. 3 P505-507".

【0008】[0008]

【発明が解決しようとする課題】しかしながら、電縫溶
接を併用するスパイラル鋼管の製造方法では、スパイラ
ル製管ラインで電縫溶接を行うことの設備技術的な問題
がある上、ライン速度と適正溶接速度が合致しないこと
による溶接品質上の問題がある。
However, in the method for manufacturing a spiral steel pipe that also uses electric resistance welding, there is a problem in equipment technology of performing electric resistance welding in a spiral pipe line, and in addition, line speed and proper welding are required. There is a problem in welding quality due to the speed mismatch.

【0009】即ち、現状のスパイラル製管ラインは様々
な制約から最大ライン速度が5〜6m/minに抑えら
れているのに対し、電縫溶接の適正溶接速度はこれより
格段に速く、現状のスパイラル製管ラインで電縫溶接を
行うためには、その速度をライン速度まで低下させなけ
ればならず、これによる溶接性の低下を余儀なくされる
のである。従って、現状では設備技術の問題に加えてこ
の溶接品質の問題も解決しなければならず、実施が非常
に難しい。
That is, the maximum line speed of the current spiral pipe line is suppressed to 5 to 6 m / min due to various restrictions, whereas the proper welding speed of electric resistance welding is significantly higher than that of the current spiral pipe line. In order to perform electric resistance welding on a spiral pipe line, its speed must be reduced to the line speed, which inevitably reduces weldability. Therefore, at present, in addition to the problem of equipment technology, this problem of welding quality must be solved, which is very difficult to implement.

【0010】一方、交流MIG溶接はその性質上、スパ
イラル製管ラインの最大ライン速度まで溶接速度を高め
ることは不可能であり、能率向上の手段にはなり得な
い。
On the other hand, AC MIG welding cannot be used as a means for improving the efficiency because it is impossible to increase the welding speed up to the maximum line speed of the spiral pipe line due to its nature.

【0011】本発明はかかる現状に鑑みてなされたもの
で、スパイラル鋼管の製造に簡単に適用できて、その能
率を大幅に向上させることができる溶接鋼管の製造方法
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing a welded steel pipe which can be easily applied to the manufacture of a spiral steel pipe and whose efficiency can be greatly improved. .

【0012】[0012]

【課題を解決するための手段】スパイラル鋼管の製造能
率を向上させるために、サブマージアーク溶接以外の溶
接を併用することは不可欠的と考えられる。なぜなら、
サブマージアーク多層溶接は層間にスラグが介在し、溶
接部の剥離等が問題になるため、スラグの生じないサブ
マージアーク溶接以外の溶接が必要となるのである。し
かし、電縫溶接は前述したとおり技術的な困難があり、
交流MIG溶接は高速溶接が不可能である。
[Means for Solving the Problems] In order to improve the manufacturing efficiency of spiral steel pipes, it is considered indispensable to use welding other than submerged arc welding together. Because
In submerged arc multi-layer welding, slag is present between the layers, which causes a problem such as separation of the welded portion. Therefore, welding other than submerged arc welding in which slag does not occur is required. However, electric resistance welding has technical difficulties as mentioned above,
High-speed welding is impossible in AC MIG welding.

【0013】そこで、本発明者らはガスメタルアーク溶
接のなかの特に炭酸ガスアーク溶接に着目し、スパイラ
ル鋼管の製造における能率改善手段としての適性を様々
な角度から調査した。その結果、炭酸ガスアーク溶接の
併用により、板厚が厚い場合も高速で問題のない溶接部
品質が得られ、溶接速度の大幅向上を達成できるとの知
見が得られた。
Therefore, the present inventors have paid attention to carbon dioxide gas arc welding among gas metal arc welding, and investigated the suitability as a means for improving the efficiency in manufacturing spiral steel pipes from various angles. As a result, it was found that the combined use of carbon dioxide arc welding can obtain a welded portion quality at a high speed without any problem even when the plate thickness is large, and can significantly improve the welding speed.

【0014】本発明の溶接鋼管の製造方法は、鋼帯を管
状に成形してその突き合わせ部に内面側および外面側の
いずれか一方からサブマージアーク溶接を行った後、そ
の溶接部が150℃以上の温度を保有している状態で、
他方から炭酸ガスアーク溶接を行ない、その上からサブ
マージアーク溶接を行うことを特徴とする。
According to the method for producing a welded steel pipe of the present invention, the steel strip is formed into a tubular shape, and the abutting portion is subjected to submerged arc welding from either the inner surface side or the outer surface side. With the temperature of
Carbon dioxide arc welding is performed from the other side, and submerged arc welding is performed from above.

【0015】ここで、先のサブマージアーク溶接は炭酸
ガスアーク溶接に代えることができる。
Here, the above submerged arc welding can be replaced with carbon dioxide gas arc welding.

【0016】図1は本発明の一実施態様を示すスパイラ
ル製管ラインの平面図、図2は本発明における溶接部の
形成過程を段階的に示す断面図である。
FIG. 1 is a plan view of a spiral pipe line showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing stepwise a process of forming a welded portion in the present invention.

【0017】図1および図2において、1は鋼帯で、管
外面側に開くY開先を形成されている。鋼帯1がスパイ
ラル状に形成されると、スパイラル管2の最下部で突き
合わせ部に内面側からサブマージアーク溶接S1が行わ
れる。その溶接位置から溶接部s1が半周移動してスパ
イラル管2の最上部に達する位置では、外面側から炭酸
ガスアーク溶接G1が行われる。そして、その溶接位置
から溶接部g1が更に1周移動して再びスパイラル管2
の最上部に達する位置では、外面側から溶接部g1上に
サブマージアーク溶接S2が行われる。これにより、図
2(a)に示すようなサブマージアーク溶接部s1,s
2の間に炭酸ガスアーク溶接部g1が介在した製管溶接
部が得られる。
In FIGS. 1 and 2, reference numeral 1 denotes a steel strip having a Y groove formed on the outer surface of the pipe. When the steel strip 1 is formed in a spiral shape, submerged arc welding S1 is performed from the inner surface side to the abutting portion at the lowermost portion of the spiral tube 2. At the position where the welded portion s1 moves a half turn from the welding position to reach the uppermost portion of the spiral tube 2, carbon dioxide arc welding G1 is performed from the outer surface side. Then, the welded portion g1 further moves one round from the welding position, and the spiral tube 2 is again moved.
At the position reaching the uppermost portion of the above, submerged arc welding S2 is performed on the welded portion g1 from the outer surface side. As a result, the submerged arc welds s1 and s as shown in FIG.
A pipe-made weld having a carbon dioxide gas arc weld g1 interposed between the two is obtained.

【0018】先のサブマージアーク溶接S1に代えて炭
酸ガスアーク溶接を行った場合は、図2(b)に示すよ
うに、炭酸ガスアーク溶接g1,g2およびサブマージ
アーク溶接部s1が内面側から外面側へ順に形成された
製管溶接部が得られる。
When carbon dioxide gas arc welding is performed instead of the submerged arc welding S1, the carbon dioxide gas arc welds g1 and g2 and the submerged arc weld s1 are transferred from the inner surface side to the outer surface side as shown in FIG. 2 (b). A pipe-making welded portion formed in order is obtained.

【0019】[0019]

【作用】本発明の溶接鋼管の製造方法においては、サブ
マージアーク溶接に炭酸ガスアーク溶接が併用される。
In the method for manufacturing a welded steel pipe of the present invention, carbon dioxide gas arc welding is used in combination with submerged arc welding.

【0020】炭酸ガスアーク溶接等のガスメタルアーク
溶接は、電縫溶接と異なりスパイラル製管ラインでの実
施が容易である。なかでも、炭酸ガスアーク溶接は、他
のガスメタルアーク溶接(MIG溶接、TIG溶接)と
異なり、大径のワイヤの使用による大電流溶接により、
高速溶接も可能である。しかし、高速の炭酸ガスアーク
溶接では、溶接部の底の部分に融合不良が生じやすい。
Unlike metal electric arc welding, gas metal arc welding such as carbon dioxide arc welding is easy to carry out on a spiral pipe line. Among them, carbon dioxide arc welding is different from other gas metal arc welding (MIG welding, TIG welding) in that it uses large current welding due to the use of a large diameter wire,
High speed welding is also possible. However, in high-speed carbon dioxide arc welding, poor fusion is likely to occur at the bottom of the weld.

【0021】本発明の溶接鋼管の製造方法は、この高速
炭酸ガスアーク溶接での融合不良を防いで、溶接の高速
化を図るものである。
The method for producing a welded steel pipe of the present invention is intended to prevent the fusion failure in the high-speed carbon dioxide gas arc welding and speed up the welding.

【0022】即ち、本発明の溶接鋼管の製造方法におい
ては、図2(a)に示すように、サブマージアーク溶接
部s1の裏側からその上に炭酸ガスアーク溶接部g1が
形成される。そのため、炭酸ガスアーク溶接部g1の底
の部分はサブマージアーク溶接部s1に溶融一体化す
る。このとき、サブマージアーク溶接部s1は、溶接後
スパイラル管2の管周を僅か半周しただけであり、十分
な溶接熱を保有している。そのため、炭酸ガスアーク溶
接は充分に予熱された母材上に実施されることになる。
従って、大径ワイヤを使用した大電流高速溶接の場合
も、溶接部g1の底の部分の融合不良が防止される。
That is, in the method for manufacturing a welded steel pipe of the present invention, as shown in FIG. 2 (a), the carbon dioxide gas arc welded portion g1 is formed on the submerged arc welded portion s1 from the back side thereof. Therefore, the bottom portion of the carbon dioxide gas arc weld g1 is fused and integrated with the submerged arc weld s1. At this time, the submerged arc welded portion s1 has only a half circumference of the circumference of the spiral tube 2 after welding, and has sufficient welding heat. Therefore, carbon dioxide arc welding is carried out on a sufficiently preheated base metal.
Therefore, also in the case of high-current high-speed welding using a large-diameter wire, defective fusion of the bottom portion of the weld g1 is prevented.

【0023】ただし、炭酸ガスアーク溶接を行う段階で
サブマージアーク溶接部s1の温度が150℃未満のと
きは、大径ワイヤを使用した大電流高速溶接では、溶接
部g1の底の部分に融合不良を生じるおそれがある。し
かし、通常のスパイラル製管ラインでは、下向き溶接を
採用する関係から、サブマージアーク溶接S1の半周移
動後に炭酸ガスアーク溶接が行われ、しかも、高速溶接
になればこの間の移動所要時間は一層短縮される。その
ため、通常はサブマージアーク溶接部s1の残熱を利用
して予熱工程なしに、高品質の炭酸ガスアーク溶接部g
1が得られる。
However, when the temperature of the submerged arc weld s1 is lower than 150 ° C. at the stage of performing carbon dioxide arc welding, in the high-current high-speed welding using a large-diameter wire, there is a fusion defect at the bottom of the weld g1. May occur. However, in a general spiral pipe manufacturing line, carbon dioxide arc welding is performed after moving half the circumference of the submerged arc welding S1 due to the fact that downward welding is adopted. Further, if high speed welding is performed, the time required for moving during this time is further shortened. . Therefore, normally, the residual heat of the submerged arc welding portion s1 is used to perform a high-quality carbon dioxide gas arc welding portion g without a preheating step.
1 is obtained.

【0024】先のサブマージアーク溶接S1に代えて炭
酸ガスアーク溶接G1を行う場合は、大径ワイヤを使用
した大電流高速溶接では、溶接部g1の底の部分に融着
不良を生じる。しかし、その底の部分は、次の炭酸ガス
アーク溶接G2により再溶融し、また次の炭酸ガスアー
ク溶接G2の溶接部g2の底の部分は、先の炭酸ガスア
ーク溶接の溶接部g1の残熱により品質を保証される。
従って、この場合も、高速化による炭酸ガスアーク溶接
部g1,g2の欠陥発生はない。
When carbon dioxide gas arc welding G1 is performed in place of the submerged arc welding S1, the large current high-speed welding using a large-diameter wire causes defective welding at the bottom of the weld g1. However, the bottom portion thereof is remelted by the next carbon dioxide gas arc welding G2, and the bottom portion of the welded portion g2 of the next carbon dioxide gas arc welding G2 is of quality due to the residual heat of the welded portion g1 of the previous carbon dioxide gas arc welding. Is guaranteed.
Therefore, in this case as well, no defect is generated in the carbon dioxide gas arc welded portions g1 and g2 due to the speedup.

【0025】本発明の溶接鋼管の製造方法は、以上の知
見に基づき開発されたもので、例えばスパイラル鋼管の
製造では、板厚が10mmを超える場合も5m/min
以上の溶接速度を確保できる。
The method for producing a welded steel pipe of the present invention was developed based on the above findings. For example, in the production of a spiral steel pipe, 5 m / min even when the plate thickness exceeds 10 mm.
The above welding speed can be secured.

【0026】溶接ワイヤの径は、同一電流での溶着速度
の比較では細い方が有利であるが、。3.2mm未満で
は、使用できる電流値の上限が低いため、十分な溶着量
を確保できない。逆に4.8mm超では、高速でアークを
安定させるための電流値が非常に大きくなり、溶着速度
も十分でない。従って、ワイヤ径は3.2〜4.8mmが望
ましい。この径は炭酸ガスアーク溶接に通常用いられる
ワイヤ径(1.2mm前後)に比してかなり大きい。
It is advantageous that the diameter of the welding wire is smaller in comparison of the deposition rates under the same current. If it is less than 3.2 mm, the upper limit of the current value that can be used is low, so a sufficient amount of welding cannot be secured. On the other hand, if it exceeds 4.8 mm, the current value for stabilizing the arc at a high speed becomes very large, and the welding speed is not sufficient. Therefore, the wire diameter is preferably 3.2 to 4.8 mm. This diameter is considerably larger than the wire diameter normally used for carbon dioxide arc welding (around 1.2 mm).

【0027】[0027]

【実施例】以下に本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0028】JIS G3444にSTK490として
規定される外径609.6mm、厚さ9〜19mmの杭用
スパイラル鋼管を本発明の溶接鋼管の製造方法により製
造し、その最高速度を調査して従来法における最高速度
と比較した。最高速度とは、健全な溶接部が得られる最
高溶接速度(最高ライン速度)のことである。結果を表
1に、溶接条件を表2に示す。
A spiral steel pipe for piles having an outer diameter of 609.6 mm and a thickness of 9 to 19 mm, which is defined as STK490 in JIS G3444, is manufactured by the method for manufacturing a welded steel pipe according to the present invention, and the maximum speed thereof is investigated to obtain a conventional method. Compared to the top speed. The maximum speed is the maximum welding speed (maximum line speed) at which a sound weld can be obtained. The results are shown in Table 1 and the welding conditions are shown in Table 2.

【0029】表1中Aは内外からサブマージアーク溶接
(SAW)を行った従来例を表わし、Bは内面側からサ
ブマージアーク溶接(SAW)、外面側から炭酸ガスア
ーク溶接(GMAW)およびサブマージアーク溶接(S
AW)を行った本発明例、Cは内面側から炭酸ガスアー
ク溶接(GMAW)、外面側から炭酸ガスアーク溶接
(GMAW)およびサブマージアーク溶接(SAW)を
行った本発明例を表わす。
In Table 1, A represents a conventional example in which submerged arc welding (SAW) was performed from the inside and outside, and B represents submerged arc welding (SAW) from the inner surface side, carbon dioxide arc welding (GMAW) and submerged arc welding from the outer surface side ( S
AW) is an example of the present invention, and C is an example of the present invention in which carbon dioxide arc welding (GMAW) is performed from the inner surface side, carbon dioxide arc welding (GMAW) and submerged arc welding (SAW) are performed from the outer surface side.

【0030】[0030]

【表1】 * 上限ライン速度 ( )GMAW時における先の溶接部の実測温度[Table 1] * Upper limit line speed () Measured temperature of the previous weld during GMAW

【0031】[0031]

【表2】 [Table 2]

【0032】本実施例に使用したスパイラル製管ライン
の上限ライン速度は5.6m/minである。従来例で
は、板厚が10mmを超えると、最高速度が極端に低下
し、ラインの能力を十分に使えない。しかるに、本発明
例では、板厚が9mmの場合に最高速度が上限ライン速
度に達し、この上限がなければ更に高い製管能率が得ら
れる。板厚10mmを超えても、上限ライン速度に近い
最高速度が得られ、ライン能力をフルに使うことができ
た。
The upper limit line speed of the spiral pipe line used in this example is 5.6 m / min. In the conventional example, when the plate thickness exceeds 10 mm, the maximum speed is extremely reduced, and the line capacity cannot be fully used. However, in the example of the present invention, the maximum speed reaches the upper limit line speed when the plate thickness is 9 mm, and if there is no upper limit, higher pipe manufacturing efficiency can be obtained. Even if the plate thickness exceeds 10 mm, the maximum speed close to the upper limit line speed was obtained, and the line capacity could be fully used.

【0033】なお、上記実施例はスパイラル鋼管の製造
方法であるが、これに限らずUO鋼管等のサブマージア
ーク溶接鋼管の製造に広く適用できる。
Although the above embodiment is a method for manufacturing a spiral steel pipe, the present invention is not limited to this, but can be widely applied to the manufacturing of submerged arc welded steel pipes such as UO steel pipes.

【0034】[0034]

【発明の効果】以上の説明から明らかなように、本発明
の溶接鋼管の製造方法は、サブマージアーク溶接に炭酸
ガスアーク溶接を併用することにより、溶接速度を簡単
に大幅アップさせ、既存ラインを使用してその能力をフ
ルに活用できるなど、実操業上大きな効果を発揮する。
As is apparent from the above description, the welding steel pipe manufacturing method of the present invention uses carbon dioxide gas arc welding together with submerged arc welding to easily and significantly increase the welding speed and use existing lines. Then, it is possible to make full use of its abilities and to exert a great effect on the actual operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施態様を示すスパイラル製管ライ
ンの平面図である。
FIG. 1 is a plan view of a spiral pipe manufacturing line showing an embodiment of the present invention.

【図2】本発明における溶接部の形成過程を段階的に示
す断面図である。
FIG. 2 is a cross-sectional view showing a step of forming a welded portion in the present invention.

【符号の説明】[Explanation of symbols]

1 鋼帯 2 スパイラル管 S1,S2 サブマージアーク溶接 G1,G2 炭酸ガスアーク溶接 s1,s2 サブマージアーク溶接部 g1,g2 炭酸ガスアーク溶接部 1 Steel strip 2 Spiral tube S1, S2 Submerged arc welding G1, G2 Carbon dioxide arc welding s1, s2 Submerged arc weld g1, g2 Carbon dioxide arc weld

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼帯を管状に成形してその突き合わせ部
に内面側および外面側のいずれか一方からサブマージア
ーク溶接を行った後、その溶接部が150℃以上の温度
を保有している状態で、他方から炭酸ガスアーク溶接を
行ない、その上からサブマージアーク溶接を行うことを
特徴とする溶接鋼管の製造方法。
1. A state in which a steel strip is formed into a tubular shape, and after the submerged arc welding is performed on the abutting portion from either the inner surface side or the outer surface side, the welded portion retains a temperature of 150 ° C. or higher. Then, the carbon dioxide gas arc welding is performed from the other side, and the submerged arc welding is performed from thereover.
【請求項2】 鋼帯を管状に成形してその突き合わせ部
に内面側および外面側のいずれか一方から炭酸ガスアー
ク溶接を行った後、その溶接部が150℃以上の温度を
保有している状態で、他方から炭酸ガスアーク溶接を行
ない、その上からサブマージアーク溶接を行うことを特
徴とする溶接鋼管の製造方法。
2. A state in which a steel strip is formed into a tubular shape, carbon dioxide arc welding is performed on the abutting portion from either the inner surface side or the outer surface side, and the welded portion retains a temperature of 150 ° C. or higher. Then, the carbon dioxide gas arc welding is performed from the other side, and the submerged arc welding is performed from thereover.
JP20311192A 1992-07-06 1992-07-06 Manufacture of welded steel tube Withdrawn JPH0623553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20311192A JPH0623553A (en) 1992-07-06 1992-07-06 Manufacture of welded steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20311192A JPH0623553A (en) 1992-07-06 1992-07-06 Manufacture of welded steel tube

Publications (1)

Publication Number Publication Date
JPH0623553A true JPH0623553A (en) 1994-02-01

Family

ID=16468585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20311192A Withdrawn JPH0623553A (en) 1992-07-06 1992-07-06 Manufacture of welded steel tube

Country Status (1)

Country Link
JP (1) JPH0623553A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954028A (en) * 1996-08-08 1999-09-21 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines
US6471603B1 (en) 1996-10-23 2002-10-29 Callaway Golf Company Contoured golf club face
CN102699105A (en) * 2012-06-05 2012-10-03 德庆康纳国兴有限公司 Manufacture technology for precision tube
CN105171208A (en) * 2015-10-22 2015-12-23 中国石油集团渤海石油装备制造有限公司 Prewelding method of thin-wall longitudinal submerged-arc welded (LSAW) pipes with small bore diameter
CN105345235A (en) * 2015-11-26 2016-02-24 中国水电四局(祥云)机械能源装备有限公司 Cylindrical no-root full-penetration union melt welding method
CN108890083A (en) * 2018-07-11 2018-11-27 武汉理工大学 A kind of automatic control system can be used for rod iron material gas shielded arc welding and submerged-arc welding
US11701558B2 (en) 2014-05-15 2023-07-18 Karsten Manufacturing Corporation Club heads having reinforced club head faces and related methods
CN117139792A (en) * 2023-10-27 2023-12-01 昆明展业电力线路器材制造有限公司 Electric power iron tower welding device with adjustable welding gun height
US11969631B2 (en) 2014-05-15 2024-04-30 Karsten Manufacturing Corporation Club heads having reinforced club head faces and related methods

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5954028A (en) * 1996-08-08 1999-09-21 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines
US6471603B1 (en) 1996-10-23 2002-10-29 Callaway Golf Company Contoured golf club face
CN102699105A (en) * 2012-06-05 2012-10-03 德庆康纳国兴有限公司 Manufacture technology for precision tube
US11701558B2 (en) 2014-05-15 2023-07-18 Karsten Manufacturing Corporation Club heads having reinforced club head faces and related methods
US11969631B2 (en) 2014-05-15 2024-04-30 Karsten Manufacturing Corporation Club heads having reinforced club head faces and related methods
CN105171208A (en) * 2015-10-22 2015-12-23 中国石油集团渤海石油装备制造有限公司 Prewelding method of thin-wall longitudinal submerged-arc welded (LSAW) pipes with small bore diameter
CN105345235A (en) * 2015-11-26 2016-02-24 中国水电四局(祥云)机械能源装备有限公司 Cylindrical no-root full-penetration union melt welding method
CN108890083A (en) * 2018-07-11 2018-11-27 武汉理工大学 A kind of automatic control system can be used for rod iron material gas shielded arc welding and submerged-arc welding
CN108890083B (en) * 2018-07-11 2020-05-12 武汉理工大学 Automatic control system for gas shielded welding and submerged-arc welding of steel bars
CN117139792A (en) * 2023-10-27 2023-12-01 昆明展业电力线路器材制造有限公司 Electric power iron tower welding device with adjustable welding gun height
CN117139792B (en) * 2023-10-27 2024-01-23 昆明展业电力线路器材制造有限公司 Electric power iron tower welding device with adjustable welding gun height

Similar Documents

Publication Publication Date Title
DeRuntz Assessing the benefits of surface tension transfer® welding to industry
JPH07214308A (en) Method of joining metal part by melting arc welding
CA1144092A (en) Thick welded steel pipe of large diameter and production thereof
CN103264209A (en) Combine-welding method of stainless steel welded parts
CN105880815B (en) A kind of tube sheet corner joint auxiliary welding device and welding method
JP2004306084A (en) Composite welding method of laser welding and arc welding
JPH0623553A (en) Manufacture of welded steel tube
JP4912097B2 (en) MULTILAYER WELDING METHOD FOR STAINLESS STEEL PIPE AND MULTILAYER WELDING
JP2002011575A (en) Welding method for steel pipe
CN105195866B (en) A kind of full-automatic root bead method of the pipe end of composite bimetal pipe
US6730876B2 (en) Highly ductile reduced imperfection weld for ductile iron and method for producing same
JP2001038472A (en) Welding method of stainless steel clad plate
JPH0252586B2 (en)
JPH067934A (en) Method for seal-welding end of double tubes
JPH0623543A (en) Seal welding method of tube end of double tube
JP2833279B2 (en) Steel pipe welding method
JPS61226187A (en) Production of high-alloy steel clad steel pipe
JPH0428472B2 (en)
JPH04313468A (en) Welding method for stainless clad steel pipe
JP2002103035A (en) Seam welding method of uo steel pipe
US20230405707A1 (en) Laser additive manufacturing and welding with hydrogen shield gas
JPS6336973A (en) Welding method for thick bending steel pipe
JPH09295149A (en) Method and equipment for tig welding of very thick narrow groove
JPS60166169A (en) Welding method of aluminum pipe
JPS6330174A (en) Welding method for periphery of pipe

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991005