JPS62228602A - Rotation body for heat engine - Google Patents

Rotation body for heat engine

Info

Publication number
JPS62228602A
JPS62228602A JP7193186A JP7193186A JPS62228602A JP S62228602 A JPS62228602 A JP S62228602A JP 7193186 A JP7193186 A JP 7193186A JP 7193186 A JP7193186 A JP 7193186A JP S62228602 A JPS62228602 A JP S62228602A
Authority
JP
Japan
Prior art keywords
fin
ceramic
tip
rotating body
heat engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7193186A
Other languages
Japanese (ja)
Inventor
Takahiko Honma
隆彦 本間
Toshio Kamitori
神取 利男
Hideyuki Masaki
英之 正木
Shigetaka Wada
重孝 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP7193186A priority Critical patent/JPS62228602A/en
Publication of JPS62228602A publication Critical patent/JPS62228602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To prevent the occurrence of getting chipped by arranging for a heat engine such as a gas turbine and the like the ceramic fiber of the tip portions of the fin part of a rotation body along the fin-face and toward the direction of the tip-edges as well. CONSTITUTION:The hub portion 12 and the shaft portion 11 of a rotation body 1 are formed out of ceramic sintered body containing no ceramic fiber. And the fin part 13 is formed out of ceramic sintered body containing ceramic fiber. The ceramic fiber 3 of the tip portions 131 of the fin part 13 is arranged along the fin-face and toward the direction of the tip-edges as well. By this, the occurrence of getting chipped at the fin-tip portions by coming into collision with a foreign matter may be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はガスタービンやターボチャージャ等のタービン
ホイールの如く、熱機関において用いられるフィンを備
えた熱機関用回転体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotating body for a heat engine, such as a turbine wheel of a gas turbine or a turbocharger, which is provided with fins and used in a heat engine.

〔従来技術〕[Prior art]

近年、ガスタービンやターボチャージャ等の熱向 機関において2作動温度の上昇による熱効率の手上 嗜、希産資源の代替等の目的で、窒化珪素、炭化珪素等
の高温高強度セラミック材料により製造した回転体(タ
ービンホイール)を用いる試みがなされている。
In recent years, heat-directing engines such as gas turbines and turbochargers have been manufactured using high-temperature, high-strength ceramic materials such as silicon nitride and silicon carbide for the purpose of improving thermal efficiency by increasing the operating temperature and replacing rare resources. Attempts have been made to use a rotating body (turbine wheel).

従来、タービンホイールは、ニッケル、クロム等の耐熱
合金の鋳造により製造されているが、金属は耐熱性が充
分でなく、熱機関の作動温度に限界がある。このため、
高強度で、かつ耐熱性に優れた窒化珪素、炭化珪素等の
セラミック材料を用いて射出成形法、鋳込成形法等の型
成形によってセラミックタービンホイールが製造される
ようになった。
Conventionally, turbine wheels have been manufactured by casting heat-resistant alloys such as nickel and chromium, but metals do not have sufficient heat resistance and there is a limit to the operating temperature of the heat engine. For this reason,
Ceramic turbine wheels have come to be manufactured using ceramic materials such as silicon nitride and silicon carbide, which have high strength and excellent heat resistance, by molding methods such as injection molding and cast molding.

セラミックタービンホイールは、先ずセラミック粉末原
料に適当な有機物質または水を添加して流動性を付与し
、これを所望の形状に型成形し。
Ceramic turbine wheels are manufactured by first adding an appropriate organic substance or water to a ceramic powder raw material to give it fluidity, and then molding it into a desired shape.

次いで得られた成形体から有機物質、水分等の添加剤を
加熱除去し、焼成することにより緻密な焼粘体製品が得
られる。
Next, additives such as organic substances and moisture are removed from the obtained molded body by heating, and the molded body is fired to obtain a dense baked viscous product.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

タービンホイールは燃焼器や燃焼室内で燃焼した高温の
燃焼ガスにより高速回転して出力を得るものであり2例
えばターボチャージャではタービンホイールの最外周は
最大周速がおよそ600m/ s e cにも達する。
A turbine wheel rotates at high speed to generate output using high-temperature combustion gas burned in a combustor or combustion chamber.2For example, in a turbocharger, the maximum circumferential speed of the outermost circumference of the turbine wheel reaches approximately 600 m/sec. .

燃焼ガス中には吸入空気に含まれる各種の粉じん、金属
酸化物片、パーティキュレート等の微粒子が混入してお
り、これらが高速回転しているタービンホイールに衝突
する。
The combustion gas contains fine particles such as various types of dust, metal oxide fragments, and particulates contained in the intake air, and these particles collide with the turbine wheel, which is rotating at high speed.

このとき耐衝撃性に優れた金属製タービンホイールにお
いては微粒子が衝突しても最も周速の大きい外周部分に
へこみが生じる程度で、性能上の問題が生しることはな
かった。しかしながらセラミック製ターヒ゛ンホイール
はB危いためにタービンホイール外周のフィン先端部に
微粒子が衝突すると欠けが生じ、このためタービンホイ
ールの性能が低下するという問題があった。
At this time, in a metal turbine wheel with excellent impact resistance, even if particles collided with it, only a dent occurred in the outer circumferential portion where the circumferential speed was highest, and no performance problems occurred. However, the ceramic turbine wheel has a problem in that, because of its B hazard, when fine particles collide with the tips of the fins on the outer periphery of the turbine wheel, chips occur, which reduces the performance of the turbine wheel.

またこの対策として2例えば本出願人による特願昭60
−132779号のようにフィンを備えた熱機関用回転
体を成形する成形型におけるキャビティのフィン成形部
の外周先端に余剰部を設け。
In addition, as a countermeasure against this, 2, for example, the patent application filed in 1983 by the present applicant.
As in No. 132779, an extra portion is provided at the outer peripheral tip of the fin molding portion of the cavity in a mold for molding a rotating body for a heat engine equipped with fins.

キャビティにセラミック繊維を含むセラミック材料を充
填して成形体を得、該成形体を脱脂し、焼成して焼結体
となし、上記成形体を成形後または焼結体とした後フィ
ン先端の余剰部を除去して。
A molded body is obtained by filling the cavity with a ceramic material containing ceramic fibers, the molded body is degreased and fired to form a sintered body, and after the molded body is molded or made into a sintered body, the surplus of the fin tip is removed. by removing the part.

回転体の外周のフィン先端部のセラミック繊維をフィン
面に沿い、かつ先端縁方向に配向せしめたことによって
、異物の衝突により欠けの生じやすいフィン先端部のセ
ラミック材料の強度を向上させる試みがなされている。
An attempt was made to improve the strength of the ceramic material at the fin tips, which is prone to chipping due to collisions with foreign objects, by oriented the ceramic fibers at the tips of the fins on the outer periphery of the rotating body along the fin surface and in the direction of the tip edges. ing.

すなわち、この手段は回転体外周のフィン先端部が強化
されて微粒子が衝突しても欠けが生じることのない熱機
関用セラミンク回転体を提供するものである。
That is, this means provides a ceramic rotor for a heat engine in which the tip of the fins on the outer periphery of the rotor is strengthened and will not be chipped even when collided with fine particles.

しかしながら、セラミック繊維は高価であり。However, ceramic fibers are expensive.

このセラミック繊維を回転体の全体に使用している゛た
め1回転体を安価に製造することが困難であった。
Since this ceramic fiber is used throughout the rotating body, it is difficult to manufacture a single rotating body at low cost.

一方、セラミック材料自体の強度は、異物等に対する耐
衝撃性を除けば9回転することによって回転体に印加さ
れる応力に対し十分耐え得るレベルにある。
On the other hand, the strength of the ceramic material itself is at a level that can sufficiently withstand the stress applied to the rotating body due to nine rotations, except for impact resistance against foreign objects and the like.

したがって、異物の衝突により欠けの生じやすいフィン
先端部のみを配向したセラミック繊維により強化するこ
とが安価なセラミック回転体を製造する上で要望されて
いる。
Therefore, in order to manufacture an inexpensive ceramic rotating body, it is desired to strengthen only the fin tips, which are prone to chipping due to collision with foreign objects, with oriented ceramic fibers.

本発明は上記の実情に鑑みてなされたもので。The present invention has been made in view of the above circumstances.

回転体外周のフィン先端部がセラミ・νり繊維で強化さ
れて金属酸化物等の微粒子が回転体のフィン部へ衝突し
ても欠けが生じることのな熱機関用回転体を安価に提供
し、もって従来の問題点を解決することを目的とするも
のである。
To provide a rotating body for a heat engine at a low cost, in which the tip of the fins on the outer periphery of the rotating body is reinforced with ceramic/vri fiber so that chipping does not occur even if fine particles such as metal oxides collide with the fin part of the rotating body. , the purpose of this is to solve the conventional problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の熱機関用回転体はセラミック繊維を含有せしめ
たセラミック材料の焼結体によりなるフィン部と、セラ
ミック繊維を含有していないセラミック材料の焼結体よ
りなる一体のハブ部および軸部とからなり、そして本発
明の回転体の特徴は。
The rotating body for a heat engine of the present invention has a fin portion made of a sintered body of a ceramic material containing ceramic fibers, and an integrated hub portion and shaft portion made of a sintered body of a ceramic material that does not contain ceramic fibers. The rotating body of the present invention is characterized by:

第1図に示すようにセラミック繊維を含むフィン部13
の先端部131のセラミック繊維3をフィン面と平行で
、かつ先端縁に向く方向に配向せしめたことである。
As shown in FIG. 1, a fin portion 13 containing ceramic fibers
The ceramic fibers 3 of the tip portion 131 are oriented in a direction parallel to the fin surface and toward the tip edge.

かかる配向性をセラミック繊維3に与えた本発明の回転
体フィン部は、第2図に示すようにフィン成形部21の
先端に余剰部22を延設した成形型を用い、この成形型
にセラミック繊維を混入したセラミック材料を充填して
成形し、成形体を脱脂後焼成して焼結体とし、余剰製部
品を、成形後あるいは焼結後に除去することにより目的
とする回転体フィン部を得る。
The rotating body fin portion of the present invention in which such orientation is imparted to the ceramic fibers 3 uses a mold in which an extra portion 22 is extended at the tip of the fin molding portion 21, as shown in FIG. The ceramic material mixed with fibers is filled and molded, the molded body is degreased and fired to form a sintered body, and the surplus manufactured parts are removed after molding or sintering to obtain the desired rotating body fin part. .

一方第3図に示す如く、セラミック繊維を含有していな
いハブ部12および軸部11は射出成形法またはスリッ
プキャスト法により、あるいは金型成形後または金型成
形し1次いで焼成した後の加工によりつくられる。
On the other hand, as shown in FIG. 3, the hub portion 12 and shaft portion 11 that do not contain ceramic fibers are formed by injection molding or slip casting, or by processing after molding or after molding and first firing. able to make.

本発明の熱機関用回転体は、セラミック繊維を含むフィ
ン部13とセラミック繊維を含まない一体のハブ部12
および軸部11とを別々に成形した後3組み合わせて結
合し、その後焼成して製造される。フィン部13と一体
のハブ部12および軸部11との結合は、焼成収縮率が
近似する様に予め脱脂体または成形体の密度を調整して
成形したフィン部13の脱脂体と一体のハブ部12およ
び軸部11の脱脂体または成形体とを組み合わせて、こ
れを静水圧加圧することによってなされる。
The rotating body for a heat engine of the present invention has a fin portion 13 containing ceramic fibers and an integral hub portion 12 not containing ceramic fibers.
and shaft portion 11 are molded separately, then combined and bonded, and then fired. The hub portion 12 and the shaft portion 11 are connected to each other by forming a hub integral with the degreased body of the fin portion 13, which is molded by adjusting the density of the degreased body or molded body in advance so that the firing shrinkage rate approximates that of the hub portion 12 and the shaft portion 11. This is done by combining the portion 12 and the degreased body or molded body of the shaft portion 11 and applying hydrostatic pressure to the combination.

また、同様に密度を調整して成形したフィン部13の脱
脂体ど一体のハブ部12および軸部11の脱脂体または
成形体との嵌合部に、フィン部13を形成するセラミッ
ク材料または一体のハブ部12及び軸部11を形成する
セラミック材料と同質のセラミック材料からなるスリッ
プを充填した後組み合わせることによってもなされる。
In addition, the degreased body of the fin part 13 which is molded with the density adjusted in the same manner, or the ceramic material that forms the fin part 13 or the integral part of the hub part 12 and the fitting part with the degreased body or molded body of the shaft part 11, This can also be done by filling and then assembling a slip made of a ceramic material of the same quality as the ceramic material forming the hub portion 12 and shaft portion 11 of.

また2本発明の熱機関用回転体はフィン部13と一体の
ハブ部12および軸部11とを別々に成形・焼成し、焼
結体となした後2組合せ、粉末圧力伝達媒体を用いたホ
ットプレスまたは熱間静水圧加圧(HIP)を行って両
者を一体に結合しても製造され得るものである。
In addition, in the rotor for a heat engine of the present invention, the fin portion 13, the integrated hub portion 12, and the shaft portion 11 are molded and fired separately to form a sintered body, and then the two are combined using a powder pressure transmission medium. It can also be manufactured by bonding the two together by hot pressing or hot isostatic pressing (HIP).

また1本発明の熱機関用回転体はフィン部13と一体の
ハブ部12および軸部11とを別々に成形し、一体のハ
ブ部12および軸部11のみ予め焼成し焼結体となした
後、一体のハブ部12および軸部11の焼結体がフィン
部13の脱脂体に挿入される様に配置して、これを一体
的に焼成し。
Further, in the rotating body for a heat engine of the present invention, the fin portion 13 and the integral hub portion 12 and shaft portion 11 are separately molded, and only the integral hub portion 12 and shaft portion 11 are fired in advance to form a sintered body. Thereafter, the integral sintered body of the hub part 12 and shaft part 11 is arranged so as to be inserted into the degreased body of the fin part 13, and is integrally fired.

フィン部13の焼結進行に伴う収縮作用により。Due to the shrinkage effect of the fin portion 13 as the sintering progresses.

その両者を一体に結合しても製造され得る。It can also be manufactured by combining the two together.

第4図は2本発明回転体の他の結合一体化の例を示すも
のであり、フィン部13と一体のハブ部12および軸部
11の形状は両者が強固に一体とできるものであるなら
ば、どの様な形状、方法であってもよい。
FIG. 4 shows another example of the integration of two rotating bodies of the present invention, and the shape of the hub part 12 and shaft part 11, which are integral with the fin part 13, is such that they can be firmly integrated. For example, any shape or method may be used.

一方、上記熱機関用回転体のフィン部を形成するセラミ
ック材料としては、炭化珪素、窒化珪素。
On the other hand, examples of the ceramic material forming the fin portion of the rotor for a heat engine include silicon carbide and silicon nitride.

アルミナ、ジルコニア、サイアロン等が用いられ得る。Alumina, zirconia, sialon, etc. may be used.

またセラミック繊維としては、炭化珪素。Silicon carbide is also used as a ceramic fiber.

窒化珪素、アルミナ、グラファイト、窒化ホウ素等の繊
維のいずれか、または複数種が用いられ得る。
Any one or a plurality of fibers such as silicon nitride, alumina, graphite, and boron nitride may be used.

本発明に用いるセラミック繊維とは、繊維状のセラミッ
ク体であって、多結晶、アモルファス。
The ceramic fiber used in the present invention is a fibrous ceramic body, and may be polycrystalline or amorphous.

いわゆるウィスカーと称される単結晶のいずれでもよく
、直径0.3〜50μm、長さ5〜1000μm程度の
ものが望ましい。これよりも細く、また短いものでは繊
維強化の効果が小さく、一方これよりも太いと却って強
度が低下し、またこれよりも長いと材料の混練および成
形時に繊維が折れて粉砕される。
Any single crystal called a whisker may be used, and preferably one having a diameter of 0.3 to 50 μm and a length of about 5 to 1000 μm. If the fiber is thinner or shorter than this, the effect of reinforcing the fiber will be small; if it is thicker than this, the strength will decrease, and if it is longer than this, the fiber will break and be crushed during kneading and molding of the material.

材料中のセラミック繊維含有量は6〜70重量%程度が
適当である。これよりも少量では繊維強化の効果が少な
く、多すぎると却って強度が低下する。
The appropriate ceramic fiber content in the material is about 6 to 70% by weight. If the amount is smaller than this, the effect of reinforcing the fibers will be small, and if it is too large, the strength will actually decrease.

また、上記セラミック繊維を含まない一体のハブ部およ
び軸部を形成するセラミック材料としては、炭化珪素、
窒化珪素、アルミナ、ジルコニア。
In addition, as the ceramic material forming the integral hub portion and shaft portion that do not contain the ceramic fibers, silicon carbide, silicon carbide,
Silicon nitride, alumina, zirconia.

サイアロン等が用いられ得る。Sialon etc. may be used.

なお、上記フィン部においてセラミック繊維含有量が少
なく、セラミック繊維添加による所望の効果が得られな
い場合、熱間静水圧加圧(HIP)の処理をさらに加え
ることにより、所望の効果を得ることができる。
Note that if the ceramic fiber content in the fin portion is small and the desired effect cannot be obtained by adding ceramic fiber, the desired effect may be obtained by further applying hot isostatic pressing (HIP) treatment. can.

〔作用効果〕[Effect]

熱機関用回転体のフィンの先端部は最も周速が大で、ガ
ス中の異物が衝突して欠けやすい。そして該欠けは多く
の場合、外径方向へ突出するフィン先端部において突出
方向とほぼ直角方向、即ち第5図に示すY方向に発生す
る。しかるにセラミック繊維は突出方向、即ち欠は方向
と直交するX方向に配向するので、欠けが防止される。
The tip of the fin of a rotating body for a heat engine has the highest circumferential speed, and is easily chipped by collisions with foreign objects in the gas. In many cases, the chipping occurs at the tip of the fin that protrudes toward the outer diameter in a direction substantially perpendicular to the protruding direction, that is, in the Y direction shown in FIG. 5. However, since the ceramic fibers are oriented in the protruding direction, that is, in the X direction perpendicular to the chipping direction, chipping is prevented.

また該回転体のフィン部を射出成形または鋳込成形で型
成形する場合、第6図(A)、  (B)に示すように
キャビティのフィン成形部21を流れるセラミック材料
中のセラミック繊維3は抵抗が少ない方向、即ち流れ方
向に沿う方向となるが。
Furthermore, when the fin portion of the rotating body is molded by injection molding or cast molding, the ceramic fibers 3 in the ceramic material flowing through the fin molding portion 21 of the cavity as shown in FIGS. 6(A) and 6(B) The direction of least resistance, that is, the direction along the flow direction.

先端部の繊維は流れ方向にほぼ直角な方向となる。The fibers at the tip are oriented approximately perpendicular to the flow direction.

そこで本発明では第2図に示すようにキャビティのフィ
ン成形部21の先端に余剰部22を設け。
Therefore, in the present invention, as shown in FIG. 2, an extra portion 22 is provided at the tip of the fin forming portion 21 of the cavity.

成形後に製品の余剰部を第7図、第8図に示すように除
去するので、フィン先端部の繊維は先端方向へ向く方向
に配向している。従って1回転体作動中の微粒子の衝突
で2フイン先端が欠けるのが防止される。
After molding, the excess portion of the product is removed as shown in FIGS. 7 and 8, so that the fibers at the tip of the fin are oriented in the direction toward the tip. Therefore, chipping of the tips of the two fins due to the collision of particles during the operation of the single rotating body is prevented.

また、フィン部のみにセラミック繊維を含ませたことに
より熱機関用回転体中に閉める高価なセラミック繊維の
量は低減され1回転体は安価に製造され得る。さらにフ
ィン部と一体のハブ部および軸部とを別々に成形するこ
とにより、セラミック原料中に添加された有機物を加熱
分解除去するために必要な脱脂時間はフィン部、ハブ部
および軸部を一体で成形した場合に比較し、大幅に短縮
でき、生産性よく回転体を製造できる。このことは3大
形の回転体をも、安価に且つ生産性よく製造させ、実用
外大である。
Furthermore, by including ceramic fibers only in the fin portions, the amount of expensive ceramic fibers that are packed into the rotating body for a heat engine can be reduced, and the single rotating body can be manufactured at low cost. Furthermore, by separately molding the fin part, the hub part, and the shaft part, which are integrated into the fin part, the degreasing time required to thermally decompose and remove the organic matter added to the ceramic raw material can be reduced. Compared to when molding is done, the time required is significantly shorter and the rotating body can be manufactured with higher productivity. This makes it possible to manufacture three large rotating bodies at low cost and with good productivity, which is beyond practical use.

〔実施例〕〔Example〕

(実施例1) 直径約0.6μm、長さ10〜20μmの炭化珪素繊維
と、焼結助剤として5重量%のイツトリヤと5重量%の
マグネシア−アルミナスピネルを添加した平均粒径0.
8μmの窒化珪素粉末をそれぞれ30重世%、70重景
%の割合で混合してセラミック原料とした。このセラミ
ック原料100重量部に対し23重量部の熱可塑性樹脂
と可塑剤を添加し、ニーダにて加熱混錬して粉砕し、射
出成形用ペレットを作成した。
(Example 1) Silicon carbide fibers with an average particle size of 0.6 μm in diameter and 10 to 20 μm in length, and 5% by weight of Ittria and 5% by weight of magnesia-alumina spinel as sintering aids were added.
A ceramic raw material was prepared by mixing 8 μm silicon nitride powder at a ratio of 30% and 70%, respectively. 23 parts by weight of a thermoplastic resin and a plasticizer were added to 100 parts by weight of this ceramic raw material, and the mixture was heated and kneaded in a kneader and pulverized to produce pellets for injection molding.

第6図は2本発明の回転体のフィン部を射出成形するた
めの金型であって、この金型2にはキャビティのフィン
成形部21の先端に余剰部22が形成しである。しかし
て、上記ベレットを金型2内に矢印方向から射出成形し
、第9図および第10図に示すように複数のフィン13
を備えた回転体のフィン部成形体1″を得た。
FIG. 6 shows a mold for injection molding the fin portion of the rotating body of the present invention, and this mold 2 has an extra portion 22 formed at the tip of the fin molding portion 21 of the cavity. Then, the above-mentioned pellet is injection molded into the mold 2 from the direction of the arrow, and as shown in FIGS. 9 and 10, a plurality of fins 13 are formed.
A molded body 1'' of a fin portion of a rotating body was obtained.

次にこの成形体1′を脱脂炉中に入れ、セラミック原料
に添加された有機物を加熱分解除去した。
Next, this molded body 1' was placed in a degreasing furnace, and the organic matter added to the ceramic raw material was removed by thermal decomposition.

この脱脂に要した時間は、90時間であった。一方、前
記原料から炭化珪素繊維を除いた平均粒径0、8μmの
窒化珪素粉末を用い、他はフィン部と同一原料を加えて
第3図に示す様な一体のハブ部12および軸部11の形
状に静水圧加圧成形した。
The time required for this degreasing was 90 hours. On the other hand, by using silicon nitride powder with an average particle size of 0.8 μm obtained by removing silicon carbide fibers from the raw materials, and adding the same raw materials as those for the fin portion, an integrated hub portion 12 and shaft portion 11 as shown in FIG. It was hydrostatically pressed into the shape of .

次にこの成形体を脱脂炉中に入れ、セラミック原料に少
量添加した有機物を加熱分解除去した。
Next, this molded body was placed in a degreasing furnace, and a small amount of organic matter added to the ceramic raw material was removed by thermal decomposition.

こうして得たフィン部成形体1゛ と一体のハブ部およ
び軸部成形体とを組合せ、3t/(Jllで静水圧加悦
して結合し、焼成して一体化し1回転体の焼結体を得た
The thus obtained fin part molded body 1'' and the integrated hub part and shaft part molded body were combined, bonded by hydrostatic pressure using 3t/(Jll), and baked to be integrated to obtain a sintered body of one rotating body. Ta.

次いで、この焼結体のフィン先端の余剰部14を研削除
去し、第1図ないし第11図に示すような一体のハブ部
12および軸部11と複数のフィン部13を備えた外径
601mのセラミック回転体1を得た。
Next, the surplus portion 14 at the tip of the fin of this sintered body was removed by grinding, and the outer diameter of the sintered body was 601 m as shown in FIGS. A ceramic rotating body 1 was obtained.

第6図(A)、  (B)は射出成形時におけるセラミ
ック繊維を含むセラミック原料の流れを示すものである
。第6図(A)に示すようにセラミック原料が金型2の
キャビティのフィン成形部21を流れるとき、セラミッ
ク繊維3は抵抗が少ないように流れ方向に向く。但し原
料の流れ方向先端部ではセラミック繊維3は流れ方向と
直角方向に向き、第6図(B)に示すように目的とする
製品と合致する形状のキャビティを持つ金型を用いたと
きにはフィン先端部のセラミック繊維はフィンの厚さ方
向に配向する。
FIGS. 6(A) and 6(B) show the flow of ceramic raw materials including ceramic fibers during injection molding. As shown in FIG. 6(A), when the ceramic raw material flows through the fin forming part 21 of the cavity of the mold 2, the ceramic fibers 3 are oriented in the flow direction so as to have less resistance. However, at the tip in the flow direction of the raw material, the ceramic fibers 3 are oriented perpendicular to the flow direction, and when a mold with a cavity shaped to match the intended product is used, as shown in Figure 6 (B), the fin tip The ceramic fibers in the fin are oriented in the thickness direction of the fin.

これに対して本発明では第2図に示すようにフィン成形
部21の先端に余剰部22を形成した金型を用いるので
、この余剰部22で形成された製品の余剰部14(第7
図、第8図)を除去することで、フィン先端部のセラミ
ック繊維3は上記の流れ方向、即ち、フィン面と平行か
つ先端方向へ配向する。
On the other hand, in the present invention, as shown in FIG.
8), the ceramic fibers 3 at the tip of the fin are oriented in the above flow direction, that is, parallel to the fin surface and toward the tip.

上記のようにして得られた本発明のタービンホイール1
をターボチャージャに装着し、エンジンの燃焼ガスによ
って12万rpmの回転数で回転させた。このとき回転
体最外周(フィンの先端)の周速は約380m/sec
となった。この状態で、耐衝撃度を測定するため、1個
10〜20mgの重さの酸化鉄片を約100mgずつ5
回に分けて排気ガス中に混入させた。
Turbine wheel 1 of the present invention obtained as described above
was attached to a turbocharger and rotated at a speed of 120,000 rpm using combustion gas from the engine. At this time, the circumferential speed of the outermost circumference of the rotating body (the tip of the fin) is approximately 380 m/sec.
It became. In this state, in order to measure the impact resistance, 5 pieces of iron oxide weighing approximately 100 mg each weighing 10 to 20 mg each.
It was mixed into the exhaust gas in batches.

回転試験後、この回転体lの先端部には酸化鉄片の衝突
跡が見られたが、欠けは全く生じなかった。
After the rotation test, collision marks of iron oxide pieces were seen at the tip of the rotating body 1, but no chipping occurred at all.

また、先端部を切断して走査型電子顕微鏡にて観察した
ところ、先端部においでセラミック繊維が第1図、第7
図、第8図に示すように同一方向へ配向していることが
確認された。
In addition, when the tip was cut and observed with a scanning electron microscope, ceramic fibers were found in the tip as shown in Figures 1 and 7.
As shown in FIG. 8, it was confirmed that they were oriented in the same direction.

(実施例2) 炭化珪素繊維と窒化珪素粉末との混合割合をそれぞれ1
0重量%、90重量%とじた他は実施例1と同様の方法
および条件でセラミック繊維入り回転体を焼結した。さ
らに、この焼結体にHIP処理をして回転体を製造した
(Example 2) The mixing ratio of silicon carbide fiber and silicon nitride powder was 1
A ceramic fiber-containing rotating body was sintered using the same method and conditions as in Example 1, except that the content was 0% by weight and 90% by weight. Furthermore, this sintered body was subjected to HIP treatment to produce a rotating body.

こうして得られた回転体を実施例1と同様に回転試験し
たが、フィン先端部には欠けは全く生じなかった。
The rotating body thus obtained was subjected to a rotation test in the same manner as in Example 1, and no chipping occurred at the fin tip.

(比較例1) 製品と同一形状で余剰部を有しないキャビティをもつ金
型を用い、他は本発明の上記実施例1と同一条件のフィ
ン部とハブ部および軸部を別体で製造したセラミック繊
維入り回転体につき、上記と同一条件で試験を行ったと
ころ、フィンの先端部には酸化鉄の衝突跡とともに、数
枚のフィンに微小な欠けの発生が見られた。
(Comparative Example 1) A mold with a cavity having the same shape as the product and no surplus part was used, and the fin part, hub part, and shaft part were manufactured separately under the same conditions as in Example 1 of the present invention. When a ceramic fiber-containing rotating body was tested under the same conditions as above, small chips were observed in several fins along with iron oxide impact marks at the tips of the fins.

(比較例2) フィン部、ハブ部および軸部が一体となった形状で、こ
れにフィン成形部の先端に余剰部が形成しである金型を
用い、実施例1と同様にして一体の炭化珪素繊維入り回
転体を製造した。実施例1と同様に回転試験において欠
けは全く生じなかったが、一体のため成形体から有機物
を加熱分解除去するのに150時間という長い脱脂時間
を要した。
(Comparative Example 2) Using a mold in which the fin part, the hub part, and the shaft part are integrally formed, and an extra part is formed at the tip of the fin molding part, the integral part is made in the same manner as in Example 1. A rotating body containing silicon carbide fibers was manufactured. As in Example 1, no chipping occurred in the rotation test, but since it was integral, it took a long degreasing time of 150 hours to thermally decompose and remove the organic matter from the molded body.

(比較例3) 前記実施例2と同様な原料1条件でフィン部とハブ部お
よび軸部を別体で作成し、HIP処理をしていないセラ
ミック繊維入りタービンホイールを製造した。これを回
転試験したところ1 フィン先端部には1枚のフィンに
微小な欠けの発生が見られた。
(Comparative Example 3) A fin portion, a hub portion, and a shaft portion were created separately under the same raw material conditions as in Example 2, and a ceramic fiber-containing turbine wheel without HIP treatment was manufactured. When this was subjected to a rotation test, a minute chip was observed in one fin at the tip of the fin.

以上説明したように本発明では熱機関用回転体のフィン
部を繊維強化セラミック焼結体で構成し。
As explained above, in the present invention, the fin portion of the rotating body for a heat engine is constructed from a fiber-reinforced ceramic sintered body.

かつフィンの先端部における繊維を配向せしめることで
1作動中時にフィンに欠けの発生するのを防止すること
ができる。
In addition, by orienting the fibers at the tips of the fins, it is possible to prevent the fins from chipping during one operation.

また1回転体フィン部を型成形するに際し、キャビティ
のフィン成形部先端に余剰部を有する成形型を用いるこ
とで、フィン先端部の繊維が配向した上記回転体フィン
部を安価に且つ生産性よく製造することができる。
In addition, when molding the fin portion of a single rotating body, by using a mold having an extra portion at the tip of the fin molding portion of the cavity, the fin portion of the rotating body with oriented fibers at the tip of the fin can be formed at low cost and with high productivity. can be manufactured.

なお、成形型のキャビティの余剰部の形状は特に限定さ
れるものではなく、要はセラミック材料がフィン先端と
なるべき部分を越えてさらに流動し得る形状であればよ
い。
Note that the shape of the excess portion of the mold cavity is not particularly limited, and any shape may be used as long as the ceramic material can further flow beyond the portion that is to become the fin tip.

さらに2本発明は実施例のラジアル型回転体に限らず、
アキシャル型回転体に用いても同等の効果があることは
言うまでもない。
Furthermore, the present invention is not limited to the radial type rotating body of the embodiment,
Needless to say, the same effect can be obtained even when used in an axial rotating body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第11図は本発明による熱機関用回転体お
よびその要部を示すもので、第1図は一部切欠き側面図
、第2図は回転体フィン部射出成形時の金型キャビティ
を示す図、第3図はハブ部および軸部の側面図、第4図
はハブ部、軸部とフィン部の一体化結合を示す一部切欠
き側面図、第5図は正面図、第6図(A)、  (B)
は回転体フィン部射出成形時のセラミック材料中の繊維
の方向を示す図、第7図および第8図はそれぞれ第9図
および第10図のA部の繊維配向を示す図、第11図は
フィン部の要部斜視図である。
Figures 1 to 11 show a rotating body for a heat engine according to the present invention and its main parts, with Figure 1 being a partially cutaway side view, and Figure 2 showing a mold for injection molding the fin portion of the rotating body. FIG. 3 is a side view of the hub portion and shaft portion; FIG. 4 is a partially cutaway side view showing the integral connection of the hub portion, shaft portion, and fin portion; FIG. 5 is a front view; Figure 6 (A), (B)
is a diagram showing the direction of fibers in the ceramic material during injection molding of the fin portion of the rotating body, FIGS. 7 and 8 are diagrams showing the fiber orientation in section A of FIGS. 9 and 10, respectively, and FIG. FIG. 3 is a perspective view of a main part of a fin portion.

Claims (1)

【特許請求の範囲】[Claims] フィンを備えた熱機関用回転体であって、セラミック繊
維を含むセラミック焼結体より成るフィン部と、セラミ
ック繊維を含まないセラミック焼結体より成る一体のハ
ブ部および軸部とから成り、回転体のフィン部の先端部
のセラミック繊維をフィン面に沿い、かつ先端縁方向に
配向せしめたことを特徴とする熱機関用回転体。
A rotating body for a heat engine equipped with fins, consisting of a fin part made of a ceramic sintered body containing ceramic fibers, and an integrated hub part and shaft part made of a ceramic sintered body not containing ceramic fibers, A rotating body for a heat engine, characterized in that ceramic fibers at the tip of the fin portion of the body are oriented along the fin surface and in the direction of the tip edge.
JP7193186A 1986-03-28 1986-03-28 Rotation body for heat engine Pending JPS62228602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7193186A JPS62228602A (en) 1986-03-28 1986-03-28 Rotation body for heat engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7193186A JPS62228602A (en) 1986-03-28 1986-03-28 Rotation body for heat engine

Publications (1)

Publication Number Publication Date
JPS62228602A true JPS62228602A (en) 1987-10-07

Family

ID=13474754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7193186A Pending JPS62228602A (en) 1986-03-28 1986-03-28 Rotation body for heat engine

Country Status (1)

Country Link
JP (1) JPS62228602A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2462275A (en) * 2008-07-31 2010-02-03 Cummins Turbo Tech Ltd A method of connection a turbine shaft to a rotor
WO2010137610A1 (en) * 2009-05-26 2010-12-02 株式会社Ihi Impeller applied to supercharger and method of manufacturing same
WO2010137609A1 (en) * 2009-05-26 2010-12-02 株式会社Ihi Impeller applied to supercharger and method of manufacturing same
JP2012523496A (en) * 2009-04-09 2012-10-04 ビーエーエスエフ ソシエタス・ヨーロピア Method for manufacturing a turbine wheel for an exhaust gas turbocharger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2462275A (en) * 2008-07-31 2010-02-03 Cummins Turbo Tech Ltd A method of connection a turbine shaft to a rotor
JP2012523496A (en) * 2009-04-09 2012-10-04 ビーエーエスエフ ソシエタス・ヨーロピア Method for manufacturing a turbine wheel for an exhaust gas turbocharger
WO2010137610A1 (en) * 2009-05-26 2010-12-02 株式会社Ihi Impeller applied to supercharger and method of manufacturing same
WO2010137609A1 (en) * 2009-05-26 2010-12-02 株式会社Ihi Impeller applied to supercharger and method of manufacturing same

Similar Documents

Publication Publication Date Title
US4460527A (en) Ceramic rotor and manufacturing process therefor
JPH0231648B2 (en)
US4866829A (en) Method of producing a ceramic rotor
EP0117721B1 (en) A method of producing a radial type ceramic turbine rotor
US4692099A (en) Rotary component of a rotary device for heat engines and a method of manufacturing the same
US4385866A (en) Curved blade rotor for a turbo supercharger
US4550004A (en) Method of producing radial type ceramic turbine rotor
JPS62228602A (en) Rotation body for heat engine
US4597926A (en) Method of manufacturing radial flow turbine rotor
US5051062A (en) Radial flow turbine rotor
US4544327A (en) Ceramic rotor and manufacturing process therefor
Carlsson The shaping of engineering ceramics
JP3360417B2 (en) Turbine casing structure
US5476623A (en) Method of manufacturing hollow ceramic part with hole therein
JP2739342B2 (en) Multilayer ceramic rotor, molded product thereof and method of manufacturing the same
JP2784837B2 (en) Degreasing method of ceramic molded body
JP3176190B2 (en) Ceramic turbine rotor
JPS62288302A (en) Rotary body for thermal engine
JP2863401B2 (en) Composite ceramic gas turbine blade and method of manufacturing the same
JPS6079102A (en) Ceramic turbine rotor
JP3245346B2 (en) Manufacturing method of ceramic turbine rotor
JPH03206301A (en) Radial ceramic turbine rotor
JP2001302354A (en) Turbine rotor and method for manufacturing the same
JPS6265990A (en) Production of ceramics turbo wheel
JPH0312362A (en) Hybrid turbine rotor