JPH03206301A - Radial ceramic turbine rotor - Google Patents

Radial ceramic turbine rotor

Info

Publication number
JPH03206301A
JPH03206301A JP29469189A JP29469189A JPH03206301A JP H03206301 A JPH03206301 A JP H03206301A JP 29469189 A JP29469189 A JP 29469189A JP 29469189 A JP29469189 A JP 29469189A JP H03206301 A JPH03206301 A JP H03206301A
Authority
JP
Japan
Prior art keywords
hub
gas outlet
outlet side
blade
turbine rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29469189A
Other languages
Japanese (ja)
Inventor
Takeyuki Mizuno
水野 丈行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP29469189A priority Critical patent/JPH03206301A/en
Publication of JPH03206301A publication Critical patent/JPH03206301A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To obtain a rotor having a high mechanical strength absolutely without cracking in a corner part, where the cracking is apt to occur at the time of manufacturing, by forming the corner part being placed in a gas outlet side root part in a connection part between a blade part and a hub part, into a specific curved surface. CONSTITUTION:In a rotor main unit, a hub part 2 is integrally connected to a shaft part 4 while a blade part 1 is integrally formed in this hub part 2. The end surface of a gas outlet side in the hub part 2 is protruded from the gas outlet side root part of the blade part 1. Here, a corner part 3 of the gas outlet side root part in a connection part between the blade part 1 and the hub part 2 is formed into a curved surface of 3Rmm or more. In this way, a turbine rotor of large mechanical strength, with no crack generated at all in the corner part 3 where the cracking is apt to occur at the time of manufacturing, is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は翼部とハブ部との接合部の気体出口側つけ根部
にクランクのない機械的強度の強いラジアル型セラミッ
クタービンローターに関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a mechanically strong radial ceramic turbine rotor that does not have a crank at the root on the gas outlet side of the joint between the blade section and the hub section. .

(従来の技術) 窒化珪素、炭化珪素、サイアロン等のシリコンセラミッ
クスは耐熱性および耐熱衝撃性に優れており、、また軽
量であるためガスタービンエンジン、ディゼルエンジン
等の構造材料として注目されており、とりわけこれらの
セラミック材料から成るラジアル型タービンローターは
、金属製タービンローターに比べ軽量でしかも高温で使
用でき、さらに極めて熱効率に優れているため、自動車
エンジン用ターボチャージャーローターあるいはガスタ
ービンローター等として注目されている。
(Prior Art) Silicon ceramics such as silicon nitride, silicon carbide, and sialon have excellent heat resistance and thermal shock resistance, and are also lightweight, so they are attracting attention as structural materials for gas turbine engines, diesel engines, etc. In particular, radial turbine rotors made of these ceramic materials are lighter than metal turbine rotors, can be used at high temperatures, and have extremely high thermal efficiency, so they are attracting attention as turbocharger rotors for automobile engines or gas turbine rotors. ing.

(発明が解決しようとする課題) このラジアル型タービンローターは形状が複雑であるた
め、通常、射出戊形法等により或形されている。しかし
乍ら、セラ旦ツクス原料を射出戒形に用いるには可塑剤
として多量の樹脂、ワックス等を加えなければならない
ため、セラξツク原料ヨりなる射出成形後のラジアル型
タービンローターより樹脂、ワンクス等を加熱あるいは
焼成により除去する際、その構造上翼とハブ部との接合
部の気体出口側つけ根部の厚みが急激に変化するため脱
樹脂、脱ワックスが不均一におこり、そのため戒形体の
密度が不均質となり脱脂時または焼戒時に局所的な収縮
差が生じて引張応力により、翼部とハブ部との接合部の
気体出口側つけ根部にクランクが生じ易い欠点があった
(Problems to be Solved by the Invention) Since the radial turbine rotor has a complicated shape, it is usually shaped by an injection molding method or the like. However, in order to use the ceramic raw material for injection molding, it is necessary to add a large amount of resin, wax, etc. as a plasticizer. When Wankus, etc. is removed by heating or firing, due to its structure, the thickness of the base on the gas outlet side of the joint between the blade and the hub changes rapidly, resulting in uneven deresin and wax removal, which causes the formation of a pre-shaped body. The density of the airfoils is non-uniform, and local shrinkage differences occur during degreasing or burning, resulting in tensile stress that tends to cause cranks at the base of the joint between the blade and the hub on the gas outlet side.

(課題を解決するための手段) 本発明は従来のこのような欠点を解決するためになされ
たもので、本発明は翼部とハブ部との接合部の気体出口
側つけ根部にクラックの発生のないように焼威されたラ
ジアル型セラく冫クタービンローターに関するものであ
り、軸部と、咳軸部に一体的に連結したハブ部と、該ハ
ブ部と一体的に形威された翼部とから或り、前記ハブ部
の気体出口側端面が前記翼部の気体出口側つけ根部より
突出した形状のラジアル型タービンローターにおいて、
前記翼部とハブ部との接合部の前記気体出口側つけ根部
のすみ肉部が3RfflII1以上の曲面に形威されて
いるラジアル型セラミックタービンローターである。
(Means for Solving the Problems) The present invention has been made to solve the above-mentioned drawbacks of the conventional technology. This relates to a radial-type ceramic turbine rotor that was completely destroyed by fire, and includes a shaft portion, a hub portion integrally connected to the cough shaft portion, and a blade integrally formed with the hub portion. In a radial turbine rotor, the end face of the hub part on the gas outlet side protrudes from the root part of the blade part on the gas outlet side,
The rotor is a radial type ceramic turbine rotor, in which a fillet portion of a root portion on the gas outlet side of a joint portion between the blade portion and the hub portion is shaped into a curved surface of 3RfflII1 or more.

なお、本願発明におけるr3Rmm以上」とは前記すみ
肉部の曲面がJIS BO703−1962に示される
「Rとして3閣以上」であることを示している。
In addition, "r3Rmm or more" in the present invention indicates that the curved surface of the fillet part is "R of 3 or more" as shown in JIS BO703-1962.

(作 用) 本発明の更に詳しい構戒を製造法について述べれば、窒
化珪素、炭化珪素、サイアロンあるいは焼或によりこれ
らを生或する物質から選ばれる少なくとも一種好ましく
はそのいずれか一種より戒る原料に可塑剤として樹脂お
よびワックス等を添加しさらに好ましくは窒化珪素の場
合、Yz(h,MgA l 2041 Mgo, Ce
Oz, SrO等の焼結助剤、また炭化珪素の場合、B
e,Al,B,C等の焼結助剤を加えて混合混練し、射
出戒形用のセラミック原料を調製する。そして第1図に
示すように、焼戒後の翼部1とハブ部2との接合部の気
体出口側つけ根部のすみ肉部3が3Rmm以上好ましく
はIOR印以下、より好ましくは4Rmm〜6Rmmの
曲面を形成するように調整された射出用金型を用いて前
記セラミソク原料を射出戒形する。
(Function) To describe the more detailed structure of the present invention regarding the manufacturing method, the raw material is at least one selected from silicon nitride, silicon carbide, sialon, or a substance that produces these by sintering, preferably any one of them. In the case of silicon nitride, Yz(h, MgAl 2041 Mgo, Ce
Sintering aids such as Oz, SrO, and in the case of silicon carbide, B
Sintering aids such as E, Al, B, and C are added and mixed to prepare a ceramic raw material for injection molding. As shown in FIG. 1, the fillet part 3 at the base of the gas outlet side of the joint between the wing part 1 and the hub part 2 after burning is 3Rmm or more, preferably IOR mark or less, more preferably 4Rmm to 6Rmm. The ceramic raw material is injected and shaped using an injection mold that is adjusted to form a curved surface.

次いで射出戒形によって得られた戒形体中に含まれる樹
脂およびワノクス等の可塑剤を加熱により除去して脱脂
を行う。
Next, the resin and plasticizer such as Wanox contained in the molded body obtained by injection molding are removed by heating to perform degreasing.

この加熱条件は、樹脂およびワックス等の種類、含有量
によっても異なるがほぼ300〜600 ’Cの温度ま
で100゜C/hr以下、好まし《はlO゜C/hr以
下の昇温速度で昇温し、加熱を行って脱脂を行う。
The heating conditions vary depending on the type and content of the resin and wax, etc., but the temperature is raised at a rate of 100°C/hr or less, preferably 10°C/hr or less, to a temperature of approximately 300 to 600'C. Heat it up and degrease it.

そして脱脂後必要に応じて仮焼や静水加圧を行う。仮焼
は戒形体の取扱いを容易にし、機械加工に必要な強度を
付与するため800〜1200゜Cの温度で行う。また
、静水加圧は脱脂後の戒形体を弾性体の袋で覆い500
〜5000kg / cm ”の圧力で行ない戒形体を
緻密化する。その後戒形体は原料材質の種類に応じてそ
れぞれの材質が完全に焼結する温度例えば1600〜2
200゜Cで10〜200分間程度焼或を行う。尚、セ
ラミックスの原料として焼成することにより窒化珪素、
炭化珪素、サイアロン等を生或する原料を用いるときは
、焼戒温度は勿論のこと雰囲気も極めて重要であり、例
えば窒化珪素の場合は窒素雰囲気、炭化珪素の場合はア
ルゴン雰囲気で行う。そして焼成により翼部1とハブ部
2との接合部の気体出口側つけ根部のすみ肉部3が3R
mm以上の曲面を有するつけ根部のすみ肉部にクラック
のない本発明のラジアル型セラミックタービンローター
が得られる。なお、焼成後の翼部とハブ部との接合部の
気体出口側つけ根部のすみ肉部を3Rmm以上の曲面に
限定する理由は3Rmm未溝の曲面であると、翼部とハ
ブ部との接合部の気体出口側つけ根部の厚みの変化が急
激になるため脱脂が不均一になり、脱脂の不均一に起因
する応力によりクラックが発生するからである。また1
0Rmmよりも大きくなるとローターの空力特性が低下
し易くなるため10Rmm以下である方が好ましい。
After degreasing, calcination and hydrostatic pressurization are performed as necessary. The calcination is carried out at a temperature of 800 to 1200°C in order to make the shaped body easier to handle and to give it the strength necessary for machining. In addition, for hydrostatic pressurization, the degreased body is covered with an elastic bag and
This is done at a pressure of ~5000 kg/cm'' to densify the preformed body.The preform is then densified at a temperature such as 1600 to 200 kg/cm, at which each material is completely sintered, depending on the type of raw material.
Baking is performed at 200°C for about 10 to 200 minutes. In addition, silicon nitride,
When using raw materials producing silicon carbide, sialon, etc., not only the firing temperature but also the atmosphere are extremely important; for example, in the case of silicon nitride, the firing is performed in a nitrogen atmosphere, and in the case of silicon carbide, the firing is performed in an argon atmosphere. Then, by firing, the fillet part 3 at the base of the gas outlet side of the joint between the wing part 1 and the hub part 2 becomes 3R.
The radial ceramic turbine rotor of the present invention is obtained which has no cracks in the fillet portion of the root portion having a curved surface of mm or more. The reason why the fillet part of the gas outlet side base of the joint between the blade and the hub after firing is limited to a curved surface of 3Rmm or more is that if it is a curved surface without a groove of 3Rmm, the connection between the blade and the hub will be reduced. This is because the thickness of the joint portion on the gas outlet side rapidly changes, resulting in uneven degreasing, and cracks occur due to stress caused by the non-uniform degreasing. Also 1
If it is larger than 0 Rmm, the aerodynamic characteristics of the rotor tend to deteriorate, so it is preferably 10 Rmm or less.

(実施例) 次に本発明の効果を実施例に基づいて説明する。(Example) Next, the effects of the present invention will be explained based on examples.

平均粒径0.5μのSiJ4粉末100重量部に焼結助
剤として?lg0 3重量部、SrO 2重量部、Ce
Oz2重量部および可塑剤としてポリプロピレン樹脂を
15重量部加えて混合混練し、射出戊形用セラミ・ノク
原料を調製した。そして翼の最大直径が60mmで焼戒
後翼部とハブ部との接合部の気体出口側のすみ肉部が第
1表に示した数値の曲面を有するラジアル型タービンロ
ーターを得るため、前記セラξ7ク原料を、前記所定寸
法となるよう調整された金型を用いて射出成形した。そ
の後これらの戒形体を5゜C/hrの昇温速度で500
゜Cまで昇温し、500゜Cで10時間加熱して脱脂を
行なった後、脱脂した戒形体をゴム袋中に入れて300
0kg / crn ”の圧力で静水加圧を行なって緻
密化し、次いで窒素雰囲気中で1720゜Cで30分焼
或した。焼或後のローターについてのすみ肉部のクラン
クの発生状態を第1表に併記した。焼或後翼部とハブ部
との接合部の気体出口側のすみ肉部3が3Rmm以上の
曲面を有する本発明のローター(試料1〜試料4)は、
クランクの発生が全く認められなかったのに対しすみ肉
部3が3Rmmより小さい曲面のローター(試料5およ
び試料6)は、翼部とハブ部との接合部の気体出口側の
すみ肉部にいずれもそれぞれ3 mm、6 mmの長さ
のクランクが発生していた。そしてこれらの試料を用い
て回転試験を行うためにロータ一の動不っりあいをいず
れも0.05gcmに研削調整した後、金属製シャフト
を取りつけ全体の動不つりあいを0.001 gcmに
さらにバランス調整し、回転試験機により徐々に回転数
を増やしながら試験を行った。第2図は第1表の数値を
試験時のデータで一部補完して示したものである。第1
表及び第2図より明らかなように、本発明のローター(
試料1〜試料4)は、150.00O RPM (7)
回転数テモ破壊しなかったのに対し、本発明外のロータ
ー(試料5および試料6)は 70. OOORPM以
下の回転数で破壊した。
As a sintering aid to 100 parts by weight of SiJ4 powder with an average particle size of 0.5μ? 3 parts by weight of lg0, 2 parts by weight of SrO, Ce
2 parts by weight of Oz and 15 parts by weight of polypropylene resin as a plasticizer were added and mixed and kneaded to prepare a ceramic material for injection molding. In order to obtain a radial turbine rotor in which the maximum diameter of the blade is 60 mm and the fillet on the gas outlet side of the joint between the rear blade part and the hub part has a curved surface with the numerical values shown in Table 1, The ξ7 raw material was injection molded using a mold adjusted to have the predetermined dimensions. Thereafter, these preforms were heated to 500°C at a heating rate of 5°C/hr.
After raising the temperature to 500°C for 10 hours to degrease, place the defatted Kai-shaped body in a rubber bag and incubate at 300°C.
It was densified by hydrostatic pressurization at a pressure of 0 kg/crn, and then baked at 1720°C for 30 minutes in a nitrogen atmosphere. Table 1 shows the occurrence of cranks in the fillet of the rotor after baking. The rotor of the present invention (Samples 1 to 4) in which the fillet part 3 on the gas outlet side of the joint between the burned rear wing part and the hub part has a curved surface of 3 Rmm or more,
While no cranking was observed, the curved rotors with fillet 3 smaller than 3Rmm (Samples 5 and 6) had a fillet on the gas outlet side of the joint between the blade and hub. In both cases, cranks with lengths of 3 mm and 6 mm occurred, respectively. Then, in order to conduct a rotation test using these samples, the dynamic unbalance of the rotor was adjusted to 0.05 gcm by grinding, and then a metal shaft was attached and the dynamic unbalance of the entire rotor was further adjusted to 0.001 gcm. The balance was adjusted and the test was conducted while gradually increasing the number of rotations using a rotation tester. Figure 2 shows the numerical values in Table 1 partially supplemented with data from the test. 1st
As is clear from the table and FIG. 2, the rotor of the present invention (
Samples 1 to 4) are 150.00O RPM (7)
The rotors other than the present invention (Sample 5 and Sample 6) did not break due to the rotational speed of 70. It was destroyed at a rotation speed below OOORPM.

以上述べたように、本発明のラジアル型セラミソクター
ビンローターおよびその製造法は、夕一ビンローターの
翼部とハブ部との接合部の気体出口側つけ根部のすみ肉
部が焼或後3Rmm以上の曲面になるように一体に射出
或形することによって、製造時に最もクランクが発生し
易いつけ根部のすみ肉部に全くクラック発生のない機械
的強度の強いタービンローターが得られるものであって
、ディーゼルエンジンおよびガソリンエンジン用のター
ボチャージャー用ローターおよびガスタービンエンジン
のローター等のラジアル型セラξツクターヒンローター
として利用でき、産業上極めて有用である。
As described above, the radial type ceramic turbine rotor of the present invention and the manufacturing method thereof are such that the fillet part of the gas outlet side root of the joint between the blade part and the hub part of the rotor is 3Rmm after being sintered. By integrally injecting or shaping the rotor to form the curved surface described above, a turbine rotor with strong mechanical strength can be obtained, with no cracks occurring at the root fillet where cranking is most likely to occur during manufacturing. It can be used as a radial type ceramic rotor for turbocharger rotors for diesel engines and gasoline engines, gas turbine engine rotors, etc., and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明のラジアル型タービンローターを具体的
に説明する説明図、 第2図は第1表に示すすみ肉部の曲面の大きさとクラン
クの発生有無、クラックの長さ、回転数とを比較して示
す特性図、 第3図は本発明のセラミンクタービンローターをターボ
チャージャーに組込んだ図である。 1・・・翼部       2・・・ハブ部2A・・・
ハブ先端部    2B・・・ハブ部突出部3・・・す
み肉部     4・・・軸部5・・・気体出口側
Figure 1 is an explanatory diagram specifically explaining the radial turbine rotor of the present invention. Figure 2 shows the size of the curved surface of the fillet, presence or absence of cranks, length of cracks, and rotational speed shown in Table 1. Figure 3 is a diagram showing the ceramic turbine rotor of the present invention incorporated into a turbocharger. 1... Wing part 2... Hub part 2A...
Hub tip 2B... Hub protrusion 3... Fillet 4... Shaft 5... Gas outlet side

Claims (1)

【特許請求の範囲】[Claims] 1、軸部4と、該軸部4に一体的に連結したハブ部2と
、該ハブ部2と一体的に形成された翼部1とから成り、
前記ハブ部2の気体出口側5の端面が前記翼部1の気体
出口側つけ根部より突出した形状のラジアル型タービン
ローターにおいて、前記翼部1とハブ部2との接合部の
前記気体出口側つけ根部のすみ肉部3が3Rmm以上の
曲面に形成されていることを特徴とするラジアル型セラ
ミックタービンローター。
1. Consists of a shaft portion 4, a hub portion 2 integrally connected to the shaft portion 4, and a wing portion 1 integrally formed with the hub portion 2,
In a radial turbine rotor having a shape in which the end face of the gas outlet side 5 of the hub part 2 projects from the gas outlet side root part of the blade part 1, the gas outlet side of the joint part between the blade part 1 and the hub part 2 A radial ceramic turbine rotor characterized in that a fillet 3 at the base is formed into a curved surface of 3 Rmm or more.
JP29469189A 1989-11-13 1989-11-13 Radial ceramic turbine rotor Pending JPH03206301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29469189A JPH03206301A (en) 1989-11-13 1989-11-13 Radial ceramic turbine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29469189A JPH03206301A (en) 1989-11-13 1989-11-13 Radial ceramic turbine rotor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58028632A Division JPS59155501A (en) 1983-02-24 1983-02-24 Radial flow type ceramic turbine rotor and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03206301A true JPH03206301A (en) 1991-09-09

Family

ID=17811059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29469189A Pending JPH03206301A (en) 1989-11-13 1989-11-13 Radial ceramic turbine rotor

Country Status (1)

Country Link
JP (1) JPH03206301A (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAE TECHNICAL PAPER SERIES 850313=1985 *

Similar Documents

Publication Publication Date Title
US4460527A (en) Ceramic rotor and manufacturing process therefor
US4866829A (en) Method of producing a ceramic rotor
JPS6240522B2 (en)
JPS59109304A (en) Manufacture of radial type ceramic turbine rotor
EP0107268B1 (en) Method of providing a reinforced shaped ceramic body
JPH03206301A (en) Radial ceramic turbine rotor
JPH0627482B2 (en) Manufacturing method of radial type ceramic turbine rotor
US4544327A (en) Ceramic rotor and manufacturing process therefor
EP0112146A2 (en) Radial blade type ceramic rotor and method of producing the same
JPS62228602A (en) Rotation body for heat engine
JP2739342B2 (en) Multilayer ceramic rotor, molded product thereof and method of manufacturing the same
JP3176190B2 (en) Ceramic turbine rotor
JPS6265990A (en) Production of ceramics turbo wheel
JP2739343B2 (en) Hybrid turbine rotor
JP2850540B2 (en) Reentrant piston and method of manufacturing the same
JPS6283378A (en) Manufacture of enhanced silicon nitride sintered body
JPS60113021A (en) Nozzle part for auxiliary chamber of internal-combustion engine
JPS621502A (en) Manufacture fo turbo-wheel made of ceramic
JPS6329001A (en) Ceramic turbo wheel
JPH03281902A (en) Radial type ceramic rotor
JPS6143163B2 (en)
JPH05272347A (en) Ceramic turbine rotor and manufacturing method thereof
JPS6270601A (en) Turbo-wheel made of ceramic
JPS62288302A (en) Rotary body for thermal engine
JPH0828204A (en) Ceramic turbine blade and manufacture thereof