JPS62174712A - Endoscope device - Google Patents

Endoscope device

Info

Publication number
JPS62174712A
JPS62174712A JP62013307A JP1330787A JPS62174712A JP S62174712 A JPS62174712 A JP S62174712A JP 62013307 A JP62013307 A JP 62013307A JP 1330787 A JP1330787 A JP 1330787A JP S62174712 A JPS62174712 A JP S62174712A
Authority
JP
Japan
Prior art keywords
light
image
solid
signal
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62013307A
Other languages
Japanese (ja)
Other versions
JPH059003B2 (en
Inventor
Shunpei Tanaka
俊平 田中
Hidetoshi Yamada
秀俊 山田
Masahiro Hirata
平田 正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP62013307A priority Critical patent/JPS62174712A/en
Publication of JPS62174712A publication Critical patent/JPS62174712A/en
Publication of JPH059003B2 publication Critical patent/JPH059003B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Closed-Circuit Television Systems (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)

Abstract

PURPOSE:To speedily and easily identify between an affected part and normal parts by providing a means which irradiates a body to be observed with light which has the infrared range and visible ray range in time series, an optical system, and a solid-state image pickup device. CONSTITUTION:An infrared ray and a visible ray from a light source 21 are incident on a photoconductor 1 through a rotary filter 22 to light the object of a patient at the tip part of an endoscope and then an image signal is sent to a signal switching circuit 28 through the solid-state image pickup device. Light reflected by a half-mirror 23, on the other hand, is sent to the circuit 28 through a photodetecting element 24. The filter 22 sections a wavelength range of 700-1,200mm into three and the three primary colors passed through the respective section are mixed to display an image on a monitor TV 34. At this time, normal parts of the patient are constant in reflection factor to each color and become white after color mixture, but an abnormal affected part differs in reflection factor. Consequently, the affected part is easily and speedily identified from the normal parts.

Description

【発明の詳細な説明】 本発明は生体体腔内または機械的構成部品等の空洞内を
観察するために使用する内視鏡装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an endoscope device used for observing the inside of a living body cavity or a cavity such as a mechanical component.

従来このような内視鏡においては、光学式ファイバ束に
より被観察体の像を生体体腔外或いは空洞外に導き出し
、光学式ファイバの出射端面に結像された光学像を、接
眼レンズ系を介して観察している。また他の方法として
、上記光学式ファイバの代わりに内視鏡の鞘の先端位置
に固体撮像装置を設置し、この固体撮(1装置の受光面
に結像された光学像を電気信号に変換しリード線により
生体体腔外或いは空洞外に導き出し、必要な信号処理を
行った後TVモニター上に表出しようとする試みも提案
されている。
Conventionally, in such endoscopes, an image of the object to be observed is guided outside the living body cavity or cavity using an optical fiber bundle, and an optical image formed on the output end surface of the optical fiber is transmitted through an eyepiece system. I am observing. Another method is to install a solid-state imaging device at the tip of the endoscope sheath instead of the optical fiber described above, and convert the optical image formed on the light-receiving surface of the device into an electrical signal. It has also been proposed to lead the signal out of the body cavity or cavity using a lead wire, perform necessary signal processing, and then display it on a TV monitor.

上述された内視鏡においては、被観察体から得られる情
報は可視光波長領域に限定されている。
In the endoscope described above, the information obtained from the object to be observed is limited to the visible light wavelength region.

すなわち、前者は光学的に直接肉眼で像を見るので当然
可視光波長領域外のものは観察できないし、後者の場合
固体撮像装置は赤外波長領域にも感光するので赤外波長
領域の像情報は検出可能であるが、像をカラー化する場
合赤外波長領域の像情報は色バランスをとる上で邪魔に
なる。そこで、色の忠実性を上げる目的で、普通は赤外
線カントフィルタ等で赤外波長領域の照明光は被観察体
に照射しないようにするか、あるいは、照射しても固体
撮像装置受光面には達しないようなフィルタを設ける必
要がある。
In other words, in the former case, the image is viewed optically directly with the naked eye, so it is naturally impossible to observe anything outside the visible light wavelength range, and in the latter case, the solid-state imaging device is also sensitive to infrared wavelength ranges, so image information in the infrared wavelength range cannot be observed. can be detected, but when colorizing an image, image information in the infrared wavelength region becomes a hindrance to achieving color balance. Therefore, in order to improve color fidelity, it is common practice to use an infrared cant filter to prevent illumination light in the infrared wavelength region from irradiating the object to be observed, or even if it is irradiated, the light receiving surface of the solid-state image pickup device It is necessary to provide a filter to prevent this from occurring.

このような内視鏡で被観察体の像を観察する場合、特に
生体内では患部と正常部とを見わけるのに微妙な色調の
差を検知しなければならない。一般にその差を検知(認
知)するには高度な知識と経験が必要とされ、その上検
知するまでに長時間を要し、また検知の間中注意力も集
中していなければならなかった。
When observing an image of an object to be observed using such an endoscope, it is necessary to detect subtle differences in color tone to distinguish between an affected area and a normal area, especially in a living body. Generally, detecting (recognizing) the difference requires a high degree of knowledge and experience, and it takes a long time to detect it, and requires concentrated attention during the detection.

本発明は、上述のような欠点をなくし、患部と正常部の
識別を迅速かつ容易に行うことができるようにすること
を目的とするものである。生体内の患部と正常部の観察
について、内視鏡装置の識別能力を増す方法として、本
発明では赤外線照射によって得られる不可視情報を可視
情報に変換する方法を採る。一般に知られているように
、固体撮像装置は近赤外領域で高感度である。また照明
用光源も一般には可視波長領域よりも赤外波長領域で多
くのエネルギーを放射することが知られている。ところ
で、被観察体から反射される光量は、生体内では可視光
波長領域の赤色(長波長)側で多いことは血液が赤色を
していることからも予想できる。さらに近赤外光で反射
率が大きくなることも発表されている。これらのことか
ら、生体内での赤外光から得られる情報は、生体内での
特徴抽出に役立つ可能性は充分にある。このように赤外
光で得られた画像情報はTVモニター上で特定の波長の
色で表示する。異なった赤外波長領域の画像だけをTV
モニター上に(赤)、(緑)、(青)で表示してもよい
し、可視光波長領域(例えば赤色像)で得られたものと
、赤外波長領域で得られたものとを同時に表示するよう
にしてもよい。要するに、生体内の患部を正常部と特徴
づけられる波長領域での像信号の抽出を可能にすること
が重要である。
It is an object of the present invention to eliminate the above-mentioned drawbacks and to make it possible to quickly and easily distinguish between an affected area and a normal area. As a method for increasing the discriminating ability of an endoscope apparatus for observing affected and normal parts within a living body, the present invention adopts a method of converting invisible information obtained by infrared irradiation into visible information. As is generally known, solid-state imaging devices have high sensitivity in the near-infrared region. It is also known that illumination light sources generally emit more energy in the infrared wavelength region than in the visible wavelength region. By the way, it can be predicted that the amount of light reflected from an object to be observed is large in the red (long wavelength) side of the visible light wavelength region in a living body because blood is red in color. It has also been announced that the reflectance increases with near-infrared light. For these reasons, there is a good possibility that information obtained from infrared light in a living body is useful for extracting features in a living body. Image information obtained using infrared light in this way is displayed on a TV monitor in colors of specific wavelengths. TV displays only images in different infrared wavelength regions
You can display (red), (green), and (blue) on the monitor, or you can simultaneously display what is obtained in the visible light wavelength region (for example, a red image) and what is obtained in the infrared wavelength region. It may also be displayed. In short, it is important to be able to extract image signals in a wavelength range that characterizes an affected area within a living body as a normal area.

本発明の内視鏡装置は、少なくとも1つの赤外波長領域
を持つ光と、少なくとも1つの可視波長領域を持つ光と
を時系列的に被観察体に照明する手段と、 被観察体の内部に挿入される部分の先端に設けられ、被
観察体からの光を受けて結像面に被観察体像を形成する
光学系と、 この光学系の結像面位置に配置され、被観察体の光学像
を電気信号に変換する固体撮像装置と、この固体撮像装
置から出力される上記各波長領域の光による被観察体像
を表わす電気信号を受けて画像の表示を行なう手段とを
具えることを特徴とするものである。
The endoscope apparatus of the present invention includes: means for chronologically illuminating an object to be observed with light having at least one infrared wavelength region and light having at least one visible wavelength region; and an interior of the object to be observed. An optical system is installed at the tip of the part to be inserted into the object and forms an image of the object on the imaging plane by receiving light from the object. a solid-state imaging device for converting an optical image into an electrical signal; and means for receiving an electrical signal representing an image of an object to be observed by light in each of the wavelength ranges outputted from the solid-state imaging device and displaying the image. It is characterized by this.

次に図面にしたがって本発明の詳細な説明する。Next, the present invention will be explained in detail according to the drawings.

第1図AおよびBは人体臓器の反射スペクトルを示す。Figures 1A and 1B show reflection spectra of human organs.

第1図Aは胃のスペクトルで、はとんど400nm 〜
1200nmの波長まで平らであり、その反射率は数1
0%である。一方第1図Bは血液のスペクトルで、40
0nm〜1200nmまで数%から100%近くまで変
化している。両者を比較すると、特に赤外波長領域(8
00nm〜1200nm)でその差が大きいことがわか
る。
Figure 1A is the spectrum of the stomach, which is mostly 400 nm ~
It is flat up to a wavelength of 1200 nm, and its reflectance is several 1
It is 0%. On the other hand, Figure 1B shows the spectrum of blood, 40
It varies from several % to nearly 100% from 0 nm to 1200 nm. Comparing the two, we find that especially in the infrared wavelength region (8
It can be seen that the difference is large between 00 nm and 1200 nm).

例えば、胃の中に血液に似たような組織あるいは血液を
多量に含んだようなものが存在し、その存在を認知しよ
うとした場合、近赤外波長領域で比較した方がその差が
はっきりし、その効果が著しいことは明らかである。
For example, if there is tissue resembling blood or something that contains a large amount of blood in the stomach, and you are trying to recognize its existence, the difference will be clearer if you compare it in the near-infrared wavelength region. However, it is clear that the effect is significant.

現状の光学的内視鏡では、人間の比視感度(400nm
〜700nm)″の波長領域でのみしか観察して判断す
ることができない。一方CODの感度領域は400 n
mから1200nmに及んでおり、近赤外波長領域の情
報を得るのに充分である。また、一般の光源に用いられ
る光源ランプは、可視光よりむしろ近赤外波長領域の波
長のエネルギーを多量に放射している。近赤外波長領域
の波長で被観察体を照射することは、一般に用いられる
赤外光カットフィルタの分光特性をより長波長側に移す
だけでよく、その技術的困難性はない。
Current optical endoscopes have a human specific luminous efficiency (400 nm).
It can only be observed and judged in the wavelength range of ~700nm).On the other hand, the sensitivity range of COD is 400nm.
m to 1200 nm, which is sufficient to obtain information in the near-infrared wavelength region. Furthermore, light source lamps used as general light sources emit a large amount of energy in the near-infrared wavelength region rather than visible light. Irradiating an object to be observed with wavelengths in the near-infrared wavelength region requires only shifting the spectral characteristics of commonly used infrared cut filters to longer wavelengths, and there is no technical difficulty.

第2図は本発明による内視鏡装置の一例の体腔内に挿入
される部分の先端を示す。本例は直視型であり、光源(
第3図参照)からの光を光導体1で内部に導き、照明用
ガラス窓2を通して被観察物体を照明する。被観察物体
からの反射光を撮像用ガラス窓3を経て取り入れ、結像
レンズ4によりCCD、BBD等の自己走査型2次元固
体撮像装置5の受光面に結像させる。この固体撮像装置
5は多数の感光素子を平面的に配列したものである。そ
の出力信号をリード線束6を経て外部へ導出する。この
リード線束6には外部の発振器(第3図参照)から固体
撮像装置5を動作させるためのクロック信号を供給する
リード線をも含むものである。
FIG. 2 shows the distal end of a portion of an example of the endoscopic device according to the present invention that is inserted into a body cavity. This example is a direct view type, and the light source (
3) is guided inside by a light guide 1 and illuminates the object to be observed through a glass window 2 for illumination. Reflected light from an object to be observed is taken in through an imaging glass window 3, and is imaged by an imaging lens 4 on a light receiving surface of a self-scanning two-dimensional solid-state imaging device 5 such as a CCD or BBD. This solid-state imaging device 5 has a large number of photosensitive elements arranged in a plane. The output signal is led out through the lead wire bundle 6. This lead wire bundle 6 also includes lead wires for supplying a clock signal for operating the solid-state imaging device 5 from an external oscillator (see FIG. 3).

光導体1およびリード線束6を鞘7内に挿入する。また
レンズ4および固体撮像装置5は外匣8内に配置し、こ
れを鞘7の先端に配置する。
The light guide 1 and the lead wire bundle 6 are inserted into the sheath 7. Further, the lens 4 and the solid-state imaging device 5 are placed inside an outer case 8, which is placed at the tip of the sheath 7.

第3図Aは外部に配置される部分の一実施例の構成を示
す。鞘7の端部から突出する光導体1の入射端面1aと
対向して光源21を配置する。光源21は赤外線および
可視光線を放射するもので、ここから出た光線は回転フ
ィルタ22を通して光導体1の入射端面1aに入射し、
被観察体への照明光とされる。なお光導体lのコアは、
一般に多成分のガラスでは近赤外波長領域で減衰すので
、近赤外波長領域でも減衰しない石英等を心材に用いた
ファイバを束ねたバンドルを使用するのが望ましい。回
転フィルタ22はモータ20により所定速度で定速回転
させるように配置する。受光素子24および色切換信号
回路25を以てスイッチングパルス発生回路を構成し、
回転フィルタ22の回転角によって変化する通過波長領
域を検出して、固体撮像装置5の駆動パルスおよび固体
撮像装置5から得られる像信号等を回転フィルタ22の
回転と同期させる。すなわち、ハーフミラ−23で反射
した光を受光素子24に入射させ、この受光素子24の
出力を色切換信号回路25に供給する。色切換信号回路
25は電流増幅器およびレベル検出回路を以て構成し、
受光素子24の出力電流信号を電圧信号に変換し、レベ
ル検出回路で、青、緑および赤色のそれぞれのタイミン
グ信号を作る。更にこのような色切換信号回路の電流増
幅器の出力を微分し、レベルを揃えて発振回路27のト
リガ信号とする。信号切換回路28は、撮像装置5から
リード線束6を経て外部に導出される画像信号を増幅器
26を経て受信し、光導体1に入射する光の色の種類に
同期して各別の出力端子28B、28Gおよび28Hに
供給する動作を行うものである。この信号切換回路28
には半導体アナログスイッチ等の高速動作のスイッチを
用いる。発振回路27では色切換回路25からのトリガ
信号を受け、撮像装置5の走査信号およびモニター用ブ
ラウン管34の水平偏向回路32および垂直偏向回路3
3への同期信号を供給する。
FIG. 3A shows the construction of one embodiment of the externally arranged part. A light source 21 is arranged opposite to the entrance end face 1a of the light guide 1 which projects from the end of the sheath 7. The light source 21 emits infrared rays and visible rays, and the rays emitted from the light source pass through a rotating filter 22 and enter the incident end surface 1a of the light guide 1.
It is used as illumination light for the object to be observed. The core of the light guide l is
In general, multi-component glass attenuates in the near-infrared wavelength region, so it is desirable to use a bundle of fibers whose core material is quartz or the like, which does not attenuate even in the near-infrared wavelength region. The rotary filter 22 is arranged so as to be rotated at a constant speed by the motor 20 at a predetermined speed. The light receiving element 24 and the color switching signal circuit 25 constitute a switching pulse generating circuit,
A passing wavelength range that changes depending on the rotation angle of the rotary filter 22 is detected, and the drive pulse of the solid-state imaging device 5 and the image signal obtained from the solid-state imaging device 5 are synchronized with the rotation of the rotary filter 22. That is, the light reflected by the half mirror 23 is made incident on the light receiving element 24, and the output of this light receiving element 24 is supplied to the color switching signal circuit 25. The color switching signal circuit 25 is composed of a current amplifier and a level detection circuit,
The output current signal of the light receiving element 24 is converted into a voltage signal, and a level detection circuit generates timing signals for each of blue, green, and red. Furthermore, the output of the current amplifier of such a color switching signal circuit is differentiated, and the levels are made uniform to be used as a trigger signal for the oscillation circuit 27. The signal switching circuit 28 receives the image signal led out from the imaging device 5 via the lead wire bundle 6 via the amplifier 26, and outputs it to each different output terminal in synchronization with the color type of light incident on the light guide 1. It performs the operation of supplying signals to 28B, 28G, and 28H. This signal switching circuit 28
A high-speed operation switch such as a semiconductor analog switch is used for this purpose. The oscillation circuit 27 receives the trigger signal from the color switching circuit 25 and outputs the scanning signal of the imaging device 5 and the horizontal deflection circuit 32 and vertical deflection circuit 3 of the monitor cathode ray tube 34.
Provides synchronization signal to 3.

水平偏向回路32はモニター用ブラウン管34の青、緑
および赤の各ビームを水平方向に振らせるための出力増
幅器で構成し、垂直偏向回路33はこれらのビームを垂
直方向に振らせる出力増幅器で構成する。
The horizontal deflection circuit 32 consists of an output amplifier for deflecting the blue, green, and red beams of the monitor cathode ray tube 34 in the horizontal direction, and the vertical deflection circuit 33 consists of an output amplifier for deflecting these beams in the vertical direction. do.

信号切換回路28の出力端子28G、28Rおよび28
Bからの各出力を、モニター用ブラウン管34の緑格子
、赤格子および青格子を動作させるのに充分な電圧とな
るように、緑色増幅器29、赤色増幅器30および青色
増幅器31にそれぞれ供給する。
Output terminals 28G, 28R and 28 of the signal switching circuit 28
The respective outputs from B are supplied to a green amplifier 29, a red amplifier 30, and a blue amplifier 31, respectively, so that the voltages are sufficient to operate the green, red, and blue gratings of the monitor cathode ray tube 34.

第3図Bは外部に配置される部分のさらに他の実施例の
構成を示す図で、6′は固体撮像装置からの信号線、3
5は増幅器、36はA/D変換器、37は回転フィルタ
22と同期して切換ねるスイッチング回路、38a、3
8bおよび38cは各波長領域の情報を収納するメモリ
、39はTVモニターに表示するに必要なTV信号処理
回路である。本例では、3波長領域の情報を時系列的に
順次各波長領域に割当てられたメモリ38a、38bお
よび38Cに書込み、読出すときは同時に読出して、T
Vモニターに適合した信号処理を行う。
FIG. 3B is a diagram showing the configuration of still another embodiment of the externally arranged portion, in which 6' is a signal line from the solid-state imaging device;
5 is an amplifier, 36 is an A/D converter, 37 is a switching circuit that switches in synchronization with the rotary filter 22, 38a, 3
8b and 38c are memories for storing information in each wavelength range, and 39 is a TV signal processing circuit necessary for displaying on a TV monitor. In this example, information on three wavelength regions is written in time series in the memories 38a, 38b and 38C allocated to each wavelength region, and when read out, the information is read out simultaneously, and T
Performs signal processing suitable for V monitor.

メモリ38a、38bおよび38cにはリフレッシュ機
能をもたせ、何回も同じ信号を読み出させる。また各メ
モリ38a、38bおよび38cはそれぞれ複数のメモ
リから成り、読み出しながら書き込むこともできる。
Memories 38a, 38b, and 38c are provided with a refresh function to read out the same signal many times. Further, each of the memories 38a, 38b, and 38c is composed of a plurality of memories, and can be written while being read.

第4図は回転フィルタ22を示す。回転フィルタ22は
3つの部分40.41および42に等分され、例えば、
部分40は700nm〜800nm(赤色)、部分41
は800 nm〜900 nm(赤外領域)、部分42
は600nm〜700nm(橙色)のそれぞれの波長の
光を透過するものとする。このようなフィルタ22の回
転と同期して信号切換回路28を駆動し、例えば赤色部
分40を透過した光により得られる像信号を緑色出力端
子28Gを介して緑色チャンネルに供給し、モニタ用ブ
ラウン管34上で緑色像として映出させ、赤外領域部分
41を透過した光により得られる像信号を赤色出力端子
28Rを経て赤色像として表示し、橙色部分42を透過
した光で得られる像信号を青色出力端子28Bを経て青
色像として表示することができる。この場合各照明光波
長領域から得られた像信号は、必ずしもモニター用ブラ
ウン管34上で同じか似たような色で表示させる必要は
なく、例えば部分40に対応する出力を赤色に、部分4
1のそれは青色に、部分42のそれは緑色にそれぞれ表
示することは当然考えられる。
FIG. 4 shows the rotating filter 22. FIG. The rotating filter 22 is equally divided into three parts 40, 41 and 42, e.g.
Part 40 is 700 nm to 800 nm (red), part 41
is 800 nm to 900 nm (infrared region), part 42
shall transmit light of each wavelength of 600 nm to 700 nm (orange). The signal switching circuit 28 is driven in synchronization with the rotation of the filter 22, and, for example, an image signal obtained by the light transmitted through the red portion 40 is supplied to the green channel via the green output terminal 28G, and the image signal is sent to the monitor cathode ray tube 34. The image signal obtained from the light transmitted through the infrared region portion 41 is displayed as a red image via the red output terminal 28R, and the image signal obtained from the light transmitted through the orange region 42 is displayed as a blue image. It can be displayed as a blue image via the output terminal 28B. In this case, the image signals obtained from each illumination light wavelength region do not necessarily need to be displayed in the same or similar colors on the monitor cathode ray tube 34; for example, the output corresponding to the portion 40 is displayed in red, the output corresponding to the portion 4
It is naturally possible to display the portion 1 in blue and the portion 42 in green.

またその組合せは多数あるが、患部と正常部との識別が
最もし易いように、これらの組合せを行えば良い。
Although there are many combinations, these combinations may be used in such a way that it is easiest to distinguish between the affected area and the normal area.

本発明に用いる回転フィルタ22の各部分は、表1の如
く種々の波長領域を設定し得る。しかしながら、波長領
域の組合せはこれに限られるものではない。なお、本実
施例においては、入射端面1aを円形状としたが、スリ
ット状又は長方形状であってもよい。
Each part of the rotating filter 22 used in the present invention can be set to various wavelength ranges as shown in Table 1. However, the combination of wavelength regions is not limited to this. In this embodiment, the incident end surface 1a has a circular shape, but it may have a slit shape or a rectangular shape.

表  1 上述した例では、照明光学系中に回転フィルタ22を設
けて、被観察体を1つの赤外波長領域の光と2つの可視
波長領域の光で順次に照射したが、本発明によれば、複
数の赤外波長領域の光または1つの可視波長領域の光に
より被観察体を照明することもできる。
Table 1 In the example described above, the rotating filter 22 was provided in the illumination optical system and the object to be observed was sequentially irradiated with one light in the infrared wavelength region and two lights in the visible wavelength region. For example, the object to be observed can be illuminated with light in a plurality of infrared wavelength regions or light in one visible wavelength region.

第5図は生体体腔内の正常部と患部についての反射曲線
図で、正常部の反射曲線をA、患部の反射曲線をBで示
す。いま1.、It2およびl、の各波長領域を通す分
光フィルタを用いて分光し、これら各波長領域の光によ
って固体撮像装置から得られる電気信号を、例えばそれ
ぞれR(赤色)、G(緑色)およびB(青色)の電気信
号に同期させて画像表示すると、正常部については反射
曲線Aがほぼ平坦な軌跡を描くためR,GおよびBの反
射率が一定となり、その結果混色されて白色となる。し
かし患部についてみると、反射曲線Bの9口き軌跡を描
き波長領域1.、!!、及び13における各反射率をα
、βおよびγとするとαR+βG+γBの割合で混色さ
れるため、正常な白色の表示装置に色のついた患部の部
分が明瞭に色が出て表示される。可視域ではたとえ従来
のような可視域のR,GおよびBのフィルタを通したと
しても反射曲線へと反射曲線Bはほとんど同じなため、
正常部と異常部の差を表示装置で識別することは困難で
ある。勿論本発明でこれらの赤外波長領域の光の他に少
なくとも1つの可視波長領域の光を用いるので、異常部
の部位の特定を容易にかつ正確に行なうことができる。
FIG. 5 is a reflection curve diagram of a normal part and an affected part in a living body cavity, where the reflection curve of the normal part is shown as A, and the reflection curve of the affected part is shown as B. Now 1. , It2, and l are used to separate the light using a spectral filter that passes through the wavelength ranges of R (red), G (green), and B(), respectively. When an image is displayed in synchronization with an electrical signal of blue (blue), the reflection curve A of the normal part draws a substantially flat trajectory, so the reflectance of R, G, and B is constant, and as a result, the colors are mixed and become white. However, when looking at the affected area, the reflection curve B shows a 9-point locus in the wavelength range 1. ,! ! , and each reflectance in 13 is α
, β and γ, the colors are mixed at a ratio of αR+βG+γB, so that the colored affected area is clearly displayed in color on a normal white display device. In the visible range, even if it passes through a conventional visible range R, G, and B filter, the reflection curve B is almost the same, so
It is difficult to distinguish between a normal part and an abnormal part using a display device. Of course, in the present invention, since at least one light in the visible wavelength range is used in addition to the light in the infrared wavelength range, the location of the abnormality can be easily and accurately identified.

本発明は上述した例にのみ限定されるものではなく、幾
多の変更、変形が可能である。上述した例では3個の波
長領域の像を得る例について説明したが、これに限定さ
れるものではない。波長領域を数多くとることによって
さらに多くの情報を得ることもできる。この場合、現在
普及しているTVモニターではR(赤色)、G(緑色)
、B(青色)の3原色を発光し、その混合によって種々
の色調の像を表示しているので、これらの混合によって
3色以上の色像を表示してもよいし、あるいは各波長領
域ごとの像を一度フレームメモリに蓄えておいて順次切
換えて、メモリからの像信号を3波長領域づつ読み出し
て、3原色にTVモニター上で表示することも考えられ
る。
The present invention is not limited to the above-mentioned examples, and can be modified and modified in many ways. Although the above example describes an example in which images in three wavelength regions are obtained, the present invention is not limited to this. Even more information can be obtained by using a large number of wavelength regions. In this case, currently popular TV monitors display R (red) and G (green).
, B (blue), and images of various tones are displayed by mixing them, so it is possible to display color images of three or more colors by mixing them, or by changing each wavelength region. It is also conceivable to once store the images in a frame memory and sequentially switch them, read out the image signals from the memory in three wavelength regions at a time, and display them in three primary colors on a TV monitor.

以上詳述したように、本発明の内視鏡装置によれば、3
色分解フィルタを回転させることにより時系列的に順次
被写体色像に対応した原色像信号を得る場合において、
欠点とされていた色分解−信号伝送一色合成の過程にお
ける色バランスの忠実性を高めることができる。すなわ
ち、従来上記欠点の原因とされていた ■ 固体撮像素子の青感度の不良性、 ■ 照明光の色温度を理想状態にすることの困難性、 ■ 信号伝送路、信号処理回路での歪の不完全排除性、 ■ 光合成の段階におけるCRTの各原色発光スペクト
ルの理想状態への未到達性 等について、これら諸種の原因を取り除くことができ、
生体内部の患部と正常部の識別を容易かつ迅速に行うこ
とができるとともに患部の部位の特定も容易かつ正確に
行なうことができ、加えて、従来に増して正確な検知を
期待することができる効果を有するものである。
As detailed above, according to the endoscope device of the present invention, three
In the case where primary color image signals corresponding to the subject color images are sequentially obtained in time series by rotating the color separation filters,
It is possible to improve the fidelity of color balance in the process of color separation-signal transmission and one-color synthesis, which has been considered a drawback. In other words, the causes of the above-mentioned shortcomings were: ■ Poor blue sensitivity of solid-state image sensors, ■ Difficulty in achieving the ideal color temperature of illumination light, and ■ Distortion in signal transmission paths and signal processing circuits. It is possible to eliminate various causes of incomplete exclusion, ■ failure to reach the ideal state of each primary color emission spectrum of CRT at the stage of photosynthesis, etc.
It is possible to easily and quickly distinguish between affected parts and normal parts inside a living body, and to identify the affected part easily and accurately.In addition, it is possible to expect more accurate detection than ever before. It is effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図AおよびBは人体臓器の反射スペクトルの状態を
示す図、 第2図は本発明による内視鏡装置の一例の体腔内に挿入
される部分の先端を示す断面図、第3図AおよびBはそ
れぞれ本発明の内視鏡装置の外部に配置される部分の構
成を示す図、第4図は第2図に示す本発明の内視鏡装置
に使用する回転フィルタを示す図、 第5図は生体体腔内の正常部と患部についての反射曲線
を示す図である。 ■・・・光導体      2・・・照明用ガラス窓3
・・・撮像用ガラス窓  4・・・結像レンズ、5,5
a、5b・・・固体撮像装置 6・・・リード線束 6′・・・固体撮像装置からの信号線 7・・・鞘        8・・・外匣9・・・レン
ズを通過した光 10・・・ペンタプリズム 11・・・グイクロイック
面12・・・赤外波長領域光 13・・・ミラー面14
・・・光透過性ブロック 20・・・モータ     21・・・光源22・・・
回転フィルタ  22a・・・光学フィルタ23・・・
ハーフミラ−24・・・受光素子25・・・色切換信号
回路 26・・・増幅器27・・・発振回路    2
8・・・信号切換回路28R・・・赤色出力端子 28G・・・緑色出力端子 28B・・・青色出力端子 29・・・緑色増幅器   30・・・赤色増幅器31
・・・青色増幅器   32・・・水平偏向回路33・
・・垂直偏向回路 34・・・モニター用ブラウン管 35・・・増幅器     36・・・A/D変換器3
7・・・スイッチング回路 38a、38b、38cm−−情報収納メモリ39・・
・TV信号処理回路 40.41.42・・・フィルタ部分 第1図 ;反灸(nrn) 第2図 手  続  補  正  書 昭和62年 2月23日 特許庁長官  黒  1) 明  雄  殿2、発明の
名称 内視鏡装置 3、補正をする者 事件との関係  特許出願人 (037)オリンパス光学工業株式会社4、代理人 1、明細書第2頁第16〜17行の「感光するので」を
「感度を有するので」に訂正する。 2、同第8頁第1行の「減衰すので、」を「減衰するの
で、」に訂正する。
1A and 1B are views showing the state of the reflection spectra of human organs; FIG. 2 is a sectional view showing the tip of the endoscope device according to the present invention inserted into a body cavity; FIG. 3A and B are diagrams showing the configuration of the parts disposed outside the endoscope device of the present invention, respectively, and FIG. 4 is a diagram showing a rotary filter used in the endoscope device of the present invention shown in FIG. 2. FIG. 5 is a diagram showing reflection curves for a normal part and an affected part in a living body cavity. ■...Light guide 2...Glass window for lighting 3
...Imaging glass window 4...Imaging lens, 5,5
a, 5b...solid-state imaging device 6...lead wire bundle 6'...signal line 7 from the solid-state imaging device...sheath 8...outer casing 9...light passing through the lens 10...・Penta prism 11...Gicroic surface 12...Infrared wavelength region light 13...Mirror surface 14
...Light transmitting block 20...Motor 21...Light source 22...
Rotating filter 22a... Optical filter 23...
Half mirror 24... Light receiving element 25... Color switching signal circuit 26... Amplifier 27... Oscillation circuit 2
8...Signal switching circuit 28R...Red output terminal 28G...Green output terminal 28B...Blue output terminal 29...Green amplifier 30...Red amplifier 31
...Blue amplifier 32...Horizontal deflection circuit 33.
・Vertical deflection circuit 34 ・Monitor cathode ray tube 35 ・Amplifier 36 ・A/D converter 3
7...Switching circuits 38a, 38b, 38cm--Information storage memory 39...
・TV signal processing circuit 40.41.42...Filter part Figure 1; Anti-moxibustion (nrn) Figure 2 Procedures Correction February 23, 1981 Commissioner of the Japan Patent Office Black 1) Akio Tono 2, Name of the invention Endoscope device 3, person making the correction Relationship to the case Patent applicant (037) Olympus Optical Industry Co., Ltd. 4, attorney 1, “Because it is exposed to light” on page 2 of the specification, lines 16-17 should be corrected to "because it has sensitivity." 2. In the first line of page 8, ``attenuate, so'' is corrected to ``attenuate, so''.

Claims (1)

【特許請求の範囲】 1、少なくとも1つの赤外波長領域を持つ光と、少なく
とも1つの可視波長領域を持つ光とを時系列的に被観察
体に照明する手段と、 被観察体の内部に挿入される部分の先端に 設けられ、被観察体からの光を受けて結像面に被観察体
像を形成する光学系と、 この光学系の結像面位置に配置され、被観 察体の光学像を電気信号に変換する固体撮像装置と、 この固体撮像装置から出力される上記各波 長領域の光による被観察体像を表わす電気信号を受けて
画像の表示を行なう手段とを具えることを特徴とする内
視鏡装置。
[Claims] 1. A means for illuminating an object to be observed in time series with light having at least one infrared wavelength region and light having at least one visible wavelength region; An optical system is installed at the tip of the part to be inserted, and forms an image of the object on the imaging plane by receiving light from the object. A solid-state imaging device that converts an optical image into an electrical signal, and a means for displaying an image by receiving an electrical signal representing an image of an object to be observed by light in each of the wavelength ranges described above output from the solid-state imaging device. An endoscope device featuring:
JP62013307A 1987-01-24 1987-01-24 Endoscope device Granted JPS62174712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62013307A JPS62174712A (en) 1987-01-24 1987-01-24 Endoscope device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62013307A JPS62174712A (en) 1987-01-24 1987-01-24 Endoscope device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7850779A Division JPS563033A (en) 1979-06-21 1979-06-21 Endoscope device

Publications (2)

Publication Number Publication Date
JPS62174712A true JPS62174712A (en) 1987-07-31
JPH059003B2 JPH059003B2 (en) 1993-02-03

Family

ID=11829521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62013307A Granted JPS62174712A (en) 1987-01-24 1987-01-24 Endoscope device

Country Status (1)

Country Link
JP (1) JPS62174712A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217415A (en) * 1988-02-26 1989-08-31 Olympus Optical Co Ltd Light source device for endoscope
JPH01161706U (en) * 1988-05-06 1989-11-10
JPH0247619A (en) * 1988-08-10 1990-02-16 Fuji Photo Optical Co Ltd Image device for electronic endoscope
JPH03242133A (en) * 1990-11-02 1991-10-29 Olympus Optical Co Ltd Endoscope device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965686A (en) * 1972-10-31 1974-06-25
JPS5165962A (en) * 1974-12-04 1976-06-08 Olympus Optical Co
JPS52129233A (en) * 1976-04-22 1977-10-29 Sony Corp Image pickup equipment
JPS5336885U (en) * 1976-09-06 1978-03-31

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135132A (en) * 1974-09-20 1976-03-25 Aisin Seiki HAIKIGASU JOKASOCHI

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965686A (en) * 1972-10-31 1974-06-25
JPS5165962A (en) * 1974-12-04 1976-06-08 Olympus Optical Co
JPS52129233A (en) * 1976-04-22 1977-10-29 Sony Corp Image pickup equipment
JPS5336885U (en) * 1976-09-06 1978-03-31

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217415A (en) * 1988-02-26 1989-08-31 Olympus Optical Co Ltd Light source device for endoscope
JPH01161706U (en) * 1988-05-06 1989-11-10
JPH0530402Y2 (en) * 1988-05-06 1993-08-04
JPH0247619A (en) * 1988-08-10 1990-02-16 Fuji Photo Optical Co Ltd Image device for electronic endoscope
JPH03242133A (en) * 1990-11-02 1991-10-29 Olympus Optical Co Ltd Endoscope device

Also Published As

Publication number Publication date
JPH059003B2 (en) 1993-02-03

Similar Documents

Publication Publication Date Title
US4663657A (en) Image pickup apparatus for endoscopes
JP5088990B2 (en) Autofluorescence imaging system for endoscope
US4974076A (en) Imaging apparatus and endoscope apparatus using the same
JP5283731B2 (en) Autofluorescence imaging system for endoscope
US5255087A (en) Imaging apparatus and endoscope apparatus using the same
US4593313A (en) Endoscope
US7766818B2 (en) Electronic endoscope system
US20020026098A1 (en) Video endoscope system
JPH029804B2 (en)
CA2524000A1 (en) Real-time contemporaneous multimodal imaging and spectroscopy uses thereof
JPH0528129B2 (en)
JPH0970384A (en) Electronic endoscopic apparatus for fluorescent diagnosis
JPH0397441A (en) Endoscope for fluorescent observation
JP2655571B2 (en) Imaging device
JP2003061909A (en) Light source and electronic endoscope
JPS62174716A (en) Endoscope device
JP2641654B2 (en) Endoscope device
JPS62174712A (en) Endoscope device
JPS62174715A (en) Endoscope device
JPS62174713A (en) Endoscope device
JP2641653B2 (en) Endoscope device
CN105142492B (en) Endoscopic system
JP7028574B2 (en) Endoscope and camera head
JPS62182705A (en) Endoscope device
JPS62174714A (en) Endoscope device