JPS6153423B2 - - Google Patents

Info

Publication number
JPS6153423B2
JPS6153423B2 JP57007674A JP767482A JPS6153423B2 JP S6153423 B2 JPS6153423 B2 JP S6153423B2 JP 57007674 A JP57007674 A JP 57007674A JP 767482 A JP767482 A JP 767482A JP S6153423 B2 JPS6153423 B2 JP S6153423B2
Authority
JP
Japan
Prior art keywords
shroud
less
thermal fatigue
carbides
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57007674A
Other languages
Japanese (ja)
Other versions
JPS58126965A (en
Inventor
Hiromi Kozobara
Nobuyuki Iizuka
Hiroshi Fukui
Masahiko Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP767482A priority Critical patent/JPS58126965A/en
Publication of JPS58126965A publication Critical patent/JPS58126965A/en
Publication of JPS6153423B2 publication Critical patent/JPS6153423B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ガスタービン用シユラウドに関す
る。 〔従来の技術〕 第1図に例示される如く、ガスタービン用シユ
ラウド1は、タービンケーシング2内周面の、ブ
レード3先端対向部に配設されるものであつて、
第2図に示される如き外観を有する。第1図中、
4はブレード3が取り付けられるタービンデイス
クである。 このようなガスタービン用シユラウドは、厚肉
形状であるとともに、高温の腐食性ガスに繰り返
しさらされるところから、高い熱応力が繰り返し
発生するようになる。 〔発明が解決しようとする問題点〕 一方、近年高効率ガスタービンが開発されてお
り、シユラウドのメタル温度も700−900℃に達す
るようになつてきた。このようなシユラウドに
は、25Cr−20Ni系のSUS310SS相当材が使用され
ているが、一層高い熱応力を受けるために、熱疲
労割れが発生し、部材寿命が短くなるという問題
がある。 〔発明の目的〕 本発明の目的は耐熱疲労性、高温強度及び高温
耐食性に優れたガスタービン用シユラウドを提供
することにある。 〔問題点を解決するための手段〕 本発明者らは、SUS310SS材の割れを詳細に調
査検討したところ、割れは熱疲労によるもので、
σ相に沿つた割れと粒界割れの混合であるが、そ
の原因は(1)加熱中に針状の脆いσ相が多量に析出
し、σ相自身が割れる他、σ相により粒内変形が
因難となり、粒界への応力集中を助長する、(2)粒
界にフイルム状炭化物に連続して生成し、高い熱
応力でそれ自身が破壊し、粒界割れが一気に伝播
する、(3)高温腐食による粒界侵食が生じ、くさび
作用で割れが加速される、ということであること
を発見した。 本発明はこのような知見に基づいてなされたも
のであつて、重量でC0.3〜0.5%、Cr20〜35%、
Ni20〜40%、Ti0.1〜0.5%、Nb0.1〜0.31%、
Mn2%以下、Si2%以下、残部Feの鋳造材よりな
り、σ相含有率が5%以下であり、オーステナイ
ト組織を有することを特徴とするものである。 本発明は、希土類元素を0.1〜1%含有するこ
とができる。また、WとMoの少なくとも1種を
希土類元素とともに含有することができる。Wと
Moの量は合計で7%以下とする。さらに、Coを
WとMoの少なくとも1つおよび希土類元素とと
もに含有することができる。Co量は5〜20%と
する。 次に、まず成分を限定した理由について説明す
る。ただし、本明細書において%は特に規定され
てない限り重量%を示す。 C:Cは耐熱疲労性と高温強度を向上する上で非
常に重要な役割を示す。Cが0.25%を下廻ると
σ相が析出し易くなると同時に、粒界にフイル
ム状の炭化物が連続して析出するので好ましく
ない。また、Cの含有率が高いとセル粒界の脆
い共晶炭化物量及び二次炭化物量が多くなり、
熱疲労性が低下する。これらを考慮するとCは
0.3〜0.5%が最も好ましい。 Cr:シユラウド材の高温腐食による粒界侵食を
抑制するにはCrは20%以上を必要とし、また
高温で使用中に炭化物の過剰析出、およびσ相
の析出による脆化の面から35%を越えることは
好ましくはない。従つてCrの含有率は20〜35
%と限定する。この内でも25〜30%が最も適し
ている。 Ni:Niは基地をオーステナイトにし、高温強度
を向上させる値、組織を安定化しσ相の析出を
防止するが、そのためには20%以上が必要であ
る。またNiは高温耐食性の上からも多い方が
良い。しかしその量が40%を越えると共晶炭化
物量が多くなり耐熱疲労性が低下する。従つて
Niの含有率は20〜40%であるが、特に、25〜
35%が適している。 Ti、Nb:これらの元素は、Ti単独の場合は
TiC、Nb単独の場合はNbC、NbとTiとを複合
添加した場合は(Ti、Nb)Cの如くMC型の炭
化物を形成する。その量からして析出強化はあ
まり期待できないが、析出強化に効果の大きい
二次Cr炭化物の析出及び成長を適当に抑え、
長時間にわたり高温強度の低下を抑制する。ま
た、粒界へのCr炭化物の連続析出も抑制す
る。これらの元素が少ないと効果は小さく、ま
た多くなるとこれらのMC炭化物の増加により
二次Cr炭化物が減少し高温強度が低下する。
アトミツクレシオ(Atomic Ratio)でM/C
(MはMC型炭化物を作る金属元素の和)は0.2
〜0.3が最も好ましい。Ti、NbはそれぞれTiが
0.1〜0.5%、Nbが0.1〜0.31%とする。 希土類元素:希土類元素は、Ti、Nbの働きを助
けるために添加するもので、少ないと効果がな
く、多くなると鋳造割れを生じるので配合量で
0.1〜1%、特に0.1〜0.5%とするのが好まし
い。 W、Mo:W、Moは基地の固溶強化を目的として
添加されるものであり、添加量が多いほど高温
強度が向上する。しかしWとMoの合計量が7
%を超えると共晶炭化物が多く晶出して耐熱疲
労性が低下する。 Co:Coは基地を強化させるための固溶強化を目
的として5%以上添加するものであるが20%を
超えてもその割りには効果が小さいのでCoは
5〜20%が適当である。 なお、σ相は5%を超えると熱疲労への影響
が顕著となるのでσ相は5%以下にするのが好
ましい。そのためには、次式に示すvが2.5
以下になる組成にするとよい。 v={0.66Ni+1.71Co+2.66Fe+ 3.66Mn+4.66(Cr+Mo+W)+ 6.66Si}/100 ただし、式中Ni、Co、Fe、Mn、Cr、Mo、
W、Siは、それぞれの元素の重量含有率(百分
比)である。 なお、Si、Mnは脱酸剤として添加されるも
のであるが、上記式より、これらの添加量は少
なくするのが好ましく、それぞれ2%以下が適
当である。 本発明においては、このような組成の合金を例
えば精密鋳造法により所定の形状に成形してシユ
ラウドを得る。鋳造後、熱処理を施すことも特性
の向上の面から好ましい。このような熱処理とし
て、溶体化処理後、時効処理する方法が挙げられ
る。 〔実施例〕 以下、実施例により本発明を具体的に説明す
る。 表1にその組成(重量%)を示す供試材によ
り、シユラウド材の性能試験を行なつた。ただ
し、表1中、No.1は比較のための従来材
(SUS310SS)であり、、No.2〜5、7、8は本発
明に係る供試材である。 表1のNo.1〜8に示す如き供試材を各々、精
密鋳造法により15mmφ×100mmの棒に鋳造した
後、溶体化処理(1175℃×2h→空冷)及び時効
処理(850℃×4h→空冷)を行なつた。得られた
熱処理品から、10mmφ×10mmの熱疲労試験片を
得、850℃で6分間保持後水冷を300回繰り返し、
試験片の断面に発生した割れの長さにより、耐熱
疲労性の評価を行なつた。各々の試験片に発生し
た割れ長さ(mm)を第3図に示す。なお、No.7
の供試材について、鋳造のまま熱処理を施さず
に、同様な方法で耐熱疲労性を試験した結果もあ
わせて示す。第3図より、本発明のシユラウド材
はNo.1の従来材に比較して、割れ長さが短く、
いずれも優れた耐熱疲労性を示すことがわかる。
特に希土類元素としてミツシユメタルを添加した
No.3〜5、Coを添加したNo.7の耐熱疲労性は著
しく向上している。ここで、ミツシユメタルと
は、50%のランタン、ネオジムその他同系元素と
50%のセリウムの塑性をもつ希土金属の合金をい
うものである。Wを9%添加したNo.6は、Wの
添加量が多いため、耐熱疲労性の向上は小さい。
またNo.7の熱処理材と非熱処理材との比較か
ら、本発明のシユラウド材は非熱処理材であつて
も十分に優れた耐熱疲労性を示すが、前述の如き
熱処理を行なうと一段と優れた耐熱疲労性を示す
ことが明らかである。熱処理による耐熱疲労性の
向上効果は、共晶炭化物の少ないシユラウド材ほ
ど大きい。 また、No.1(従来材)のシユラウドとNo.3
(本発明材)のシユラウドを、一年間使用した後
の組織を第4図に示す。第4図において、a及び
bは従来材のシユラウドであるが、従来
[Industrial Field of Application] The present invention relates to a shroud for a gas turbine. [Prior Art] As illustrated in FIG. 1, a gas turbine shroud 1 is disposed on the inner peripheral surface of a turbine casing 2 at a portion facing the tips of blades 3.
It has an appearance as shown in FIG. In Figure 1,
4 is a turbine disk to which the blade 3 is attached. Such a shroud for a gas turbine has a thick wall shape and is repeatedly exposed to high temperature corrosive gas, so that high thermal stress is repeatedly generated. [Problems to be solved by the invention] On the other hand, high-efficiency gas turbines have been developed in recent years, and the metal temperature of the shroud has come to reach 700-900°C. Although 25Cr-20Ni-based materials equivalent to SUS310SS are used in such shrouds, there is a problem that thermal fatigue cracking occurs due to higher thermal stress, resulting in a shortened component life. [Object of the Invention] An object of the present invention is to provide a shroud for a gas turbine that has excellent thermal fatigue resistance, high-temperature strength, and high-temperature corrosion resistance. [Means for solving the problem] The inventors of the present invention conducted a detailed investigation into cracks in SUS310SS material, and found that the cracks were caused by thermal fatigue.
This is a mixture of cracking along the σ phase and intergranular cracking, and the causes are (1) a large amount of acicular, brittle σ phase precipitates during heating, and the σ phase itself cracks, as well as intragranular deformation due to the σ phase. (2) Film-like carbides are formed continuously at the grain boundaries, and are destroyed by high thermal stress, causing intergranular cracks to propagate all at once. 3) It was discovered that grain boundary erosion occurs due to high-temperature corrosion, and cracking is accelerated by wedge action. The present invention was made based on this knowledge, and it is based on the following: C0.3-0.5%, Cr20-35%,
Ni20~40%, Ti0.1~0.5%, Nb0.1~0.31%,
It is made of a cast material of 2% or less Mn, 2% or less Si, and the balance is Fe, and is characterized by having a σ phase content of 5% or less and an austenite structure. The present invention can contain 0.1 to 1% of rare earth elements. Further, at least one of W and Mo can be contained together with a rare earth element. W and
The total amount of Mo shall be 7% or less. Furthermore, Co can be contained together with at least one of W and Mo and a rare earth element. The amount of Co is 5 to 20%. Next, the reason for limiting the components will be explained first. However, in this specification, % indicates weight % unless otherwise specified. C: C plays a very important role in improving thermal fatigue resistance and high temperature strength. If the C content is less than 0.25%, the σ phase tends to precipitate, and at the same time, film-like carbides precipitate continuously at the grain boundaries, which is not preferable. In addition, when the content of C is high, the amount of brittle eutectic carbides and secondary carbides at cell grain boundaries increases,
Thermal fatigue properties are reduced. Considering these, C is
0.3-0.5% is most preferred. Cr: 20% or more of Cr is required to suppress grain boundary erosion due to high-temperature corrosion of shroud materials, and 35% or more is required to prevent excessive precipitation of carbides and embrittlement due to precipitation of σ phase during use at high temperatures. It is not advisable to exceed it. Therefore, the Cr content is 20 to 35
limited to %. Of these, 25 to 30% is most suitable. Ni: Ni has a value of making the base austenite and improving high-temperature strength, stabilizing the structure and preventing precipitation of the σ phase, but for this purpose, 20% or more is required. Also, from the viewpoint of high temperature corrosion resistance, it is better to have more Ni. However, if the amount exceeds 40%, the amount of eutectic carbide increases and the thermal fatigue resistance decreases. accordingly
The Ni content is 20 to 40%, especially 25 to 40%.
35% is suitable. Ti, Nb: These elements are
When TiC and Nb are used alone, NbC is added, and when Nb and Ti are added in combination, an MC type carbide is formed, such as (Ti, Nb)C. Although precipitation strengthening cannot be expected much due to its amount, the precipitation and growth of secondary Cr carbides, which have a large effect on precipitation strengthening, can be appropriately suppressed.
Suppresses the decline in high temperature strength over a long period of time. It also suppresses continuous precipitation of Cr carbides at grain boundaries. If the content of these elements is small, the effect will be small, and if the content is large, secondary Cr carbides will decrease due to an increase in these MC carbides, resulting in a decrease in high-temperature strength.
M/C with Atomic Ratio
(M is the sum of metal elements that form MC type carbides) is 0.2
~0.3 is most preferred. Ti and Nb each have Ti
0.1-0.5%, Nb 0.1-0.31%. Rare earth elements: Rare earth elements are added to help the functions of Ti and Nb.If there is too little, there will be no effect, and if there is too much, casting cracks will occur.
It is preferably 0.1 to 1%, particularly 0.1 to 0.5%. W, Mo: W and Mo are added for the purpose of solid solution strengthening of the base, and the higher the amount added, the higher the high temperature strength. However, the total amount of W and Mo is 7
%, a large amount of eutectic carbides will crystallize and the thermal fatigue resistance will decrease. Co: Co is added in an amount of 5% or more for the purpose of solid solution strengthening to strengthen the base, but even if it exceeds 20%, the effect is small, so 5 to 20% of Co is appropriate. Note that if the σ phase exceeds 5%, the effect on thermal fatigue becomes significant, so it is preferable that the σ phase is 5% or less. To do this, v shown in the following equation must be 2.5
It is recommended that the composition be as follows. v={0.66Ni+1.71Co+2.66Fe+ 3.66Mn+4.66(Cr+Mo+W)+6.66Si}/100 However, in the formula, Ni, Co, Fe, Mn, Cr, Mo,
W and Si are the weight content (percentage) of each element. Note that Si and Mn are added as deoxidizing agents, but according to the above formula, it is preferable to reduce the amount of these added, and each is suitably 2% or less. In the present invention, a shroud is obtained by molding an alloy having such a composition into a predetermined shape, for example, by precision casting. It is also preferable to perform heat treatment after casting from the viewpoint of improving properties. Examples of such heat treatment include a method in which solution treatment is followed by aging treatment. [Example] Hereinafter, the present invention will be specifically explained with reference to Examples. Performance tests were conducted on shroud materials using test materials whose compositions (wt%) are shown in Table 1. However, in Table 1, No. 1 is a conventional material (SUS310SS) for comparison, and Nos. 2 to 5, 7, and 8 are test materials according to the present invention. After casting the test materials shown in Nos. 1 to 8 in Table 1 into rods of 15 mmφ x 100 mm by precision casting, solution treatment (1175°C x 2h → air cooling) and aging treatment (850°C x 4h) were performed. → air cooling). A thermal fatigue test piece of 10 mmφ x 10 mm was obtained from the obtained heat-treated product, held at 850°C for 6 minutes, and then water-cooled 300 times.
Thermal fatigue resistance was evaluated based on the length of the crack that occurred in the cross section of the test piece. Figure 3 shows the crack length (mm) that occurred in each test piece. In addition, No.7
The results of testing the thermal fatigue resistance of the sample material in the same manner without heat treatment as cast are also shown. From Figure 3, the shroud material of the present invention has a shorter crack length than the No. 1 conventional material.
It can be seen that both exhibit excellent thermal fatigue resistance.
In particular, Mitsushi metal was added as a rare earth element.
The thermal fatigue resistance of Nos. 3 to 5 and No. 7 with added Co was significantly improved. Here, Mitsushi Metal is 50% lanthanum, neodymium and other similar elements.
It is an alloy of rare earth metals with plasticity of 50% cerium. No. 6 with 9% W added has a large amount of W added, so the improvement in thermal fatigue resistance is small.
Furthermore, from a comparison between the heat-treated material No. 7 and the non-heat-treated material, the shroud material of the present invention shows sufficiently excellent thermal fatigue resistance even when it is a non-heat-treated material, but it is even more excellent when heat-treated as described above. It is clear that it exhibits thermal fatigue resistance. The effect of improving thermal fatigue resistance by heat treatment is greater for shroud materials with fewer eutectic carbides. In addition, No. 1 (conventional material) shroud and No. 3
Figure 4 shows the structure of the shroud made of the material of the present invention after one year of use. In Fig. 4, a and b are shrouds made of conventional materials;

【表】【table】

【表】 材には多数の割れが深く発生しており、粒界には
フイルム状炭化物が、粒内にはウインドマンステ
ツテン状の針状炭化物が多量に見られる。このよ
うな従来材のシユラウドは多数の割れが発生する
ので溶接補修を必要とする。一方cに示す本発明
のシユラウド材は、σ相が殆んど見られず、粒界
炭化物を不連続であり、割れ発生は軽微であるの
で、補修をすることなしに、引き続き使用可能で
ある。なお倍率は、aは100倍、b及びcは400倍
である。 本発明材のシユラウドはクリープ破断強度も著
しく優れており、特に長時間側で顕著であつた。
これは本発明材は加熱脆化が小さいことを意味し
ている。 〔発明の効果〕 以上説明したように、本発明によれば耐熱疲労
性、高温強度、高温耐食性に優れており、部材寿
命が著しく延長される。
[Table] Many deep cracks have occurred in the material, and film-like carbides can be seen at the grain boundaries, and large amounts of windman-like acicular carbides can be seen within the grains. Shrouds made of such conventional materials suffer from numerous cracks and require repair by welding. On the other hand, the shroud material of the present invention shown in c has almost no σ phase, grain boundary carbides are discontinuous, and cracking is slight, so it can be used continuously without repair. . Note that the magnification is 100 times for a and 400 times for b and c. The shroud made of the material of the present invention also had significantly superior creep rupture strength, especially on the long-term side.
This means that the material of the present invention is less susceptible to heat embrittlement. [Effects of the Invention] As explained above, the present invention has excellent thermal fatigue resistance, high-temperature strength, and high-temperature corrosion resistance, and the life of the member is significantly extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガスタービン用シユラウドの配設状態
を示す概略図、第2図はガスタービン用シユラウ
ドの外観を示す見取り図である。第3図は従来材
及び本発明材の熱疲労試験により発生した割れ長
さを示すグラフ、第4図は1年間使用した後のガ
スタービン用シユラウドの金属組成の顕微鏡写真
であり、a及びbは従来材、cは本発明材
(No.3)である。 1……シユラウド、2……タービンケーシン
グ、3……ブレード、4……タービンデイスク。
FIG. 1 is a schematic view showing the arrangement of a gas turbine shroud, and FIG. 2 is a sketch showing the appearance of the gas turbine shroud. Figure 3 is a graph showing the length of cracks that occurred in thermal fatigue tests of conventional materials and materials of the present invention, and Figure 4 is a microscopic photograph of the metal composition of a gas turbine shroud after one year of use. c is the conventional material and c is the inventive material (No. 3). 1... Shroud, 2... Turbine casing, 3... Blade, 4... Turbine disc.

Claims (1)

【特許請求の範囲】 1 重量でC0.3〜0.5%、Cr20〜35%、Ni20〜40
%、Ti0.1〜0.5%、Nb0.1〜0.31%、Mn2%以
下、Si2%以下、残部Feの鋳造材よりなり、σ相
含有率が5%以下であり、オーステナイト組織を
有することを特徴とするガスタービン用シユラウ
ド。 2 重量でC0.3〜0.5%、Cr20〜35%、Ni20〜40
%、Ti0.1〜0.5%、Nb0.1〜0.31%、希土類元素
0.1〜1%、Mn2%以下、Si2%以下、残部Feの鋳
造材よりなり、σ相含有率が5%以下であり、オ
ーステナイト組織を有することを特徴とするガス
タービン用シユラウド。 3 重量でC0.3〜0.5%、Cr20〜35%、Ni20〜40
%、Ti0.1〜0.5%、Nb0.1〜0.31%、希土類元素
0.1〜1%、WとMoの少なくとも1つを合計7%
以下、Mn2%以下、Si2%以下、残部Feの鋳造材
よりなり、σ相含有率が5%以下であり、オース
テナイト組織を有することを特徴とするガスター
ビン用シユラウド。 4 重量でC0.3〜0.5%、Cr20〜35%、Ni20〜40
%、Ti0.1〜0.5%、Nb0.1〜0.31%、希土類元素
0.1〜1%、WとMoの少なくとも1つを合計7%
以下、Co5〜20%、Mn2%以下、Si2%以下、残
部Feの鋳造材よりなり、σ相含有率が5%以下
であり、オーステナイト組織を有することを特徴
とするガスタービン用シユラウド。
[Claims] 1. C0.3-0.5%, Cr20-35%, Ni20-40 by weight
%, Ti 0.1-0.5%, Nb 0.1-0.31%, Mn 2% or less, Si 2% or less, and the balance is Fe, the σ phase content is 5% or less, and it has an austenitic structure. Shroud for gas turbines. 2 C0.3-0.5%, Cr20-35%, Ni20-40 by weight
%, Ti0.1~0.5%, Nb0.1~0.31%, rare earth elements
A shroud for a gas turbine, characterized in that it is made of a cast material of 0.1 to 1%, Mn 2% or less, Si 2% or less, and the balance Fe, has a σ phase content of 5% or less, and has an austenitic structure. 3 C0.3-0.5%, Cr20-35%, Ni20-40 by weight
%, Ti0.1~0.5%, Nb0.1~0.31%, rare earth elements
0.1~1%, at least one of W and Mo total 7%
A shroud for a gas turbine, characterized in that it is made of a cast material of 2% or less Mn, 2% or less Si, and the balance is Fe, has a σ phase content of 5% or less, and has an austenitic structure. 4 C0.3-0.5%, Cr20-35%, Ni20-40 by weight
%, Ti0.1~0.5%, Nb0.1~0.31%, rare earth elements
0.1~1%, at least one of W and Mo total 7%
A shroud for a gas turbine, characterized in that it is made of a cast material of 5 to 20% Co, 2% or less Mn, 2% or less Si, and the balance is Fe, has a σ phase content of 5% or less, and has an austenitic structure.
JP767482A 1982-01-22 1982-01-22 Shroud for gas turbine Granted JPS58126965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP767482A JPS58126965A (en) 1982-01-22 1982-01-22 Shroud for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP767482A JPS58126965A (en) 1982-01-22 1982-01-22 Shroud for gas turbine

Publications (2)

Publication Number Publication Date
JPS58126965A JPS58126965A (en) 1983-07-28
JPS6153423B2 true JPS6153423B2 (en) 1986-11-18

Family

ID=11672336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP767482A Granted JPS58126965A (en) 1982-01-22 1982-01-22 Shroud for gas turbine

Country Status (1)

Country Link
JP (1) JPS58126965A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8996263B2 (en) 2007-11-16 2015-03-31 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US9022889B2 (en) 2005-10-28 2015-05-05 Fallbrook Intellectual Property Company Llc Electromotive drives
US9046158B2 (en) 2003-02-28 2015-06-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9074674B2 (en) 2008-06-23 2015-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9086145B2 (en) 2006-11-08 2015-07-21 Fallbrook Intellectual Property Company Llc Clamping force generator
US9709138B2 (en) 2005-11-22 2017-07-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11306818B2 (en) 2016-01-15 2022-04-19 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US11454303B2 (en) 2005-12-09 2022-09-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11530739B2 (en) 2019-02-26 2022-12-20 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US11624432B2 (en) 2018-11-06 2023-04-11 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9046158B2 (en) 2003-02-28 2015-06-02 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US9022889B2 (en) 2005-10-28 2015-05-05 Fallbrook Intellectual Property Company Llc Electromotive drives
US9709138B2 (en) 2005-11-22 2017-07-18 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11454303B2 (en) 2005-12-09 2022-09-27 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11598397B2 (en) 2005-12-30 2023-03-07 Fallbrook Intellectual Property Company Llc Continuously variable gear transmission
US9086145B2 (en) 2006-11-08 2015-07-21 Fallbrook Intellectual Property Company Llc Clamping force generator
US8996263B2 (en) 2007-11-16 2015-03-31 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US11125329B2 (en) 2007-11-16 2021-09-21 Fallbrook Intellectual Property Company Llc Controller for variable transmission
US9074674B2 (en) 2008-06-23 2015-07-07 Fallbrook Intellectual Property Company Llc Continuously variable transmission
US11306818B2 (en) 2016-01-15 2022-04-19 Fallbrook Intellectual Property Company Llc Systems and methods for controlling rollback in continuously variable transmissions
US11624432B2 (en) 2018-11-06 2023-04-11 Fallbrook Intellectual Property Company Llc Continuously variable transmissions, synchronous shifting, twin countershafts and methods for control of same
US11530739B2 (en) 2019-02-26 2022-12-20 Fallbrook Intellectual Property Company Llc Reversible variable drives and systems and methods for control in forward and reverse directions

Also Published As

Publication number Publication date
JPS58126965A (en) 1983-07-28

Similar Documents

Publication Publication Date Title
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
EP0520464B1 (en) Nickel-base heat-resistant alloys
JPS6153423B2 (en)
JPS604895B2 (en) Structure with excellent stress corrosion cracking resistance and its manufacturing method
JP2003113434A (en) Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor
JPS5845345A (en) Nozzle for gas turbine with superior thermal fatigue resistance
US4615658A (en) Shroud for gas turbines
JPS6327418B2 (en)
JPS5834129A (en) Heat-resistant metallic material
JP3517462B2 (en) Iron-aluminum alloys and their uses
JPH09268337A (en) Forged high corrosion resistant superalloy alloy
JP2556198B2 (en) Ni-base heat-resistant alloy turbine blade casting
JPS5837382B2 (en) Heat treatment method for nickel-based heat-resistant alloy
JPH06287667A (en) Heat resistant cast co-base alloy
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JPS613859A (en) High-strength heat-resistant co alloy for gas turbine
JPH07238349A (en) Heat resistant steel
JPS61546A (en) High-strength heat-resistant co alloy for gas turbine
JPH0243813B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPH02298605A (en) Gas turbine shroud and manufacture thereof
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JPS6249343B2 (en)
JPS61548A (en) Co-base high-strength heat-resistant alloy for gas turbine
RU2636338C1 (en) Nickel-base heat resistant alloy for casting nozzle vanes of gas turbine plants
JP2004091816A (en) Nickel-based alloy, heat treatment method for nickel-based alloy, and member for nuclear power with the use of nickel-based alloy