JPH06287667A - Heat resistant cast co-base alloy - Google Patents

Heat resistant cast co-base alloy

Info

Publication number
JPH06287667A
JPH06287667A JP7669193A JP7669193A JPH06287667A JP H06287667 A JPH06287667 A JP H06287667A JP 7669193 A JP7669193 A JP 7669193A JP 7669193 A JP7669193 A JP 7669193A JP H06287667 A JPH06287667 A JP H06287667A
Authority
JP
Japan
Prior art keywords
alloy
strength
less
test
resistant cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7669193A
Other languages
Japanese (ja)
Inventor
Yoichi Tsuda
陽一 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7669193A priority Critical patent/JPH06287667A/en
Publication of JPH06287667A publication Critical patent/JPH06287667A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To produce a heat resistant cast Co-base alloy used for gas turbine stationary blade material having high temp. strength, excellent in high temp. strength and long-time stability, and further fatique strength. CONSTITUTION:This heat resistant cast Co-base alloy has a composition consisting of, by weight, 0.05-0.8% C, 5-15% Ni, 15-30% Cr, 3-10% W, 1-5% Re, <=1% Si, <=1% Mn, <=1.5% Fe, and the balance essentially Co with inevitable impurities. The alloy can further contain prescribed amounts of Ti, Ta, B, and Al, if necessary.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温強度に優れ、特にこ
れらの特性が要求されるガスタービンの静翼材として使
用するのに適した耐熱鋳造Co基合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant cast Co-based alloy which is excellent in high temperature strength and is particularly suitable for use as a stationary blade material of a gas turbine which requires these properties.

【0002】[0002]

【従来の技術】ガスタービンと蒸気タービンを組み合わ
せたコンバインサイクル発電プラントは蒸気タービン発
電プラントに比較し、効率が高く、また起動特性に優れ
ることから、今後の発電プラントの主力となると考えら
れており、最近ではさらにプラント効率を上昇させるた
めにガスタービンの入口ガス温度を上昇させる方向で開
発が進められている。しかし、入口ガス温度を上昇させ
れば、ガスタービン各種部材の温度も上昇するため、各
部材の構造材料に対してはより過酷な環境となる。この
ような温度上昇に対しては、部材の冷却の強化、あるい
はより高温強度の高い材料の適用などの対策を採用する
必要があるが、冷却の強化は効率の低下をまねくため、
高温強度の高い材料の適用がより有効な手段となる。
2. Description of the Related Art Combined cycle power plants that combine gas turbines and steam turbines are considered to be the main power plant of the future because they have higher efficiency and excellent starting characteristics than steam turbine power plants. Recently, development has been promoted in the direction of increasing the inlet gas temperature of the gas turbine in order to further increase the plant efficiency. However, if the temperature of the inlet gas is increased, the temperatures of various members of the gas turbine are also increased, and thus the environment becomes more severe for the structural material of each member. For such temperature rise, it is necessary to adopt measures such as strengthening the cooling of members or applying materials with higher high temperature strength, but strengthening the cooling leads to a decrease in efficiency,
The application of a material having high high temperature strength becomes a more effective means.

【0003】また、コンバインドサイクル発電プラント
は蒸気タービン発電プラントに比較し、特に起動特性に
優れることから主にピークロード用電力として使用され
ている。しかし、ピークロード用として使用した場合、
プラントの起動停止が頻繁になるため、起動停止により
ガスタービン各種部材に発生する熱応力の繰り返しも頻
繁となり、各部材の構成材料に対しては非常に過酷な環
境となる。
Further, the combined cycle power generation plant is mainly used as electric power for peak load because it has particularly excellent starting characteristics as compared with the steam turbine power generation plant. However, when used for peak load,
Since the start and stop of the plant becomes frequent, the thermal stress repeatedly generated in various members of the gas turbine due to the start and stop also becomes frequent, resulting in a very harsh environment for the constituent materials of each member.

【0004】一般に高温雰囲気にさらされるガスタービ
ンのタービンの静翼等の静止部材には高温強度、成形性
及び溶接性に優れた各種耐熱鋳造Co基合金が使用され
ている。これらの耐熱鋳造Co基合金は、従来、高温強
度特にクリープ破断強度向上を主目的に開発が進められ
てきた。
Generally, various heat-resistant cast Co-based alloys excellent in high-temperature strength, formability and weldability are used for stationary members such as turbine vanes of a gas turbine exposed to a high temperature atmosphere. Conventionally, these heat-resistant cast Co-based alloys have been developed mainly for the purpose of improving high temperature strength, especially creep rupture strength.

【0005】[0005]

【発明が解決しようとする課題】しかし、ガスタービン
が更に高温・高効率に向かうと、現在使用されているC
o基合金では、高温強度不足による静翼のクリープ変形
が問題となってくる。また、Co基合金は高温環境中に
さらされると炭化物が析出して延性・じん性が低下する
という特性を持っている。ガスタービンが高温化する
と、この特性劣化も現在より著しくなり、飛来物に対す
る抵抗や熱疲労に対する抵抗の低下が問題となるので、
現在よりも優れた長時間安定性が必要となってくる。
However, when the gas turbine is driven toward higher temperature and higher efficiency, C which is currently used is increased.
In the o-based alloy, creep deformation of the stationary blade due to insufficient high temperature strength becomes a problem. Further, Co-based alloys have the property that when exposed to a high temperature environment, carbides precipitate and ductility and toughness deteriorate. When the temperature of the gas turbine rises, this characteristic deterioration becomes more significant than it is at present, and the resistance to flying objects and the resistance to thermal fatigue become a problem.
Greater long-term stability than now is needed.

【0006】また、発電用ガスタービンが主にピークロ
ード用として使用されている現状では、頻繁な起動停止
により発生する熱応力を原因とする疲労クラック発生に
対する抵抗も重要な特性となってきている。特に、一般
に拘束が大きい形状をしているガスタービンの静翼に
は、応力集中部位に疲労クラックが発生しやすいため、
静翼材には従来必要とされてきた高温強度だけでなく、
十分な疲労強度も併せて要求される。
In addition, in the present situation where the gas turbine for power generation is mainly used for peak load, resistance to fatigue crack generation due to thermal stress generated by frequent start and stop is becoming an important characteristic. . In particular, in a turbine blade of a gas turbine that has a generally large constraint, fatigue cracks are likely to occur in the stress concentration area,
In addition to the high temperature strength conventionally required for stationary vanes,
Sufficient fatigue strength is also required.

【0007】本発明は、上述の観点からなされたもの
で、ガスタービンの静翼材として使用されて好適な高温
強度、高温強度及び長時間安定性、また高温強度及び疲
労強度に優れた耐熱鋳造Co基合金を提供することを目
的とする。
The present invention has been made from the above-mentioned viewpoint, and is heat-resistant casting excellent in high-temperature strength, high-temperature strength and long-term stability, and high-temperature strength and fatigue strength suitable for use as a stationary blade material of a gas turbine. The purpose is to provide a Co-based alloy.

【0008】[0008]

【課題を解決するための手段】本発明の耐熱鋳造Co基
合金は、高温強度を得るために、重量比で、C:0.05〜
0.8%,Ni:5〜15%,Cr:15〜30%,W:3〜10
%,Re:1〜5%,Si:1%以下,Mn:1%以
下,Fe: 1.5%以下を含み、残部が実質的にCo及び
不可避的不純物よりなることを特徴とする。
The heat-resistant cast Co-based alloy of the present invention has a weight ratio of C: 0.05-
0.8%, Ni: 5-15%, Cr: 15-30%, W: 3-10
%, Re: 1 to 5%, Si: 1% or less, Mn: 1% or less, Fe: 1.5% or less, and the balance is substantially composed of Co and inevitable impurities.

【0009】また、高温強度および長時間安定性を兼ね
備えた耐熱鋳造Co基合金を得るために、重量比で、
C:0.45%を超え 0.8%以下、Ni:5〜15%,Cr:
15〜30%,W:3〜10%,Re:1〜5%,Si:1%
以下,Mn:1%以下,Fe:1.5%以下を含み、更に
必要に応じてTi:0.01〜1%,Ta:1〜5%、B:
0.1%以下、Al:0.05〜 0.5%のいずれか1種以上を
含み、残部が実質的にCo及び不可避的不純物よりなる
ように構成する。
Further, in order to obtain a heat-resistant cast Co-based alloy having both high temperature strength and long-term stability, the weight ratio is
C: more than 0.45% and 0.8% or less, Ni: 5 to 15%, Cr:
15-30%, W: 3-10%, Re: 1-5%, Si: 1%
Hereinafter, Mn: 1% or less, Fe: 1.5% or less, and further, Ti: 0.01 to 1%, Ta: 1 to 5%, B:
0.1% or less, Al: Any one or more of 0.05 to 0.5%, and the balance is composed essentially of Co and unavoidable impurities.

【0010】一方、高温強度および疲労強度に優れた耐
熱鋳造Co基合金を得るために、重量比で、C:0.05〜
0.45 %,Ni:5〜15%,Cr:15〜30%,W:3〜
10%,Re:1〜5%,Si:1%以下,Mn:1%以
下,Fe: 1.5%を以下を含み、更に必要に応じてT
i:0.01〜1%,Ta:1〜5%,B: 0.1%以上,A
l:0.05〜 0.5%のいずれか1種以上を含み、残部が実
質的にCo及び不可避的不純物よりなるように構成す
る。
On the other hand, in order to obtain a heat-resistant cast Co-based alloy excellent in high temperature strength and fatigue strength, the weight ratio of C: 0.05-
0.45%, Ni: 5-15%, Cr: 15-30%, W: 3-
10%, Re: 1 to 5%, Si: 1% or less, Mn: 1% or less, Fe: 1.5% or less, and if necessary, T
i: 0.01 to 1%, Ta: 1 to 5%, B: 0.1% or more, A
l: 0.05 to 0.5% of any one kind or more, and the balance is substantially composed of Co and inevitable impurities.

【0011】[0011]

【作用】本発明の耐熱鋳造Co基合金は、優れた高温強
度を示すばかりでなく、優れた長時間安定性を示し、こ
の耐熱鋳造Co基合金をこれらの特性が要求されるガス
タービンの静翼材として用いると、高温化された過酷な
ガスタービン環境中でも、著しく長期にわたって優れた
性能を発揮する。
The heat-resistant cast Co-based alloy of the present invention exhibits not only excellent high-temperature strength but also excellent long-term stability. When used as a blade material, it exhibits excellent performance for a remarkably long time even in a severe gas turbine environment where the temperature is raised.

【0012】一方、本発明の耐熱鋳造Co基合金は、優
れた高温強度を示すばかりでなく、優れた疲労強度を示
し、この耐熱鋳造Co基合金をこれらの特性が要求され
るガスタービンの静翼材として用いると、頻繁な起動停
止を行う過酷なガスタービン環境中でも、著しく長期に
わたって優れた性能を発揮する。
On the other hand, the heat-resistant cast Co-based alloy of the present invention exhibits not only excellent high-temperature strength but also excellent fatigue strength. When used as a wing material, it exhibits excellent performance over a long period of time even in a harsh gas turbine environment where frequent start and stop are performed.

【0013】[0013]

【実施例】以下、本発明の一実施例を説明する。それに
先立ち、本発明の耐熱鋳造Co基合金において組成範囲
を上記の通りに限定した理由を説明する。なお、以下の
説明において組成を表す「%」は特に断らない限り重量
比とする。 (a)C Cは素地に固溶するほか、Cr,W,Ti及びTaと結
合して炭化物を形成し、結晶粒内及び結晶粒界を強化し
て高温強度を向上させる作用があるが、その含有量が0.
05%未満では所望の効果が得られず、一方 0.8%を超え
て含有させると溶接性を低下させるので、その含有量を
0.05〜0.8 %以下とした。
EXAMPLE An example of the present invention will be described below. Prior to that, the reason why the composition range of the heat-resistant cast Co-based alloy of the present invention is limited as described above will be described. In the following description, “%” representing a composition is a weight ratio unless otherwise specified. (A) CC In addition to being solid-solved in the matrix, C has the action of forming carbides by combining with Cr, W, Ti and Ta, strengthening the insides of crystal grains and the grain boundaries, and improving the high temperature strength. Its content is 0.
If it is less than 05%, the desired effect cannot be obtained, while if it exceeds 0.8%, the weldability deteriorates.
It was set to 0.05 to 0.8% or less.

【0014】ここで、Cの含有量が0.05〜0.45%以下で
は長時間安定性の効果がやや劣り、一方、0.45%を超え
て含有させると疲労強度をやや低下させるので、高温強
度および長時間安定性に優れた耐熱鋳造Co合金を得る
場合は、Cの含有量を0.45%を超え、 0.8%以下とし、
高温強度および疲労強度に優れた耐熱鋳造Co合金を得
る場合は、Cの含有量を0.05〜0.45%とする。 (b)Ni NiとCrとの共存において高温強度を向上させ、更に
オーステナイト素地を安定化させる作用があるが、その
含有量が5%未満では所望の効果が得られず、一方、15
%を超えて含有させると高温強度及び耐食・耐酸化性を
低下させるので、その含有量を5〜15%とした。 (c)Cr CrはCと結合して炭化物を形成し、主強化相として高
温強度を向上させ、更に優れた高温耐食・耐酸化性を確
保する上で不可欠な成分であるが、その含有量が15%未
満では所望の効果が得られず、一方30%を超えて含有さ
せるとCoとσ相を形成して合金を脆弱化させることか
ら、その含有量を15〜30%とした。 (d)W WはCと結合してMC型炭化物を形成し、高温強度を向
上させるとともに、オーステナイト素地に固溶してこれ
を強化する作用があるが、その含有量が3%未満では所
望の効果が得られず、一方10%を超えて含有させるとσ
相などの金属間化合物を形成して合金を脆弱化させるこ
とから、その含有量を3〜10%とした。 (e)Re Reはオーステナイト素地に固溶してこれを強化し、更
に高温環境中で合金中の含有元素の拡散を遅らせて、供
用中の合金の安定性を向上させる作用があるが、その含
有量が1%未満では所望の効果が得られず、一方5%を
超えて含有させると疲労特性を低下させるので、その含
有量を1〜5%とした。 (f)Si Siは一般に脱酸剤として加えるが、その含有量が1%
を超えると鋳造時の介在物形成の原因となる。また、真
空溶解、真空鋳造を行う場合は特に加える必要はないの
で、その含有量を1%以下とした。 (g)Mn MnはSiと同様に脱酸剤として加えるが、その含有量
が1%を超えると高温耐酸化性を低下させる。また、真
空溶解、真空鋳造を行う場合は特に加える必要はないの
で、その含有量を1%以下とした。 (h)Ti,Ta Ti,TaはともにCと結合してMC型炭化物を形成
し、主に粒内を強化して高温強度向上に寄与するため、
より優れた高温強度が必要な場合には必要に応じて加え
ることができる。Tiは 0.1未満、Taは1%未満では
高温強度向上の効果が得られず、一方それぞれ1%、5
%を超えて含有させると溶接性及び疲労強度を極端に低
下させるので、その含有量をそれぞれ0.01〜1%、1〜
5%とした。 (i)B Bは結晶粒界を強化して高温強度向上及び延性向上に寄
与するため、より優れたこれらの特性が必要な場合には
必要に応じて加えることができる。しかし、 0.1%を超
えて含有させると溶接性を低下させるので、その含有量
を 0.1%以下とした。 (j)Al Alは鋳造中に中子の表面にAl23 の皮膜を形成
し、中子中に含れるSiO2 と溶湯との反応を抑制し
て、表面状態を改善するため、特に複雑な中子を使用し
て精密鋳造する場合には含有させる方が望ましい。0.05
%以下では所望の効果が得られず、一方 0.5%を超えて
含有させると鋳造性を劣化させるとともに合金を脆弱化
させるので、その含有量を0.05〜 0.5%とした。
Here, when the C content is 0.05 to 0.45% or less, the effect of long-term stability is slightly inferior, while when the content of C exceeds 0.45%, the fatigue strength is slightly lowered, so high temperature strength and long time In order to obtain a heat-resistant cast Co alloy with excellent stability, the C content should exceed 0.45% and 0.8% or less,
To obtain a heat-resistant cast Co alloy excellent in high temperature strength and fatigue strength, the C content is set to 0.05 to 0.45%. (B) Ni When Ni and Cr coexist, they have the effects of improving high-temperature strength and stabilizing the austenite matrix, but if the content is less than 5%, the desired effect cannot be obtained.
%, The high temperature strength and corrosion / oxidation resistance are deteriorated, so the content was made 5 to 15%. (C) Cr Cr is an essential component to combine with C to form a carbide, improve the high temperature strength as a main strengthening phase, and ensure excellent high temperature corrosion resistance and oxidation resistance. If less than 15%, the desired effect cannot be obtained, while if more than 30% is contained, a σ phase is formed with Co to weaken the alloy, so the content was made 15 to 30%. (D) WW has an action of forming MC type carbides by combining with C to improve high temperature strength and to form a solid solution in the austenite matrix to strengthen it, but if the content is less than 3%, it is desirable. Effect is not obtained, on the other hand, if the content exceeds 10%, σ
Since an intermetallic compound such as a phase is formed to weaken the alloy, its content is set to 3 to 10%. (E) Re Re has the action of forming a solid solution in the austenite matrix to strengthen it and further delay the diffusion of the elements contained in the alloy in a high temperature environment to improve the stability of the alloy in service. If the content is less than 1%, the desired effect cannot be obtained, while if it exceeds 5%, the fatigue properties are degraded, so the content was made 1 to 5%. (F) Si Si is generally added as a deoxidizer, but its content is 1%.
If it exceeds, it will cause the formation of inclusions during casting. In addition, when performing vacuum melting or vacuum casting, there is no need to add it in particular, so the content was made 1% or less. (G) Mn Mn is added as a deoxidizing agent like Si, but if its content exceeds 1%, the high temperature oxidation resistance is lowered. In addition, when performing vacuum melting or vacuum casting, there is no need to add it in particular, so the content was made 1% or less. (H) Ti, Ta Ti and Ta both combine with C to form MC type carbides, mainly strengthening the inside of the grains and contributing to the improvement of high temperature strength.
If higher high temperature strength is needed, it can be added as needed. If Ti is less than 0.1 and Ta is less than 1%, the effect of improving the high temperature strength cannot be obtained, while 1% and 5 respectively.
%, The weldability and fatigue strength are extremely reduced, so the contents are 0.01 to 1% and 1 to
It was set to 5%. (I) BB Since B strengthens the crystal grain boundary and contributes to the improvement of high temperature strength and ductility, it can be added if necessary when these excellent properties are required. However, if the content exceeds 0.1%, the weldability deteriorates, so the content was made 0.1% or less. (J) Al Al forms a film of Al 2 O 3 on the surface of the core during casting, suppresses the reaction between the SiO 2 contained in the core and the molten metal, and improves the surface condition. When precision casting is performed using a complicated core, it is preferable to contain it. 0.05
If the content is less than 0.5%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.5%, the castability deteriorates and the alloy becomes brittle, so the content was made 0.05 to 0.5%.

【0015】上記成分並びに主成分であるCoを加える
際に付随的に含まれる不純物はなるべく少ない方が望ま
しい。本発明の耐熱鋳造Co基合金は、各素材金属を真
空又は大気圧下で溶解、精錬し、それを鋳造して鋳塊と
して得られる。ガスタービンの静翼に適用する場合に
は、得られた鋳塊を再溶解し、それを静翼の形状に精密
鋳造する。次に表1は、高温強度および疲労強度に優れ
た耐熱鋳造Co合金を得る場合の実施例を示すものであ
る。
It is desirable that the impurities contained incidentally when the above-mentioned components and Co as the main component are added are as small as possible. The heat-resistant cast Co-based alloy of the present invention can be obtained as an ingot by melting and refining each material metal under vacuum or atmospheric pressure and casting the melted metal. When applied to a vane of a gas turbine, the obtained ingot is remelted and precision cast into the shape of the vane. Next, Table 1 shows examples for obtaining a heat-resistant cast Co alloy excellent in high temperature strength and fatigue strength.

【0016】[0016]

【表1】 [Table 1]

【0017】表1に示す組成で 150kgの真空誘導炉であ
らかじめ精錬されたマスター合金を用い、真空高周波溶
解炉にて再溶解し、ロストワックス法で作られた鋳型に
鋳造してφ14× 150lの供試材を得た。供試材1〜12は
本発明の耐熱鋳造Co基合金であり、供試材13,14は比
較材で、それぞれFSX414 及びMar−M509 という
名称で、現在のガスタービンの静翼に使用されているC
o基合金である。供試材13以外は鋳造後そのまま試験に
供した。一方、供試材13は鋳造後、1149℃×4時間の溶
体化処理後、 982℃×4時間の時効処理(炉冷)の熱処
理を行った。
Using a master alloy having the composition shown in Table 1 and preliminarily refined in a vacuum induction furnace of 150 kg, it was remelted in a vacuum high frequency melting furnace and cast in a mold made by the lost wax method to obtain φ14 × 150 l The test material was obtained. Specimens 1 to 12 are heat-resistant cast Co-based alloys of the present invention, and specimens 13 and 14 are comparative materials, which are named FSX414 and Mar-M509, respectively, and are used for the stationary blades of current gas turbines. C
It is an o-based alloy. Except for the test material 13, the samples were used as they were after casting. On the other hand, the test material 13 was subjected to solution treatment at 1149 ° C. for 4 hours and then aging treatment (furnace cooling) at 982 ° C. for 4 hours after casting.

【0018】次にこれらの供試材よりクリープ破断試験
片(平行部直径d=6mmφ)及び疲労試験片(平行部直
径d=8mmφ)を加工し、 816℃におけるクリープ破断
試験と 700℃及び 900℃における軸ひずみ制御疲労試験
を行った。その結果を表2に示す。
Next, a creep rupture test piece (parallel part diameter d = 6 mmφ) and a fatigue test piece (parallel part diameter d = 8 mmφ) were processed from these test materials, and a creep rupture test at 816 ° C. and 700 ° C. and 900 An axial strain control fatigue test was performed at ℃. The results are shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】まず比較合金である供試材13と14を比較す
る。クリープ破断試験の破断時間は供試材14の方がはる
かに長く、高温強度は供試材14の方が大幅に優れている
ことがわかる。一方、疲労試験においては 900℃では同
程度の破断繰返し数となるものの、 700℃では供試材13
の方が破断繰返し数が大きく、供試材13の方が、特に低
温側の疲労強度に優れることがわかる。すなわち供試材
13は高温強度はさほどでもないものの疲労強度が優れる
合金であり、一方、供試材14は高温強度は優れるもの
の、疲労強度は決して高くない合金である。
First, sample materials 13 and 14 which are comparative alloys will be compared. It can be seen that the rupture time of the creep rupture test is much longer for the test material 14, and the high temperature strength is significantly better for the test material 14. On the other hand, in the fatigue test, although the number of repeated ruptures was about the same at 900 ° C, at 700 ° C the test material 13
It can be seen that the sample No. 13 has a larger number of repeated ruptures, and the sample material 13 is superior in fatigue strength especially at the low temperature side. That is, the test material
No. 13 is an alloy having a high fatigue strength but not so high in high temperature strength. On the other hand, the test material 14 is an alloy having an excellent high temperature strength but never a high fatigue strength.

【0021】次に本発明合金と比較合金とを比較する。
クリープ破断試験においては本発明合金である供試材1
〜12は破断時間が供試材13に比較して長く、中には高強
度の比較合金である供試材14を上回るものもあり、本発
明合金である供試材1〜12は、比較合金である供試材1
3,14に比較して同等もしくはそれ以上の十分なクリー
プ破断強度を有することがわかる。一方、疲労試験にお
いては、本発明合金である供試材1〜12はいずれも破断
繰返し数が比較合金である供試材13,14に比較してはる
かに大きく、疲労強度が、比較合金である供試材13,14
に比較して大幅に改善されていることがわかる。
Next, the alloy of the present invention will be compared with the comparative alloy.
Specimen 1 which is the alloy of the present invention in the creep rupture test
〜12 is longer than the test material 13 in the breaking time, and some of them are higher than the test material 14 which is a high-strength comparative alloy. Alloy material 1
It can be seen that it has a sufficient creep rupture strength equal to or higher than that of Nos. 3 and 14. On the other hand, in the fatigue test, each of the test materials 1 to 12 which is the alloy of the present invention has a much higher fracture repetition number than the test materials 13 and 14 which are the comparative alloys, and the fatigue strength is Certain test materials 13, 14
It can be seen that it is significantly improved compared to.

【0022】すなわち、本発明合金は、従来のガスター
ビンの静翼に使用されているCo基合金に比較して、同
等もしくはそれ以上のクリープ破断強度を有しながら、
しかも疲労強度が大幅に改善されている合金である。
That is, the alloy of the present invention has a creep rupture strength equal to or higher than that of the Co-based alloy used for the conventional vane of a gas turbine,
Moreover, it is an alloy with significantly improved fatigue strength.

【0023】次に表3は、高温強度および長時間安定性
に優れた耐熱鋳造Co合金を得る場合の実施例を示すも
のである。表3に示す組成で、表1に示す組成の場合と
同様に、 150kgの真空誘導炉であらかじめ精錬されたマ
スター合金を用い、真空高周波溶解炉にて再溶解し、ロ
ストワックス法で作られた鋳型に鋳造してφ14× 150l
の供試材を得た。供試材21〜32は本発明の耐熱鋳造Co
基合金であり、供試材33,34は比較材で、それぞれFS
X414 及びMar−M509 という名称で、現在のガスタ
ービンの静翼に使用されているCo基合金である。供試
材33以外は鋳造後そのまま試験に供した。一方、供試材
33は鋳造後、1149℃×4時間の溶体化処理後、 982℃×
4時間の時効処理(炉冷)の熱処理を行った。
Next, Table 3 shows examples of obtaining a heat-resistant cast Co alloy excellent in high temperature strength and long-term stability. As in the case of the composition shown in Table 3, as in the case of the composition shown in Table 1, a master alloy preliminarily refined in a 150 kg vacuum induction furnace was used, remelted in a vacuum high-frequency melting furnace, and made by the lost wax method. Cast in a mold and dia. 14 x 150 l
The test materials of The test materials 21 to 32 are heat-resistant cast Co of the present invention.
It is a base alloy, and the test materials 33 and 34 are comparative materials, and FS
X414 and Mar-M509 are Co-based alloys used in the vanes of current gas turbines. Except for the test material 33, they were subjected to the tests as they were after casting. On the other hand, the test material
33 is 1149 ℃ × 4 hours after solution treatment after casting, 982 ℃ ×
A heat treatment of aging treatment (furnace cooling) was performed for 4 hours.

【0024】次にこれらの供試材より引張試験片及びク
リープ破断試験片(平行部直径d=6mmφ)を加工し、
室温及び 850℃における引張試験と 980℃におけるクリ
ープ破断試験を行った。その結果を表4に示す。
Next, tensile test pieces and creep rupture test pieces (diameter of parallel portion d = 6 mmφ) were processed from these test materials,
Tensile tests at room temperature and 850 ° C and creep rupture tests at 980 ° C were conducted. The results are shown in Table 4.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【表4】 まず比較合金である供試材33と34とを比較する。室温に
おいては両者の引張強さにあまり差はないが、 0.2%耐
力は供試材34の方が高い。また、 850℃においては引張
強さ、 0.2%耐力とも供試材34の方が高い。一方、引張
破断伸びについてはどちらの温度においても供試材33の
方が高い。クリープ破断試験の破断時間は供試材34の方
がはるかに長いが、クリープ破断伸びは小さい。すなわ
ち供試材33は高温強度はさほどではないものの延性が優
れる合金であり、一方、供試材34は高温強度は優れるも
のの、延性は決して高くない合金である。
[Table 4] First, the test materials 33 and 34, which are comparative alloys, are compared. At room temperature, there is not much difference in tensile strength between the two, but the 0.2% proof stress is higher in the test material 34. Further, at 850 ° C, the tensile strength and 0.2% proof stress of the test material 34 are higher. On the other hand, regarding the tensile elongation at break, the test material 33 is higher at any temperature. The rupture time of the creep rupture test is much longer for the test material 34, but the creep rupture elongation is smaller. That is, the test material 33 is an alloy having excellent ductility, although the high temperature strength is not so high, while the test material 34 is an alloy having excellent high temperature strength but not high ductility.

【0027】次に本発明合金と比較合金とを比較する。
室温及び 850℃の引張試験においては本発明合金である
供試材21〜32は、引張強さ、 0.2%耐力とも低強度の比
較合金である供試材33を上回り、高強度の比較合金であ
る供試材34と同等もしくはそれ以上の値を示している。
また、引張破断伸びについては低延性の比較合金である
供試材34を上回り、高延性の比較合金である供試材33と
ほぼ同等である。一方、クリープ破断試験においては本
発明合金である供試材21〜32はいずれも破断時間が、高
強度の比較合金である供試材34を上回っている。また、
クリープ破断伸びは高延性の比較合金である供試材33と
ほぼ同等である。これらの結果から、本発明合金である
供試材21〜32は、高強度の比較合金である供試材34に比
較して優れた高温強度を有し、また、高延性の比較合金
である供試材33と同等の延性を有することがわかる。
Next, the alloy of the present invention will be compared with the comparative alloy.
In the tensile test at room temperature and 850 ° C., the test materials 21 to 32, which are the alloys of the present invention, exceed the test material 33, which is a comparative alloy having low tensile strength and 0.2% proof stress, and are high strength comparative alloys. It shows a value equal to or higher than a certain test material 34.
The tensile elongation at break is higher than that of the test material 34 which is a low-ductility comparative alloy, and is almost the same as that of the test material 33 which is a high-ductility comparative alloy. On the other hand, in the creep rupture test, each of the test materials 21 to 32 which is the alloy of the present invention has a rupture time longer than that of the test material 34 which is a high strength comparative alloy. Also,
The creep rupture elongation is almost equal to that of the test material 33, which is a comparative alloy with high ductility. From these results, the test materials 21 to 32, which are the alloys of the present invention, have excellent high-temperature strength as compared to the test material 34, which is a high-strength comparative alloy, and are also high-ductility comparative alloys. It can be seen that it has the same ductility as the test material 33.

【0028】上述の引張試験及びクリープ破断試験に加
えて、供試材の加熱時効試験を実施した。供試材を 850
℃で1000時間加熱時効し、引張試験片及び衝撃試験片
(2mmVノッチシャルピー試験片)を加工し、室温にて
引張試験及び衝撃試験を実施した。その結果を初期状態
の供試材の特性とともに表5に示す。
In addition to the above-mentioned tensile test and creep rupture test, a heat aging test of the test material was carried out. 850 sample materials
After aged at 1000C for 1000 hours, a tensile test piece and an impact test piece (2 mm V notch Charpy test piece) were processed, and a tensile test and an impact test were carried out at room temperature. The results are shown in Table 5 together with the characteristics of the test material in the initial state.

【0029】[0029]

【表5】 [Table 5]

【0030】まず比較合金である供試材33と34を比較す
る。供試材33においては時効により引張強さ、 0.2%耐
力及び吸収エネルギーに低下、引張破断伸びに上昇は見
られるものの、その変化は小さい。一方、供試材34は時
効により引張強さ及び 0.2%耐力が上昇し、引張破断伸
び及び吸収エネルギーが大きく低下する。すなわち、供
試材33は長時間安定性に優れる合金であり、供試材は逆
に長時間安定性に乏しい合金である。
First, the test materials 33 and 34, which are comparative alloys, are compared. In Specimen 33, the tensile strength, 0.2% proof stress and absorbed energy are decreased by aging, and the tensile breaking elongation is increased, but the changes are small. On the other hand, in the case of the test material 34, the tensile strength and the 0.2% proof stress are increased by aging, and the tensile breaking elongation and the absorbed energy are greatly decreased. That is, the test material 33 is an alloy excellent in long-term stability, and conversely, the test material is an alloy poor in long-term stability.

【0031】次に本発明合金と比較合金とを比較する。
本発明合金である供試材21〜32は、いずれも時効により
引張強さ及び 0.2%耐力は上昇する。一方、引張破断伸
び及び吸収エネルギーには低下傾向が見られるものの、
その変化は小さく、長時間安定性に優れる比較合金であ
る供試材33と同等の長時間安定性を有している。
Next, the alloy of the present invention will be compared with the comparative alloy.
All of the test materials 21 to 32, which are the alloys of the present invention, increase in tensile strength and 0.2% proof stress due to aging. On the other hand, although tensile elongation at break and absorbed energy tend to decrease,
The change is small and has the same long-term stability as the test material 33 which is a comparative alloy excellent in long-term stability.

【0032】すなわち、本発明合金は、従来のガスター
ビンの静翼に使用されているCo基合金に比較して、大
幅に改善されたクリープ破断強度を有しながら、しかも
長時間安定性に優れている合金である。
That is, the alloy of the present invention has a significantly improved creep rupture strength as compared with the Co-based alloy used in the conventional vane of a gas turbine, and is excellent in long-term stability. It is an alloy.

【0033】[0033]

【発明の効果】以上述べたように本発明によれば、従来
のガスタービンの静翼に使用されているCo基合金に比
較して、同等もしくはそれ以上の高温強度を有しなが
ら、しかも疲労強度が大幅に改善されている合金が与え
られる。このため、ガスタービンの静翼材として用いれ
ば、頻繁な起動停止を行う過酷なガスタービン中でも、
著しく長期にわたって優れた性能を発揮し、コンバイン
ドサイクル発電プラントの信頼性が向上するなど、産業
上有益な効果がもたらされる。
As described above, according to the present invention, as compared with the Co-based alloy used in the conventional vane of a gas turbine, it has the same or higher high temperature strength and fatigue An alloy is provided which has significantly improved strength. Therefore, if it is used as a vane material for a gas turbine, even in a harsh gas turbine that frequently starts and stops,
It has excellent performance over an extremely long period of time, and has industrially beneficial effects such as improved reliability of a combined cycle power plant.

【0034】また、従来のガスタービンの静翼に使用さ
れているCo基合金に比較して、より大幅に改善された
高温強度を有しながら、しかも長時間安定性に優れてい
る合金が与えられる。このため、ガスタービンの静翼材
として用いれば、高温・高効率化された過酷なガスター
ビン中でも著しく長期にわたって優れた性能を発揮し、
コンバインドサイクル発電プラントの信頼性が向上する
など、産業上有益な効果がもたらされる。
Further, as compared with the Co-based alloy used for the conventional vane of a gas turbine, an alloy having a much improved high temperature strength and excellent long-term stability is given. To be Therefore, if it is used as a vane material for a gas turbine, it will exhibit outstanding performance over a long period of time even in a severe gas turbine with high temperature and high efficiency.
Industrially beneficial effects such as improved reliability of combined cycle power plants will be brought about.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、C:0.05〜0.45%,Ni:5
〜15%,Cr:15〜30%,W:3〜10%,Re:1〜5
%,Si:1%以下,Mn:1%以下,Fe:1.5%を
以下を含み、残部が実質的にCo及び不可解避的不純物
よりなることを特徴とする耐熱鋳造Co基合金。
1. A weight ratio of C: 0.05 to 0.45% and Ni: 5
-15%, Cr: 15-30%, W: 3-10%, Re: 1-5
%, Si: 1% or less, Mn: 1% or less, Fe: 1.5% or less, and the balance substantially consisting of Co and unavoidable impurities.
【請求項2】 重量比で、Ti:0.01〜1%,Ta:1
〜5%の少なくとも1種以上を含むことを特徴とする請
求項1に記載の耐熱鋳造Co基合金。
2. By weight ratio, Ti: 0.01 to 1%, Ta: 1
The heat-resistant cast Co-based alloy according to claim 1, containing at least one of 5% to 5%.
【請求項3】 重量比で、B: 0.1%以下を含むことを
特徴とする請求項1又は請求項2記載の耐熱鋳造Co基
合金。
3. The heat-resistant cast Co-based alloy according to claim 1 or 2, wherein B: 0.1% or less by weight is contained.
【請求項4】 重量比で、Al:0.05〜 0.5%を含むこ
とを特徴とする請求項1、請求項2又は請求項3に記載
の耐熱鋳造Co基合金。
4. The heat-resistant cast Co-based alloy according to claim 1, 2 or 3, wherein Al: 0.05 to 0.5% is included in a weight ratio.
【請求項5】 重量比で、C:0.45%を超え 0.8%以
下、Ni:5〜15%,Cr:15〜30%,W:3〜10%,
Re:1〜5%,Si:1%以下,Mn:1%以下,F
e: 1.5%以下を含み、残部が実質的にCo及び不可避
的不純物よりなることを特徴とする耐熱鋳造Co基合
金。
5. By weight ratio, C: more than 0.45% and 0.8% or less, Ni: 5-15%, Cr: 15-30%, W: 3-10%,
Re: 1 to 5%, Si: 1% or less, Mn: 1% or less, F
e: A heat-resistant cast Co-based alloy, characterized by containing 1.5% or less, and the balance substantially consisting of Co and inevitable impurities.
【請求項6】 重量比で、Ti:0.01〜1%,Ta:1
〜5%の少なくとも1種以上を含むことを特徴とする請
求項5に記載の耐熱鋳造Co基合金。
6. A weight ratio of Ti: 0.01 to 1% and Ta: 1
The heat-resistant cast Co-based alloy according to claim 5, wherein the heat-resistant cast Co-based alloy contains at least one of 5% to 5%.
【請求項7】 重量比で、B: 0.1%以下を含むことを
特徴とする請求項5又は請求項6に記載の耐熱鋳造Co
基合金。
7. The heat-resistant casting Co according to claim 5 or 6, wherein B: 0.1% or less by weight is contained.
Base alloy.
【請求項8】 重量比で、Al:0.05〜 0.5%を含むこ
とを特徴とする請求項5、請求項6又は請求項7に記載
の耐熱鋳造Co基合金。
8. The heat-resistant cast Co-based alloy according to claim 5, 6, or 7, which contains Al: 0.05 to 0.5% by weight.
【請求項9】 重量比で、C:0.05〜 0.8%,Ni:5
〜15%,Cr:15〜30%,W:3〜10%,Re:1〜5
%,Si:1%以下,Mn:1%以下,Fe:1.5%以
下を含み、残部が実質的にCo及び不可避的不純物より
なることを特徴とする耐熱鋳造Co基合金。
9. A weight ratio of C: 0.05 to 0.8% and Ni: 5
-15%, Cr: 15-30%, W: 3-10%, Re: 1-5
%, Si: 1% or less, Mn: 1% or less, Fe: 1.5% or less, and the balance substantially consisting of Co and unavoidable impurities.
JP7669193A 1993-04-02 1993-04-02 Heat resistant cast co-base alloy Pending JPH06287667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7669193A JPH06287667A (en) 1993-04-02 1993-04-02 Heat resistant cast co-base alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7669193A JPH06287667A (en) 1993-04-02 1993-04-02 Heat resistant cast co-base alloy

Publications (1)

Publication Number Publication Date
JPH06287667A true JPH06287667A (en) 1994-10-11

Family

ID=13612501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7669193A Pending JPH06287667A (en) 1993-04-02 1993-04-02 Heat resistant cast co-base alloy

Country Status (1)

Country Link
JP (1) JPH06287667A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4218404A1 (en) * 1992-06-04 1993-12-09 Motoren Werke Mannheim Ag Controlling ignition energy supply for IC engine sparking plug - requires continual comparison of engine parameter, such as quietness of running, with initial value, and adjusting ignition energy accordingly
KR20190028319A (en) * 2017-09-08 2019-03-18 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Cobalt base alloy laminate molding body, cobalt base alloy product, and manufacturing method thereof
KR20210024120A (en) * 2019-03-07 2021-03-04 미츠비시 파워 가부시키가이샤 heat exchanger
RU2752359C1 (en) * 2020-10-14 2021-07-26 Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет (национальный исследовательский университет)» Method for manufacturing parts of complex shape by hybrid casting-additive method
US11306372B2 (en) 2019-03-07 2022-04-19 Mitsubishi Power, Ltd. Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body
US11414728B2 (en) 2019-03-07 2022-08-16 Mitsubishi Heavy Industries, Ltd. Cobalt based alloy product, method for manufacturing same, and cobalt based alloy article
US11499208B2 (en) 2019-03-07 2022-11-15 Mitsubishi Heavy Industries, Ltd. Cobalt based alloy product
US11613795B2 (en) 2019-03-07 2023-03-28 Mitsubishi Heavy Industries, Ltd. Cobalt based alloy product and method for manufacturing same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4218404A1 (en) * 1992-06-04 1993-12-09 Motoren Werke Mannheim Ag Controlling ignition energy supply for IC engine sparking plug - requires continual comparison of engine parameter, such as quietness of running, with initial value, and adjusting ignition energy accordingly
DE4218404C2 (en) * 1992-06-04 1999-02-04 Motoren Werke Mannheim Ag Process for controlling the energy supply for a spark plug of an Otto engine
CN112813308A (en) * 2017-09-08 2021-05-18 三菱动力株式会社 Cobalt-based alloy material
US11325189B2 (en) 2017-09-08 2022-05-10 Mitsubishi Heavy Industries, Ltd. Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
KR20200084850A (en) * 2017-09-08 2020-07-13 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Manufacturing method of cobalt base alloy laminate molding body
KR20200121276A (en) * 2017-09-08 2020-10-23 미츠비시 파워 가부시키가이샤 Cobalt base alloy material
US10857595B2 (en) 2017-09-08 2020-12-08 Mitsubishi Hitachi Power Systems, Ltd. Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
US10632535B2 (en) * 2017-09-08 2020-04-28 Mitsubishi Hitachi Power Systems, Ltd. Cobalt based alloy additive manufactured article, cobalt based alloy product, and method for manufacturing same
KR20190028319A (en) * 2017-09-08 2019-03-18 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Cobalt base alloy laminate molding body, cobalt base alloy product, and manufacturing method thereof
US11414728B2 (en) 2019-03-07 2022-08-16 Mitsubishi Heavy Industries, Ltd. Cobalt based alloy product, method for manufacturing same, and cobalt based alloy article
US11306372B2 (en) 2019-03-07 2022-04-19 Mitsubishi Power, Ltd. Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body
KR20210024120A (en) * 2019-03-07 2021-03-04 미츠비시 파워 가부시키가이샤 heat exchanger
US11427893B2 (en) 2019-03-07 2022-08-30 Mitsubishi Heavy Industries, Ltd. Heat exchanger
US11499208B2 (en) 2019-03-07 2022-11-15 Mitsubishi Heavy Industries, Ltd. Cobalt based alloy product
US11613795B2 (en) 2019-03-07 2023-03-28 Mitsubishi Heavy Industries, Ltd. Cobalt based alloy product and method for manufacturing same
RU2752359C1 (en) * 2020-10-14 2021-07-26 Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет (национальный исследовательский университет)» Method for manufacturing parts of complex shape by hybrid casting-additive method

Similar Documents

Publication Publication Date Title
JP5147037B2 (en) Ni-base heat-resistant alloy for gas turbine combustor
JPH09157779A (en) Low thermal expansion nickel base superalloy and its production
US5942055A (en) Silicide composite with niobium-based metallic phase and silicon-modified Laves-type phase
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP2002088455A (en) METHOD FOR MANUFACTURING Ni-BASE ALLOY HAVING EXCELLENT HIGH TEMPERATURE SULFIDATION CORROSION RESISTANCE
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
JP2003113434A (en) Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor
JPH06287667A (en) Heat resistant cast co-base alloy
JPH07300643A (en) Heat resistant cast cobalt-base alloy
JP2002206143A (en) High strength low thermal expansion casting steel and ring-shaped parts for blade ring of gas turbine and for seal ring holding ring consisting of the high strength low thermal expansion casting steel
JP3424314B2 (en) Heat resistant steel
CN111254317B (en) Nickel-based casting alloy and preparation method thereof
JP2003138334A (en) Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY
JPH06287666A (en) Heat resistant cast co-base alloy
JPH07224337A (en) Heat resistant cast co-base alloy and gas turbine stator blade using the same
JPH083665A (en) Nickel-base superalloy for die excellent in oxidation resistance and high temperature strength
US4049432A (en) High strength ferritic alloy-D53
US2842439A (en) High strength alloy for use at elevated temperatures
JPS60224731A (en) Heat resistant co-base alloy
JPS6249344B2 (en)
JPH0770683A (en) Heat resistant cast co-based alloy for gas turbine
JPS63157839A (en) Steam turbine rotor
JP2686140B2 (en) Alloy for high temperature bolt and method for producing the same
JPS6013050A (en) Heat-resistant alloy
JPH0243813B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN