JPS6151010B2 - - Google Patents

Info

Publication number
JPS6151010B2
JPS6151010B2 JP53122575A JP12257578A JPS6151010B2 JP S6151010 B2 JPS6151010 B2 JP S6151010B2 JP 53122575 A JP53122575 A JP 53122575A JP 12257578 A JP12257578 A JP 12257578A JP S6151010 B2 JPS6151010 B2 JP S6151010B2
Authority
JP
Japan
Prior art keywords
temperature
heat treatment
power generation
steel
ductile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53122575A
Other languages
Japanese (ja)
Other versions
JPS5550430A (en
Inventor
Kenichi Usami
Koji Sato
Sumi Yoshida
Masao Shiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12257578A priority Critical patent/JPS5550430A/en
Publication of JPS5550430A publication Critical patent/JPS5550430A/en
Publication of JPS6151010B2 publication Critical patent/JPS6151010B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/28Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for plain shafts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は地熱発電用タービンロータシヤフトの
製造法に係り、特に1%Cr―1%Mo―1/4%V
鋼の切欠靭性の改善に関する。 地熱蒸気や地熱水環境にさらされる地熱発電用
機器材料は、これらの環境が火山性の腐食性ガス
(H2S、その他)やC、SO4、その他の種々のイ
オンを多量に含み一般にPHも低く苛酷な腐食環境
下で使用される。これらの機器材料のうちタービ
ンロータは入口温度が約200℃、出口温度が約50
℃程度の低い蒸気温度条件下で運転される。しか
し、火力発電用のように、あまり腐食環境が問題
とならない低い温度条件で使用されるタービンロ
ータには延性脆性遷移温度が室温以下で優れた切
欠靭性を有するNiを3〜4%程度含有するCr―
Mo―V鋼が使用されている。したがつて、この
鋼を地熱発電用タービンロータ材として使用すれ
ばよいが、Ni含有量の多い低合金鋼は、硫化物
を含む環境下での耐食性腐食割れ性並びに腐食に
よる疲労限が極度に低下し、長年の使用によつて
破壊を誘発するという欠点を有している。このこ
とから、火力発電用高圧中圧タービンロータとし
て開発された、Niを含まない1Cr―1Mo―1/4V
鋼製のロータを地熱発電用タービンロータに使用
している。ところが、この鋼は、550℃程度の高
い温度条件で優れたクリープ特性を有するが、延
性脆性遷移温度が80〜120℃と高いため地熱発電
のように低い蒸気温度条件での使用は、延性脆性
遷移温度が高すぎて脆性破壊に対する安全性の点
で不安を残している。そこで、1Cr―1Mo―1/4
V鋼の熱処理の焼入温度の低下や焼入冷却速度を
小さくしたりして延性脆性遷移温度を低める方法
が検討されている。しかし、これらの単なる熱処
理法によつてはせいぜい50〜60℃まで遷移温度を
下げるのが限度である。したがつて、地熱発電用
タービンロータの設計上から要求される延性脆性
遷移温度は40℃が理想とされ、これらに近づける
または40℃以下とする熱処理による検討が要望さ
れる。 本発明は上記の問題点を考慮し、地熱環境下で
の1Cr―1Mo―1/4V低合金鋼製タービンロータ
の脆性破壊に対する安全性を向上させる熱処理法
を適用し、切欠靭性の優れた地熱発電用タービン
ロータシヤフトの製造法を提供することを目的と
している。 本発明は地熱環境下で使用されるタービンロー
タ材としての1Cr―1Mo―1/4V鋼の延性脆性遷
移温度を低める熱処理法の改善をはかつたもので
ある。すなわち、1Cr―1Mo―1/4V合金を溶
解、鍛造したタービンロータ素体形状に製作した
のち920℃〜1050℃のオーステナイト領域から150
℃〜250℃/hの冷却速度で焼入れし、ついで770
〜850℃のAC1〜AC3変態温度の中間領域に再加
熱し150〜250℃/hで冷却後、650〜750℃で焼戻
処理を行うことによつて、結晶粒度を微細にする
とともに、実質的に焼戻し下部ベイナイト組織を
生じせしめることによつて地熱発電用タービンロ
ータ材1Cr―1Mo―1/4V鋼の低温切欠靭性の改
善をはかつたものである。 なお冷却速度を150〜250℃/hとしたのは150
℃/h未満ではフエライト相が生成し、強度を低
め、靭性値を低下する。更に、250℃/hを越え
てもそれ以上の効果がなく、実ロータ中心部の冷
却速度が約200℃/h程度であるため、150〜250
℃/hとした。 920〜1050℃でオーステナイト化し焼入れする
ことによつて強度を高める。920℃未満では強度
が低下し、更に1050℃を越えると結晶粒が粗大化
し、靭性が低下する。 770〜850℃での処理はオーステナイト相とフエ
ライト相領域からの急冷によつて結晶粒を微細化
するとともに焼戻しによる下部ベーナイト相を形
成し靭性を向上させる。770℃未満の温度及び850
℃を越える温度ではいずれも結晶粒を微細化し及
び焼戻しによる下部ベーナイト組織が形成させる
ことができず、靭性を向上させることができな
い。 1Cr―1Mo―1/4V鋼の通常の熱処理は920〜
1050℃で焼入後、650〜750℃で焼戻し処理を行つ
ている。また、延性脆性遷移温度を40℃に近づけ
るため焼入温度を低めたり、焼入冷却速度を小さ
くするなどの熱処理による検討がなされている
が、目的に合つた熱処理法が見出されていない。
したがつて、地熱発電用タービンロータに要求さ
れる理想的設計基準である延性脆性遷移温度40℃
を満足する熱処理法の検討が必要である。以下に
本発明を実施例により詳細に説明する。 第1表に示した組成を有する実ロータから切出
した1Cr―1Mo―1/4V鋼を第2表に示す条件で
熱処理を施したのち引張試験、衝撃試験及び組織
観察等を行なつた。 なお、本発明での引張強さが89.1Kg/mm2及び
0.02%耐力が68.2Kg/mm2で、低圧ロータ基準を十
分満足した結果が得られた。
The present invention relates to a method for manufacturing a turbine rotor shaft for geothermal power generation, and particularly relates to a method for manufacturing a turbine rotor shaft for geothermal power generation, and in particular, 1% Cr-1% Mo-1/4% V
Concerning improvement of notch toughness of steel. Geothermal power generation equipment materials that are exposed to geothermal steam or geothermal water environments generally contain large amounts of corrosive volcanic gases (H 2 S, etc.), C, SO 4 , and other various ions. It has a low pH and is used in harsh corrosive environments. Among these equipment materials, the turbine rotor has an inlet temperature of approximately 200℃ and an outlet temperature of approximately 50℃.
It is operated under steam temperature conditions as low as ℃. However, turbine rotors used in low-temperature conditions where corrosive environments are not a problem, such as those used in thermal power generation, contain about 3 to 4% Ni, which has excellent notch toughness when the ductile-brittle transition temperature is below room temperature. Cr―
Mo-V steel is used. Therefore, this steel can be used as a turbine rotor material for geothermal power generation, but low-alloy steel with a high Ni content has extremely low corrosion resistance, corrosion cracking resistance, and fatigue limits due to corrosion in environments containing sulfides. It has the disadvantage that it deteriorates and is likely to break down after many years of use. Based on this, 1Cr-1Mo-1/4V, which does not contain Ni, was developed as a high-pressure and intermediate-pressure turbine rotor for thermal power generation.
Steel rotors are used in geothermal power generation turbine rotors. However, although this steel has excellent creep properties under high temperature conditions of around 550°C, its ductile-brittle transition temperature is as high as 80 to 120°C, so it cannot be used in low steam temperature conditions such as geothermal power generation. The transition temperature is too high, leaving concerns about safety against brittle fracture. Therefore, 1Cr―1Mo―1/4
Methods of lowering the ductile-brittle transition temperature by lowering the quenching temperature or decreasing the quenching cooling rate in heat treatment of V-steel are being considered. However, these simple heat treatment methods can only lower the transition temperature to 50 to 60°C at most. Therefore, the ductile-brittle transition temperature required from the design of geothermal power generation turbine rotors is ideally 40°C, and it is desired to consider heat treatment to bring it closer to this or to lower it to 40°C or less. In consideration of the above problems, the present invention applies a heat treatment method that improves the safety of 1Cr-1Mo-1/4V low alloy steel turbine rotor against brittle fracture in a geothermal environment. The purpose of this invention is to provide a method for manufacturing a turbine rotor shaft for power generation. The present invention aims to improve a heat treatment method for lowering the ductile-brittle transition temperature of 1Cr-1Mo-1/4V steel used as a turbine rotor material used in a geothermal environment. In other words, the 1Cr-1Mo-1/4V alloy is melted and forged into a turbine rotor body shape, and then 150
Quenched at a cooling rate of ℃~250℃/h, then 770℃
After reheating to the intermediate range of AC 1 to AC 3 transformation temperature of ~850℃ and cooling at 150 to 250℃/h, tempering treatment is performed at 650 to 750℃ to refine the grain size and , the low-temperature notch toughness of 1Cr-1Mo-1/4V steel, which is a turbine rotor material for geothermal power generation, is improved by substantially producing a tempered lower bainite structure. The cooling rate was set to 150 to 250℃/h.
If the temperature is less than 0.degree. C./h, a ferrite phase will form, lowering the strength and toughness value. Furthermore, even if the cooling rate exceeds 250°C/h, there is no further effect, and the actual cooling rate of the center of the rotor is approximately 200°C/h.
It was set as °C/h. Strength is increased by austenitizing and quenching at 920-1050℃. If it is less than 920°C, the strength will decrease, and if it exceeds 1050°C, the crystal grains will become coarser and the toughness will decrease. The treatment at 770 to 850°C refines grains by rapid cooling from the austenite and ferrite phase regions, and forms a lower bainite phase by tempering, improving toughness. Temperature below 770℃ and 850℃
At temperatures exceeding .degree. C., crystal grains cannot be refined and a lower bainite structure cannot be formed by tempering, and toughness cannot be improved. The normal heat treatment for 1Cr-1Mo-1/4V steel is 920 ~
After quenching at 1050℃, tempering treatment is performed at 650-750℃. In addition, heat treatments such as lowering the quenching temperature and slowing the quenching cooling rate have been considered in order to bring the ductile-brittle transition temperature closer to 40°C, but a heat treatment method that meets the purpose has not been found.
Therefore, the ductile-brittle transition temperature of 40°C is the ideal design standard required for geothermal power generation turbine rotors.
It is necessary to consider a heat treatment method that satisfies the following. The present invention will be explained in detail below using examples. 1Cr-1Mo-1/4V steel cut from an actual rotor having the composition shown in Table 1 was heat treated under the conditions shown in Table 2, and then subjected to tensile tests, impact tests, and microstructural observations. In addition, the tensile strength in the present invention is 89.1Kg/mm 2 and
The 0.02% proof stress was 68.2Kg/ mm2 , which fully satisfied the low-pressure rotor standards.

【表】【table】

【表】 但し、
オーステナイト化処理
冷却速度は200℃〓h
中 間 処 理
第1図は1Cr―1Mo―1/4V鋼の従来熱処理と
本発明による熱処理法の衝撃遷移曲線の代表例を
示す。本発明による熱処理による衝撃値は従来熱
処理によるものより非常に高い値が得られ、低温
になるほどその差が大きくなる。このことから、
低温靭性が非常にすぐれていることが知られる。 第2図は第1図の衝撃試験片から延性脆性破面
率を求めた結果を示す。この結果から50%延性脆
性遷移温度は従来の熱処理法では80℃以上である
が、本発明による熱処理法は40℃を充分満足し、
30〜35℃であり、非常にすぐれた延性脆性遷移温
度を示す。 以上のように、従来の熱処理法で不可能であつ
た延性脆性遷移温度の低下は、従来の焼入焼戻処
理の中間に、AC1〜AC3の変態温度領域に加熱す
る方法を採用することによつて非常にすぐれた切
欠靭性を示すことが明らかとなつた。したがつ
て、地熱発電用タービンロータ材としての本発明
の熱処理による製造法は顕著な効果が得られる。
[Table] However,
Austenitizing treatment
Cooling rate is 200℃〓h
Intermediate Treatment Figure 1 shows typical examples of impact transition curves for conventional heat treatment and heat treatment according to the present invention for 1Cr-1Mo-1/4V steel. The impact value obtained by the heat treatment according to the present invention is much higher than that obtained by conventional heat treatment, and the difference becomes larger as the temperature becomes lower. From this,
It is known to have excellent low-temperature toughness. FIG. 2 shows the results of determining the ductile-brittle fracture surface ratio from the impact test piece shown in FIG. 1. From this result, the 50% ductile-brittle transition temperature is 80℃ or higher in the conventional heat treatment method, but the heat treatment method according to the present invention fully satisfies the temperature of 40℃.
The temperature is 30-35°C, showing an excellent ductile-brittle transition temperature. As described above, the reduction of the ductile-brittle transition temperature, which was not possible with conventional heat treatment methods, can be achieved by applying heating to the transformation temperature range of AC 1 to AC 3 during the conventional quenching and tempering process. In particular, it has become clear that this material exhibits extremely excellent notch toughness. Therefore, the method of manufacturing a geothermal power generation turbine rotor material by heat treatment according to the present invention provides remarkable effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1Cr―1Mo―1/4V鋼の熱処理法の違
いによる温度と衝撃値との関係を示す線図、第2
図は温度と延性破面率との関係を示す線図であ
る。 A……従来の熱処理、B……本発明による熱処
理。
Figure 1 is a diagram showing the relationship between temperature and impact value due to different heat treatment methods for 1Cr-1Mo-1/4V steel.
The figure is a diagram showing the relationship between temperature and ductile fracture area ratio. A...Conventional heat treatment, B...Heat treatment according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%で、C:0.20〜0.33%、Si:0.3%以
下、Mn:1.0%以下、Cr:0.5〜2.0%、Mo:0.3
〜1.5%、V:0.1〜0.3%、残部Feおよび不可避
の不純物からなるクロムーモリブデン―バナジウ
ム鋼を920〜1050℃のオーステナイト領域で加熱
保持した後、150〜250℃/hの冷却速度で焼入れ
し、ついで770〜850℃のAC1〜AC3変態温度領域
に再加熱し150〜250℃/hで冷却後、650〜750℃
で焼戻処理を行ない、実質的に焼戻しベイナイト
組織を形成させることを特徴とする地熱発電用タ
ービンロータシヤフトの製造法。
1% by weight, C: 0.20-0.33%, Si: 0.3% or less, Mn: 1.0% or less, Cr: 0.5-2.0%, Mo: 0.3
Chromium-molybdenum-vanadium steel consisting of ~1.5%, V: 0.1-0.3%, balance Fe and unavoidable impurities is heated and held in the austenite region at 920-1050℃, and then quenched at a cooling rate of 150-250℃/h. Then, it is reheated to AC 1 to AC 3 transformation temperature range of 770 to 850℃, and after cooling at 150 to 250℃/h, it is heated to 650 to 750℃.
1. A method for manufacturing a turbine rotor shaft for geothermal power generation, which comprises performing a tempering treatment to substantially form a tempered bainite structure.
JP12257578A 1978-10-06 1978-10-06 Turbine rotor for geothermal electric power generation Granted JPS5550430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12257578A JPS5550430A (en) 1978-10-06 1978-10-06 Turbine rotor for geothermal electric power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12257578A JPS5550430A (en) 1978-10-06 1978-10-06 Turbine rotor for geothermal electric power generation

Publications (2)

Publication Number Publication Date
JPS5550430A JPS5550430A (en) 1980-04-12
JPS6151010B2 true JPS6151010B2 (en) 1986-11-07

Family

ID=14839292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12257578A Granted JPS5550430A (en) 1978-10-06 1978-10-06 Turbine rotor for geothermal electric power generation

Country Status (1)

Country Link
JP (1) JPS5550430A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503653A (en) * 1990-09-13 1993-06-17 ハーバーメイヤー ピーター Device for circumferential fixation of limbs

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6335759A (en) * 1986-07-31 1988-02-16 Mitsubishi Heavy Ind Ltd Geothermal turbine rotor material
EP0849434B8 (en) * 1989-02-03 2005-08-10 Hitachi, Ltd. Combined generator system
JP5362764B2 (en) * 2011-04-18 2013-12-11 株式会社日本製鋼所 Low alloy metal for geothermal power turbine rotor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149518A (en) * 1974-05-23 1975-11-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50149518A (en) * 1974-05-23 1975-11-29

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05503653A (en) * 1990-09-13 1993-06-17 ハーバーメイヤー ピーター Device for circumferential fixation of limbs

Also Published As

Publication number Publication date
JPS5550430A (en) 1980-04-12

Similar Documents

Publication Publication Date Title
JPS59232220A (en) Manufacture of high strength steel with superior resistance to sulfide corrosion cracking
JPH08176671A (en) Production of high-and low-pressure integral type turbine rotor
JPS5848024B2 (en) Oil country tubular steel with excellent corrosion resistance
JPS6151010B2 (en)
JPS62109926A (en) Manufacture of highly wear resistant rolling roll
JPS619519A (en) Manufacture of high strength steel superior in sulfide corrosion cracking resistance
JPH0454726B2 (en)
JPS61143523A (en) Manufacture of rotor for geothermal energy turbine
JPS6132384B2 (en)
JPS6338420B2 (en)
JP4006857B2 (en) Cold forging steel for induction hardening, machine structural parts and manufacturing method thereof
JPS61295319A (en) Manufacture of sucker rod for oil well containing wet gaseous carbon dioxide
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JPS6017022B2 (en) High-strength oil country tubular steel with excellent sulfide stress corrosion cracking resistance
JPS61147812A (en) Production of high strength steel superior in delayed breaking characteristic
JPH05345922A (en) Production of high-pressure part and low-pressure part integrated type turbine rotor
JPS60238416A (en) Manufacture of sucker rod for wet environment containing hydrogen sulfide
US2221597A (en) Heat treating
JP2689864B2 (en) High toughness steel pipe
JPH07258729A (en) Production of martensitic precipitation hardening type stainless steel
JPS6240345A (en) High tension steel pipe for oil well having superior delayed fracture resistance
JPS61104056A (en) High-strength and high-toughness low-carbon cr-mo steel plate having excellent creep-resisting property as well as superior resistance to weld crack and erosion
JPH03193844A (en) Turbine axle
JPS6361369B2 (en)
JPH0128815B2 (en)