JPS6145683B2 - - Google Patents

Info

Publication number
JPS6145683B2
JPS6145683B2 JP2285282A JP2285282A JPS6145683B2 JP S6145683 B2 JPS6145683 B2 JP S6145683B2 JP 2285282 A JP2285282 A JP 2285282A JP 2285282 A JP2285282 A JP 2285282A JP S6145683 B2 JPS6145683 B2 JP S6145683B2
Authority
JP
Japan
Prior art keywords
toughness
steel
temperature
less
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2285282A
Other languages
Japanese (ja)
Other versions
JPS58141326A (en
Inventor
Osamu Furukimi
Shigeharu Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2285282A priority Critical patent/JPS58141326A/en
Publication of JPS58141326A publication Critical patent/JPS58141326A/en
Publication of JPS6145683B2 publication Critical patent/JPS6145683B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、低温用高強度高靭性鋼の製造方法に
係り、詳しくは、例えば、使用温度−104℃のエ
チレン貯蔵タンクまたは、使用温度−60〜−104
℃のエチレン分留塔の如く低温領域に用いられて
溶接部低温靭性のすぐれた低温用高強度高靭性鋼
の製造方法に係る。 従来、エチレン関連用鋼材としては、ASTM
−A203規格の3.5%Ni鋼が用いられてきた。しか
し、この鋼種の引張強度は、45〜63Kgf/mm2と低
く、また、溶接時の熱影響部の靭性値も低い。一
方、9%のNiを含むASTM−A553規格の9%Ni
鋼は、強度も高く溶接熱影響部の靭性も優れてい
るが、経済的に高価である。 以上の観点から、本発明者等は70Kgf/mm2以上
の引張強度を有し、−60〜−104℃の低温において
母材、溶接熱影響部靭性の優れた安価な低温用鋼
の開発に着手した。その結果、C量を0.03%以下
に低減し、さらにNbを添加すると、溶接熱影響
部の低温靭性が著しく改善されることが判明し
た。また、C量を0.03%以下にして、Mn、Niを
1.5%以上添加すると、焼入焼もどし処理でNbに
よる析出強化が顕著に現われ、従つて、C量を
0.03%以下に低減したにもかかわらず、引張強度
が70Kgf/mm2以上の鋼を製造することが可能であ
ることがわかつた。 本発明は、上記知見事実にもとずいて成立した
ものであつて、具体的には、母材、溶接熱影響部
の低温靭性に優れると共に引張強度の高い鋼の製
造方法を提案する。 以下、本発明方法につき鋼の組成から順次に説
明する。 まず、Cは0.005〜0.03%であるが、この成分
範囲は、本発明の特徴の一つである。溶接部靭性
は、C量を0.03%以下に低減すると著しく改善さ
れる。しかし、0.005%以下であると結晶粒が粗
大化し、靭性は損われる。 また、Ni量、Mn量が本発明の範囲でC量を
0.03%以下にすると、通常の焼入れ−焼もどし処
理でNbの析出強化が著しく、C量が0.03%以上
で同様なNbの析出強化を得ようと思うならば、
焼入温度を1100℃以上にする必要があり、結晶粒
が粗大化して実用鋼に供しえない。この理由は
Mn、Ni量を本発明範囲にすると、溶解度積の関
係から800℃の加熱時にNbが固溶され、焼もどし
時に析出し強化するためと考えられる。 次に、Siは鋼精錬時の脱酸上不可欠な元素であ
り、また安価な鋼強化元素である。しかし、0.50
%を超えると鋼の清浄度が劣化し、溶接性や靭性
の低下をもたらす。従つて、Siの添加範囲を0.50
%以下とした。 次に、Mnを1.5%以上2.5%以下に限定した。
この成分範囲は、本発明の特徴の一つである。
Mn量が1.5%以上であると、C量を0.03%以下に
して通常の焼入れ−焼もどし処理した際にNbの
析出強化が顕著となる。しかし、2.5%以上にな
ると、溶接性および靭性が損なわれるので、添加
範囲を1.5%以上2.5%以下とした。 次に、NiはMnとの相乗作用により、1.5〜4.5
%の添加範囲でC量を0.03%以下にして通常の焼
入れ−焼もどし処理した際にNbの析出強化を顕
著にならしめる。同時にNiは鋼の強度と低温靭
性を向上させる。しかし、4.5%以上の添加は経
済的に不利である。 次にMoは、鋼の強度を向上させると共に、焼
もどし脆化を防止する。そのためには、0.05%以
上の添加が必要であるが、0.5%以上になると低
温靭性を劣化させる。従つて、Moの添加範囲は
0.05%以上0.5%以下とした。 次に、NbはC量0.03%以下、Mn量を1.5%以
上、Ni量を1.5%以上とした時に、通常の焼入れ
−焼もどし処理でNbの析出強化を得るために添
加するものである。この析出強化によつてC量の
低減による強度低下を十分に補える。この効果を
得るためには、0.01%以上のNbが必要であり、
0.05%以上になると、溶接部靭性を損う。しか
し、0.05%以下であると、溶接部靭性はむしろ
Nb添加により向上する。従つて、Nb量は0.01%
以上0.05%以下とした。 次に、Nは0.01%を超えて添加すると、溶接部
靭性の劣化の原因となるので、添加量は0.01%以
下とした。 次に、Alは溶鋼の脱酸および結晶粒の微細化
に不可欠な元素であり、そのためには0.005%以
上必要である。しかし、0.10%以上になると靭
性、延性を損うので添加量は0.005%以上0.10%
以下とした。 また、以上の通りに各成分を含有させるほか、
これに加えて、V、Cr、Cuのうち、1種または
2種以上を含有させることができる。 すなわち、Cu、Crは、焼入性を高めることに
より、強度を向上させる。そのためには、Cuは
0.1%以上、Crは0.1%以上の添加が必要である。
しかし、Cuは1.5%以上、Crは2.0%以上添加す
ると、靭性は急激に劣化する。従つて、Cuは0.1
%以上1.5%以下、Cr0.1%以上2.0以下が添加範
囲である。 また、Vは析出物の形成により、強度を上昇さ
せる。そのためには、0.02%以上の添加が必要
で、0.15%以上になると、靭性が急激に劣化す
る。従つて、Vの添加範囲は0.02%以上0.15%以
下である。 そこで、以上の通りの組成の鋼材について、熱
間圧延後、800℃〜930℃の温度範囲に加熱して焼
入れし、更に、550℃〜Ac1の温度範囲に加熱し
て焼もどす。 すなわち、熱間圧延後、焼入れする際に、その
焼入れ温度が800℃以下であるとこの温度でNbが
充分に固溶せず、したがつて、焼もどし時のNb
析出物による析出強化をねらうことができない。 一方、焼入れ温度が930℃以上であると、結晶
粒の粗大化が生じる等の問題が生じ好ましくな
い。また、焼入れ後、更に焼もどす際の焼もどし
温度は、550℃〜Ac1点以下にするが、その温度
が550℃以下であると母材靭性は劣化する。ま
た、Ac1点以上となつても母材靭性は劣化し、こ
の点から550℃〜Ac1点で焼もどして母材の靭性
を向上させる。 なお、上記鋼材組成において残余は実質的に
Feから成つて、そのほかに不可避的に不純物が
混入することは許容される。 次に、実施例について説明する。 まず、表1に示す化学成分のA〜Pの16種の鋼
材を通常法によつて熱間圧延してから、820℃×
60minの条件で焼入れ、610℃×60minの条件で焼
もどし処理したところ、表1に示す機械的性質が
得られた。 なお、表1において、B、D、F、H、Jは何
れも、本発明の範囲内に属し、これらの鋼は、C
量を0.03%以下、Mn量を1.5〜2.5%、Ni量を1.5
〜4.5%とし、Nbを添加したものである。焼入れ
−焼もどし処理でNbによる強化が著しく、C量
が0.03%以下と低いにもかかわらず、強度を70Kg
f/mm2確保できることがわかる。 また、上記の鋼を用いて溶接部靭性を調べた実
験方法は、高周波誘導加熱再現熱サイクル装置を
用いて30KJ/cmボンド部相当の熱履歴を与えて
シヤルピ−衝撃試験によりvTrs(℃)を求める
ものであつて、この結果を示すと、第1図に示す
通りであつた。第1図からC量を0.03%以下にし
てNbを添加すると、溶接部靭性が著しく改善さ
れることがわかる。なお、第1図において点線は
Nb非添加鋼、実線はNb添加鋼を示し、符号イは
本発明の領域と示す。
The present invention relates to a method for manufacturing high-strength, high-toughness steel for low temperature use, and more specifically, for example, an ethylene storage tank with an operating temperature of -104°C, or an ethylene storage tank with an operating temperature of -60 to -104°C.
The present invention relates to a method for producing high-strength, high-toughness steel for low-temperature use, which is used in low-temperature regions such as ethylene fractionation towers at 0.degree. C. and has excellent low-temperature toughness at welded joints. Conventionally, ethylene-related steel materials have been ASTM
−A203 standard 3.5% Ni steel has been used. However, the tensile strength of this steel type is as low as 45 to 63 Kgf/ mm2 , and the toughness value of the heat affected zone during welding is also low. On the other hand, 9% Ni of ASTM-A553 standard containing 9% Ni
Although steel has high strength and excellent toughness in the weld heat affected zone, it is economically expensive. From the above viewpoints, the present inventors have developed an inexpensive low-temperature steel that has a tensile strength of 70 Kgf/mm 2 or more and has excellent base metal and weld heat-affected zone toughness at low temperatures of -60 to -104°C. I started. As a result, it was found that by reducing the C content to 0.03% or less and further adding Nb, the low-temperature toughness of the weld heat affected zone was significantly improved. In addition, by reducing the amount of C to 0.03% or less, Mn and Ni
If 1.5% or more is added, precipitation strengthening due to Nb will be noticeable during quenching and tempering treatment, and therefore the amount of C will be reduced.
It was found that it is possible to produce steel with a tensile strength of 70 Kgf/mm 2 or more even though the content is reduced to 0.03% or less. The present invention was established based on the above-mentioned findings, and specifically proposes a method for manufacturing steel that has excellent low-temperature toughness of the base metal and weld heat-affected zone and high tensile strength. The method of the present invention will be explained below in order, starting from the composition of the steel. First, C is 0.005 to 0.03%, and this component range is one of the characteristics of the present invention. Weld toughness is significantly improved when the C content is reduced to 0.03% or less. However, if it is less than 0.005%, the crystal grains will become coarse and toughness will be impaired. In addition, the amount of Ni and the amount of Mn are within the range of the present invention.
If the C content is 0.03% or less, Nb precipitation strengthening will be significant during normal quenching-tempering treatment, and if you want to obtain similar Nb precipitation strengthening with a C content of 0.03% or more,
It is necessary to set the quenching temperature to 1100℃ or higher, and the crystal grains become coarse, making it impossible to use as a practical steel. The reason for this is
It is thought that when the amounts of Mn and Ni are within the range of the present invention, Nb is dissolved as a solid solution during heating at 800° C. due to the solubility product relationship, and is precipitated during tempering to strengthen the steel. Next, Si is an essential element for deoxidizing during steel refining, and is also an inexpensive steel-strengthening element. But 0.50
%, the cleanliness of the steel deteriorates, leading to a decrease in weldability and toughness. Therefore, the range of Si addition is set at 0.50
% or less. Next, Mn was limited to 1.5% or more and 2.5% or less.
This component range is one of the characteristics of the present invention.
When the Mn content is 1.5% or more, precipitation strengthening of Nb becomes noticeable when the C content is reduced to 0.03% or less and normal quenching-tempering treatment is performed. However, if it exceeds 2.5%, weldability and toughness will be impaired, so the addition range was set to 1.5% or more and 2.5% or less. Next, due to the synergistic effect of Ni with Mn, 1.5 to 4.5
When the amount of C is 0.03% or less within the addition range of 0.03%, the precipitation strengthening of Nb becomes noticeable when normal quenching-tempering treatment is performed. At the same time, Ni improves the strength and low-temperature toughness of steel. However, addition of 4.5% or more is economically disadvantageous. Next, Mo improves the strength of steel and prevents tempering embrittlement. For this purpose, it is necessary to add 0.05% or more, but if it exceeds 0.5%, low temperature toughness deteriorates. Therefore, the addition range of Mo is
0.05% or more and 0.5% or less. Next, Nb is added in order to obtain Nb precipitation strengthening through normal quenching-tempering treatment when the C content is 0.03% or less, the Mn content is 1.5% or more, and the Ni content is 1.5% or more. This precipitation strengthening can sufficiently compensate for the decrease in strength due to the reduction in the amount of C. To obtain this effect, 0.01% or more Nb is required,
If it exceeds 0.05%, the toughness of the weld will be impaired. However, if it is less than 0.05%, the weld toughness is rather
Improved by adding Nb. Therefore, the amount of Nb is 0.01%
0.05% or less. Next, since adding more than 0.01% of N causes deterioration of the weld toughness, the amount added was set to 0.01% or less. Next, Al is an essential element for deoxidizing molten steel and refining crystal grains, and for this purpose, Al is required in an amount of 0.005% or more. However, if it exceeds 0.10%, toughness and ductility will be impaired, so the amount added should be 0.005% or more and 0.10%.
The following was made. In addition to containing each component as described above,
In addition to this, one or more of V, Cr, and Cu can be contained. That is, Cu and Cr improve strength by increasing hardenability. For that purpose, Cu is
It is necessary to add 0.1% or more of Cr, and 0.1% or more of Cr.
However, when Cu is added in an amount of 1.5% or more and Cr is added in an amount of 2.0% or more, the toughness rapidly deteriorates. Therefore, Cu is 0.1
% or more and 1.5% or less, and Cr 0.1% or more and 2.0 or less. Further, V increases the strength by forming precipitates. For this purpose, it is necessary to add 0.02% or more, and if it exceeds 0.15%, the toughness will deteriorate rapidly. Therefore, the addition range of V is 0.02% or more and 0.15% or less. Therefore, after hot rolling, the steel material having the above composition is heated to a temperature range of 800°C to 930°C for quenching, and further heated to a temperature range of 550°C to Ac 1 to be tempered. In other words, when quenching after hot rolling, if the quenching temperature is 800°C or lower, Nb will not be sufficiently dissolved at this temperature, and therefore Nb will be reduced during tempering.
It is not possible to aim for precipitation strengthening due to precipitates. On the other hand, if the quenching temperature is 930° C. or higher, problems such as coarsening of crystal grains occur, which is not preferable. Further, the tempering temperature during further tempering after quenching is set to 550°C to 1 point Ac, but if the temperature is 550°C or less, the toughness of the base material deteriorates. Moreover, even if the Ac is 1 point or more, the base material toughness deteriorates, and from this point, the toughness of the base material is improved by tempering at 550° C. to the Ac 1 point. In addition, in the above steel material composition, the remainder is essentially
It is made of Fe, and it is allowed that other impurities are unavoidably mixed in. Next, examples will be described. First, 16 types of steel materials with chemical compositions A to P shown in Table 1 were hot-rolled using the normal method, and then rolled at 820°C
When quenched for 60 minutes and tempered at 610°C for 60 minutes, the mechanical properties shown in Table 1 were obtained. In addition, in Table 1, B, D, F, H, and J all belong to the scope of the present invention, and these steels are C
The amount is 0.03% or less, the amount of Mn is 1.5 to 2.5%, the amount of Ni is 1.5
~4.5% and added Nb. During the quenching and tempering process, the reinforcement by Nb was significant, and despite the low C content of 0.03% or less, the strength was reduced to 70 kg.
It can be seen that f/mm 2 can be secured. In addition, the experimental method used to examine the weld toughness using the above steel was to apply a thermal history equivalent to 30 KJ/cm to the bond using a high-frequency induction heating reproduction thermal cycle device, and to evaluate vTrs (°C) using a Charpy impact test. The results were as shown in FIG. From FIG. 1, it can be seen that when Nb is added with a C content of 0.03% or less, the weld toughness is significantly improved. In addition, in Figure 1, the dotted line
The solid line indicates Nb-free steel, the solid line indicates Nb-added steel, and the symbol A indicates the area of the present invention.

【表】 なお、表1でΔTSNbとはNb添加による強度上
昇分を示す。 以上詳しく説明した通り、本発明方法は、低温
用アルミキルド鋼において、C量を0.03%以下に
低減しNbを添加し、熱間圧延後に800℃〜930℃
の温度範囲で焼入れてから550℃〜Ac1の温度範
囲に加熱焼もどして溶接部低温靭性が著しく改善
された鋼材を製造するものであつて、本発明によ
ると、Niを高めずに3.5%Ni程度であつても高強
度高靭性な鋼材を製造できる。 従つて、本発明方法によると、パイプ材等のす
ぐれた溶接部低温靭性と高強度な母材を必要とす
る用途に用いられる鋼材が安価に製造できる。
[Table] In Table 1, ΔTS Nb indicates the increase in strength due to the addition of Nb. As explained in detail above, the method of the present invention reduces the amount of C to 0.03% or less and adds Nb to aluminum killed steel for low temperature use, and then heats the steel to 800°C to 930°C after hot rolling.
According to the present invention, a steel material with significantly improved low-temperature toughness of the weld zone is produced by quenching in a temperature range of 550℃ to Ac 1 and then heating and annealing in a temperature range of 550℃ to Ac 1. High-strength, high-toughness steel materials can be manufactured even with Ni levels. Therefore, according to the method of the present invention, steel materials used for applications such as pipe materials that require excellent weld zone low-temperature toughness and a high-strength base material can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はC量と溶接部靭性との関係を示すグラ
フである。
FIG. 1 is a graph showing the relationship between the amount of C and the toughness of the weld zone.

Claims (1)

【特許請求の範囲】 1 C:0.005〜0.03%、Si:0.05〜0.50%、
Mn:1.5〜2.5%、Ni:1.5〜4.5%、Mo:0.05〜
0.5%、Nb:0.01〜0.05%、N:0.01%以下なら
びにAl:0.005〜0.10%を含んで、残部鉄および
不可避的不純物からなる鋼材を熱間圧延後、800
℃〜930℃の温度範囲に加熱して焼入れし、さら
に550℃〜Ac1の温度範囲に加熱して焼もどすこ
とを特徴とする引張強度70Kgf/mm以上を有
し、溶接部低温靭性のすぐれた低温高強度高靭性
鋼の製造方法。 2 C:0.005〜0.03%、Si:0.05〜0.50%、
Mn:1.5〜2.5%、Ni:1.5〜4.5%、Mo:0.05〜
0.5%、Nb:0.01〜0.05%、N:0.01%以下なら
びにAl:0.005〜0.10%を含むとともに、V、
Cr、Cuの1種または2種以上をV:0.02〜0.15
%、Cr:0.1〜2.0%、Cu:0.1〜1.5%の量で含有
し、残部鉄および不可避的不純物からなる鋼材を
熱間圧延後、800℃〜930℃の温度範囲に加熱して
焼入れし、さらに550℃〜Ac1の温度範囲に加熱
して焼もどすことを特徴とする引張強度70Kgf/
mm以上を有し、溶接部低温靭性のすぐれた低温
用高強度高靭性鋼の製造方法。
[Claims] 1 C: 0.005 to 0.03%, Si: 0.05 to 0.50%,
Mn: 1.5~2.5%, Ni: 1.5~4.5%, Mo: 0.05~
After hot rolling a steel material containing 0.5%, Nb: 0.01~0.05%, N: 0.01% or less, and Al: 0.005~0.10%, the balance being iron and unavoidable impurities, 800%
It has a tensile strength of 70 Kgf/mm 2 or more, and is characterized by being quenched by heating to a temperature range of ℃ to 930 ℃, and then tempered by heating to a temperature range of 550 ℃ to Ac 1 . An excellent method for producing low-temperature, high-strength, high-toughness steel. 2 C: 0.005-0.03%, Si: 0.05-0.50%,
Mn: 1.5~2.5%, Ni: 1.5~4.5%, Mo: 0.05~
0.5%, Nb: 0.01-0.05%, N: 0.01% or less and Al: 0.005-0.10%, as well as V,
V: 0.02 to 0.15 of one or more of Cr and Cu
%, Cr: 0.1~2.0%, Cu: 0.1~1.5%, with the balance consisting of iron and unavoidable impurities. After hot rolling, the steel material is heated to a temperature range of 800°C to 930°C and quenched. , and further heated to a temperature range of 550℃ to Ac 1 to achieve a tensile strength of 70Kgf/
A method for producing a high-strength, high-toughness steel for low-temperature use having a diameter of 2 mm 2 or more and excellent low-temperature toughness at welded parts.
JP2285282A 1982-02-17 1982-02-17 Manufacture of high strength high toughness steel for low temperature Granted JPS58141326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2285282A JPS58141326A (en) 1982-02-17 1982-02-17 Manufacture of high strength high toughness steel for low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2285282A JPS58141326A (en) 1982-02-17 1982-02-17 Manufacture of high strength high toughness steel for low temperature

Publications (2)

Publication Number Publication Date
JPS58141326A JPS58141326A (en) 1983-08-22
JPS6145683B2 true JPS6145683B2 (en) 1986-10-09

Family

ID=12094240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2285282A Granted JPS58141326A (en) 1982-02-17 1982-02-17 Manufacture of high strength high toughness steel for low temperature

Country Status (1)

Country Link
JP (1) JPS58141326A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103614528A (en) * 2013-12-12 2014-03-05 攀枝花钢城集团瑞矿工业有限公司 Forging method of producing steel balls with phi 150-180mm by adopting round steel with phi 110mm
CN109280848A (en) * 2018-10-17 2019-01-29 东北大学 A kind of low-nickel type LNG tank steel plate and preparation method thereof

Also Published As

Publication number Publication date
JPS58141326A (en) 1983-08-22

Similar Documents

Publication Publication Date Title
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JPS629646B2 (en)
JP6684353B2 (en) Thick plate steel excellent in low temperature toughness and hydrogen induced cracking resistance, and method of manufacturing the same
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP5028761B2 (en) Manufacturing method of high strength welded steel pipe
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPS6059018A (en) Production of cu-added steel having excellent weldability and low-temperature toughness
JP3319222B2 (en) Manufacturing method of high chromium ferritic steel with excellent creep characteristics of welded joint
JPS6210212A (en) Production of bend pipe
JPS6145683B2 (en)
JPS59136418A (en) Preparation of high toughness and high strength steel
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JPH0227407B2 (en) YOSETSUSEINISUGURETAKOKYODOKONOSEIZOHOHO
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JP2003342638A (en) Process for manufacturing high-strength bent tube
JPS6028885B2 (en) UOE steel pipe heat treatment method that yields high toughness weld metal
JPS62149845A (en) Cu precipitation type steel products having excellent toughness of welded zone and its production
JPS5913022A (en) Production of thick walled and unnormalized 50kg/cm2 class steel having high toughness and high resistance to softening of welded joint
JPS6337167B2 (en)
JPS60149722A (en) Manufacture of cu added steel having superior toughness at low temperature in weld zone
JPH101737A (en) Low alloy heat resistant steel, excellent in high temperature strength and toughness, and its production
JPH05331539A (en) Manufacture of low yield ratio high strength and high roughness steel excellent in weldability
JPH03140412A (en) Production of steel having high strength and high toughness
JP4048985B2 (en) Manufacturing method of high-strength steel sheet