JP2898455B2 - Manufacturing method of high strength steel with excellent weldability - Google Patents

Manufacturing method of high strength steel with excellent weldability

Info

Publication number
JP2898455B2
JP2898455B2 JP35121191A JP35121191A JP2898455B2 JP 2898455 B2 JP2898455 B2 JP 2898455B2 JP 35121191 A JP35121191 A JP 35121191A JP 35121191 A JP35121191 A JP 35121191A JP 2898455 B2 JP2898455 B2 JP 2898455B2
Authority
JP
Japan
Prior art keywords
less
strength
weldability
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35121191A
Other languages
Japanese (ja)
Other versions
JPH05163527A (en
Inventor
尚志 井上
康児 田辺
一成 徳納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP35121191A priority Critical patent/JP2898455B2/en
Publication of JPH05163527A publication Critical patent/JPH05163527A/en
Application granted granted Critical
Publication of JP2898455B2 publication Critical patent/JP2898455B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶接性に優れた建築用
高張力鋼の製造方法に係り、降伏比を低下し、さらにエ
レクトロスラグ溶接などの大入熱溶接時の溶接熱影響部
(以下HAZ)靱性に優れた780MPa級高張力鋼
(以下HT−80)の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a high tensile strength steel for architectural use having excellent weldability. The present invention relates to a method for producing a 780 MPa class high strength steel (hereinafter, referred to as HT-80) having excellent toughness.

【0002】[0002]

【従来の技術】建築構造物は高層化されており、580
MPa級高張力鋼はすでに実用化されているが、近い将
来さらに高強度の極厚材が使用されることは必至と考え
られる。しかし現状のHT−80では降伏比が高いこ
と、仮付けなどの小入熱溶接時に予熱が必要なこと、
エレクトロスラグ溶接などの大入熱溶接時のHAZ靱
性が劣ることなどの問題がある。また、本発明者等は、
特開昭62−142723号公報に示すように高張力鋼
の製造手段を検討し、低Cにして且つ、焼入れ性の指標
となる成分による焼入臨界直径Diを35〜65とした
成分系で、冷間曲げ加工を行った時に生じる加工硬化
と、その後の時効熱処理によって生じる時効硬化とを利
用して780MPa以上の強度確保を行うことを可能と
し、これによって溶接ボンド部靱性を従来のHT−80
に比べて格段に改善した。しかし、上記発明は冷間加
工を伴ってHT−80としていること、降伏比が高い
こと、HAZ靱性に対してもエレクトロスラグ溶接の
ような大入熱まで考えられていないことなどからさらに
改良が必要である。
2. Description of the Related Art Building structures are being multi-storey and have a height of 580.
Although MPa-class high-strength steels have already been put into practical use, it is considered inevitable that ultrahigh-strength materials with higher strength will be used in the near future. However, the current HT-80 has a high yield ratio and requires preheating during small heat input welding such as tacking.
There are problems such as inferior HAZ toughness during large heat input welding such as electroslag welding. In addition, the present inventors,
As disclosed in Japanese Patent Application Laid-Open No. 62-142723, a means for producing high-strength steel was studied, and a component system in which the quenching critical diameter Di was 35 to 65 due to a component serving as an index of quenchability was investigated. By using work hardening generated during cold bending and age hardening generated by subsequent aging heat treatment, it is possible to secure a strength of 780 MPa or more, and thereby, the toughness of the weld bond portion can be reduced by the conventional HT- 80
It was much improved compared to. However, the above-mentioned invention is further improved from the fact that HT-80 is used with cold working, the yield ratio is high, and the HAZ toughness is not considered even for large heat input such as electroslag welding. is necessary.

【0003】[0003]

【発明が解決しようとする課題】本発明はHT−80に
おいて、低降伏比でしかも溶接性及びエレクトロスラグ
溶接時のHAZ靱性に優れた新規な高張力鋼の製造方法
を提供することを目的とするものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a new high-strength steel having a low yield ratio and excellent weldability and HAZ toughness during electroslag welding in HT-80. Is what you do.

【0004】[0004]

【課題を解決するための手段】本発明者等は、先ず高張
力鋼の溶接性を580MPa級の溶接材料を用いた炭酸
ガス溶接で斜めy型溶接割れ試験で検討した結果、P=
C+(Mn+Cr+Mo+V)/20を0.20%以下
にしておけば、常温で割れが発生しないことをつきとめ
た。この結果Cu,Nbの析出硬化を利用した高張力鋼
は低P値で強度を得ることができ、溶接性に優れたHT
−80を得ることができる。次にエレクトロスラグ溶接
時のHAZ靱性について検討した。従来のHT−80で
はHAZの組織が旧γ粒界に大きな初析フェライトを、
また粒内には島状マルテンサイトを伴った粗粒のアッパ
ーベイナイトとなって靱性が低下していることをつきと
めた。これに対し粒界フェライト抑制のためBを添加
する。Ti及びNを微量添加して旧γ粒を小さくす
る。さらに島状マルテンサイト組織を抑制するためC
及びSi量を規制することによって改善することを見い
だした。また強度と低降伏比を両立するため鋼片の加熱
温度をTiNが溶解しない範囲で高温にし、圧延後水冷
した後、再度780〜830℃に加熱水冷し、さらに5
00〜550℃に加熱して時効熱処理を行えば、両立が
可能なことをつきとめたことにある。
Means for Solving the Problems The present inventors first examined the weldability of high strength steel by carbon dioxide welding using a 580 MPa class welding material in an oblique y-type welding crack test.
It has been found that if C + (Mn + Cr + Mo + V) / 20 is set to 0.20% or less, no crack occurs at room temperature. As a result, a high-strength steel utilizing the precipitation hardening of Cu and Nb can obtain strength at a low P value and has excellent weldability.
-80 can be obtained. Next, the HAZ toughness during electroslag welding was examined. In the conventional HT-80, the HAZ structure has large proeutectoid ferrite at the former γ grain boundary,
It was also found that the grains were coarse bainite with island martensite and reduced toughness. On the other hand, B is added to suppress grain boundary ferrite. A small amount of Ti and N is added to reduce old γ grains. In order to further suppress the island-like martensite structure, C
And that it is improved by regulating the amount of Si. Further, in order to achieve both strength and a low yield ratio, the heating temperature of the steel slab is set to a high temperature within a range in which TiN does not dissolve, and after rolling, water-cooling is performed.
It has been found that compatibility can be achieved by performing aging heat treatment by heating to 00 to 550 ° C.

【0005】この結果上記3者を同時に満足できる新規
な高張力鋼の製造方法を確立した。すなわち、重量
(%)で、C:0.06〜0.10%、Si:0.1%
以下、Mn:0.8〜1.5%、Ni:0.5〜1.2
%、Cu:1.0〜2.0%、Cr:0.2〜0.6
、Mo:0.2〜0.5%、Al:0.01〜0.0
5%、Nb:0.02%以下、V:0.1%以下、T
i:0.03%以下、B:0.002%以下、N:0.
004〜0.007%を含有し、しかもC,Mn,C
r,Mo,Vによる溶接性パラメーターPが0.20%
以下を満足し、その他不可避不純物からなる鋼片を10
00℃〜1150℃に加熱し、圧延後水冷し、さらに7
80〜830℃の温度に加熱してのち水冷し、さらに加
熱温度500〜550℃で時効熱処理を施すことを特徴
とした溶接性に優れた高張力鋼の製造方法である。 但し、P=C+(Mn+Cr+Mo+V)/20
As a result, a new method of manufacturing a high-strength steel which can satisfy the above three conditions at the same time has been established. That is, in weight (%), C: 0.06 to 0.10%, Si: 0.1%
Hereinafter, Mn: 0.8 to 1.5%, Ni: 0.5 to 1.2
%, Cu: 1.0 to 2.0%, Cr: 0.2 to 0.6
% , Mo: 0.2-0.5%, Al: 0.01-0.0
5%, Nb: 0.02% or less, V: 0.1% or less, T
i: 0.03% or less, B: 0.002% or less, N: 0.
004-0.007%, and C, Mn, C
The weldability parameter P by r, Mo, V is 0.20%
10
Heated to 00 ° C to 1150 ° C, rolled and cooled with water.
This is a method for producing a high-strength steel excellent in weldability, characterized by heating to a temperature of 80 to 830 ° C, water-cooling, and further performing aging heat treatment at a heating temperature of 500 to 550 ° C. However, P = C + (Mn + Cr + Mo + V) / 20

【0006】[0006]

【作用】以下に本発明を詳細に説明する。先ず、溶接性
及びエレクトロスラグ溶接時のHAZ靱性が優れている
ように、鋼材成分組成として、C:0.06〜0.10
%、Si:0.1%以下、Mn:0.8〜1.5%、N
i:0.5〜1.2%、Cu:1.0〜2.0%、
r:0.2〜0.6%、Mo:0.2〜0.5%、A
l:0.01〜0.05%、Nb:0.02%以下、
V:0.1%以下、Ti:0.03%以下、B:0.0
02%以下、N:0.004〜0.007%を含有し、
しかもC,Mn,Cr,Mo,Vによる溶接性パラメー
ターPが0.20%以下を満足し、残部がFeからなる
鋼を対象とするものである。 但し、P=C+(Mn+Cr+Mo+V)/20
The present invention will be described below in detail. First, as the steel material composition, C: 0.06 to 0.10 so that the weldability and the HAZ toughness during electroslag welding are excellent.
%, Si: 0.1% or less, Mn: 0.8 to 1.5%, N
i: 0.5 to 1.2%, Cu: 1.0 to 2.0%, C
r: 0.2 to 0.6% , Mo: 0.2 to 0.5%, A
l: 0.01 to 0.05%, Nb: 0.02% or less,
V: 0.1% or less, Ti: 0.03% or less, B: 0.0
Not more than 02%, N: 0.004 to 0.007%,
In addition, the present invention is intended for a steel which has a weldability parameter P of C, Mn, Cr, Mo, and V of 0.20% or less, and the balance is Fe. However, P = C + (Mn + Cr + Mo + V) / 20

【0007】本発明においてこのように化学成分を限定
したのは次の理由による。まずCは0.06%未満では
強度が得られない。また0.10%超では溶接HAZ靱
性が低下するため、0.06〜0.10%とした。Si
は製鋼時の脱酸元素として必要であるが、0.1%を超
えるとHAZ靱性が低下するので0.1%以下とした。
Mnは焼入れ性確保に有効な元素で、Cuの時効硬化時
間を短時間に移行する特性も有しているため、時効硬化
を利用した鋼に有効であり、0.8%以上の添加が効果
的である。しかし、1.5%超の添加は溶接性及びHA
Z靱性が劣化するので0.8〜1.5%とした。
In the present invention, the chemical components are limited as described above for the following reasons. First, if C is less than 0.06%, strength cannot be obtained. Further, if it exceeds 0.10%, the weld HAZ toughness decreases, so the content was set to 0.06 to 0.10%. Si
Is required as a deoxidizing element during steelmaking, but if it exceeds 0.1%, the HAZ toughness is reduced.
Mn is an element effective in ensuring hardenability, and also has the property of shifting the age hardening time of Cu to a short time. Therefore, it is effective for steel utilizing age hardening, and the addition of 0.8% or more is effective. It is a target. However, the addition of more than 1.5% is not sufficient for weldability and HA.
Since the Z toughness deteriorates, the content is set to 0.8 to 1.5%.

【0008】Niは母材及び溶接ボンド部靱性を向上さ
せるのに有効であるが、0.5%未満ではその効果は小
さく、一方、1.2%超含有しても、効果が飽和するこ
とからその上限を1.2%とした。Cuは時効硬化の顕
著な元素で時効硬化を利用する鋼に有効であり、1.0
〜2.0%添加が最も効果的である。1.0%未満では
時効硬化が小さく、2.0%超では圧延時に割れを発生
することからその量を1.0〜2.0%とした。Crは
焼戻し軟化抵抗を高め強度の増大に有効であり、0.2
%未満では十分な強度が得られない。また、0.6%超
の添加は溶接性及びHAZ靱性を低下させる。従って、
その量を0.2〜0.6%とした。また、MoはCrと
同様に、焼戻し軟化抵抗を高め強度の増大に有効であ
り、0.2%未満では十分な強度が得られない。また、
0.5%超の添加は溶接性及びHAZ靱性を低下させ
る。従って、その量を0.2〜0.5%とした。
[0008] Ni is effective in improving the toughness of the base material and the weld bond, but if its content is less than 0.5%, its effect is small, but if it exceeds 1.2%, its effect is saturated. Therefore, the upper limit was set to 1.2%. Cu is a remarkable age hardening element and is effective for steel utilizing age hardening.
The addition of ~ 2.0% is most effective. If it is less than 1.0%, the age hardening is small, and if it is more than 2.0%, cracks occur during rolling. Cr is
It is effective in increasing tempering softening resistance and increasing strength.
%, Sufficient strength cannot be obtained. More than 0.6%
Addition decreases the weldability and HAZ toughness. Therefore,
The amount was set to 0.2 to 0.6%. Also, Mo and Cr
Similarly, it is effective in increasing the temper softening resistance and increasing the strength, and if it is less than 0.2%, sufficient strength cannot be obtained. Also,
Addition of more than 0.5% reduces weldability and HAZ toughness. Therefore, the amount was set to 0.2 to 0.5%.

【0009】さらに、Alは脱酸に有効であるのみでな
く、Nを固定してAlNとなって結晶粒細粒化の役目も
果たす有効な合金元素であるため下限を0.01%と
し、一方、0.05%を超えて含有してもその効果が飽
和することから上限を0.05%とした。NbはCuと
同様時効硬化の顕著な元素であるが、0.02%を超え
るとHAZ靱性を低下させるので、0.02%以下とし
た。VもNbと同様時効硬化の顕著な元素であるが、
0.1%を超えると溶接性及びHAZ靱性を低下させる
ので0.1%以下とした。TiはNを固定する有効な元
素であり、TiNが溶接HAZ部においてγ粒微細化に
寄与してHAZ部靱性を改善する。その量は0.03%
で十分なため、上限を0.03%とした。Bはごく微量
で鋼材の焼入性を向上し、またHAZの旧γ粒界の粗大
フェライト生成を抑制してHAZ靱性を向上させる。そ
の量は0.002%で十分なので、上限を0.002%
とした。さらに、Nは先に述べたTiと結合してTiN
となり、HAZ靱性向上に必須である。そのため0.0
04%以上必要であるが、多いとBと結合してBの効果
を低減するので上限を0.007%とした。
Further, Al is not only effective for deoxidation, but also an effective alloying element that fixes N to become AlN and also plays a role of grain refinement, so the lower limit is made 0.01%. On the other hand, if the content exceeds 0.05%, the effect is saturated, so the upper limit is set to 0.05%. Nb is a remarkable element of age hardening like Cu, but if it exceeds 0.02%, the HAZ toughness is reduced, so Nb is made 0.02% or less. V is a remarkable element of age hardening like Nb,
If it exceeds 0.1%, the weldability and the HAZ toughness decrease, so the content is made 0.1% or less. Ti is an effective element for fixing N, and TiN contributes to refinement of γ grains in the welded HAZ to improve the toughness of the HAZ. The amount is 0.03%
Is sufficient, the upper limit is made 0.03%. B improves the hardenability of the steel material in a very small amount and suppresses the formation of coarse ferrite at the former γ grain boundary of the HAZ, thereby improving the HAZ toughness. 0.002% is sufficient, so the upper limit is 0.002%
And Further, N combines with Ti described above to form TiN.
Which is essential for improving the HAZ toughness. Therefore 0.0
It is required to be 04% or more, but if it is too much, it binds to B and reduces the effect of B, so the upper limit was made 0.007%.

【0010】以上が本発明の対象とする鋼の基本成分で
あるが、さらに本発明において溶接性を向上させるた
め、C,Mn,Cr,Mo,Vによる溶接性パラメータ
ーPが0.20%以下を満たすことを骨子の一つとして
いる。先にも述べたように580MPa級の溶接材料を
用いた炭酸ガス溶接で斜めy型溶接割れ試験で検討した
結果、P=C+(Mn+Cr+Mo+V)/20を0.
20%以下にしておけば、常温で割れが発生しないこと
から、P値の上限を0.20%とした。
[0010] The above are the basic components of the steel targeted by the present invention. In order to further improve the weldability in the present invention, the weldability parameter P based on C, Mn, Cr, Mo, V is 0.20% or less. Satisfying is one of the main points. As described above, as a result of examining carbon dioxide gas welding using a 580 MPa class welding material in an oblique y-type welding crack test, P = C + (Mn + Cr + Mo + V) / 20 was set to 0.1.
If the content is set to 20% or less, no crack occurs at room temperature. Therefore, the upper limit of the P value is set to 0.20%.

【0011】次に本発明による製造条件について述べる
と、前記成分の鋼片を1000℃〜1150℃に加熱
し、圧延後水冷し、さらに780〜830℃の温度に加
熱してのち水冷し、さらに加熱温度500〜550℃で
時効熱処理を施すものである。まず熱間圧延時の加熱温
度を1150℃以下とするのは1150℃を超えると、
鋳造時に生成したTiNが粗大化するためである。また
下限を1000℃としたのは、Cu,Nbなどの析出元
素の溶体化を目的としたためであって1000℃未満で
は溶体化が不十分となり、後の時効処理による強度の上
昇が十分望めなくなる。
Next, the production conditions according to the present invention will be described. The slab of the above-mentioned composition is heated to 1000 ° C. to 1150 ° C., rolled, cooled with water, further heated to a temperature of 780 to 830 ° C., and then cooled with water. Aging heat treatment is performed at a heating temperature of 500 to 550 ° C. First, the heating temperature during hot rolling is set to 1150 ° C. or less.
This is because TiN generated during casting becomes coarse. The lower limit is set to 1000 ° C. for the purpose of solutionizing precipitated elements such as Cu and Nb. If the temperature is lower than 1000 ° C., the solution becomes insufficient, and the increase in strength due to the subsequent aging treatment cannot be sufficiently expected. .

【0012】次に圧延後水冷するのは、圧延後水冷しな
いと粒の大きいフェライトとアッパーベイナイトの混合
組織となり、強度が低下するためである。その後780
〜830℃に加熱して水冷するのは、この温度に加熱す
ることによってミクロ偏析部が部分的にオーステナイト
化し、その部分は拡散によってCが濃化し、その後の水
冷によってさらに硬いマルテンサイト組織となる。一方
オーステナイト化しない部分は高温の焼戻しされた組織
となるため軟化する。これによって降伏比の著しい低下
が図れる。この温度が780℃以下ではオーステナイト
化が不十分であり、また830℃を超えるとオーステナ
イト化する領域が過多となり初期の目的を達成できない
ので、780〜830℃とした。さらに、時効熱処理は
Cu,Nb,Vの析出硬化による強度上昇と、先の熱処
理で生成した硬いマルテンサイト組織の焼戻し処理を兼
ねたもので、加熱温度500℃未満では十分な析出が得
られず、また550℃超では過時効となって強度が低下
するため、その温度を500〜550℃とした。
Next, the reason for water cooling after rolling is that if not water cooled after rolling, a mixed structure of ferrite and upper bainite having a large grain size is formed, and strength is reduced. Then 780
Heating to 830 ° C. and cooling with water is such that heating at this temperature partially austenites the micro-segregated portion, and C is concentrated in that portion by diffusion, and becomes a harder martensite structure by subsequent water cooling. . On the other hand, the portion that does not become austenite is softened because it has a high-temperature tempered structure. As a result, the yield ratio can be significantly reduced. If the temperature is 780 ° C or lower, austenitization is insufficient, and if it exceeds 830 ° C, the austenitizing region is excessive and the initial purpose cannot be achieved. Furthermore, the aging heat treatment combines the strength increase due to the precipitation hardening of Cu, Nb, and V, and the tempering treatment of the hard martensite structure generated by the previous heat treatment. If the heating temperature is lower than 500 ° C., sufficient precipitation cannot be obtained. If the temperature exceeds 550 ° C., overaging occurs and the strength is reduced.

【0013】以下、本発明の効果を実施例によりさらに
具体的に示す。
Hereinafter, the effects of the present invention will be more specifically described with reference to examples.

【実施例】表1に示すA,B,C,D,Eの化学成分の
鋼を100ton転炉で溶製し、連続鋳造で厚さ300
mmのスラブを作り、これ等の各スラブを各々1〜3に
製造条件を変えて板厚100mmの鋼板とした。これら
の鋼板について1/4tからJIS4号引張試験片を採
取して引張特性を調査し、また580MPa級の溶接材
料による炭酸ガス溶接の斜めy型割れ試験を行った。さ
らにエレクトロスラグ溶接のHAZ靱性についてJIS
4号フルサイズシャルピー試験片により0℃の吸収エネ
ルギーを求めた。
EXAMPLES Steel having the chemical composition of A, B, C, D and E shown in Table 1 was melted in a 100 ton converter and continuously cast to a thickness of 300.
mm slabs were manufactured, and each of these slabs was made into a steel plate having a thickness of 100 mm by changing the manufacturing conditions to 1 to 3 respectively. From these steel sheets, JIS No. 4 tensile test pieces were sampled from 1/4 t to examine the tensile properties, and an oblique y-type crack test of carbon dioxide welding using a 580 MPa class welding material was performed. Furthermore, JIS regarding the HAZ toughness of electroslag welding
Absorbed energy at 0 ° C. was determined using a No. 4 full-size Charpy test piece.

【0014】A−1、B−1及びC−1は本発明法で引
張強度(TS)780MPa以上、降伏比85%以下、
y型割れ試験の割れ停止予熱温度20℃以下を満足し、
さらにエレクトロスラグ溶接のHAZ靱性20J以上で
あった。A−2では加熱温度が高いこと及び再熱処理温
度が低いため降伏比が85%を超え、またHAZ部靱性
が低下した。A−3では加熱温度が低く、圧延後空冷し
たためTSが650MPaと低かった。B−2では再加
熱温度が高いためTSは900MPaと高い値が得られ
たが、降伏比が96%と非常に高い値となった。B−3
では再加熱温度及び時効熱処理温度が低いためTSが6
80MPaと低く、降伏比も92%と高かった。
A-1, B-1 and C-1 have a tensile strength (TS) of 780 MPa or more and a yield ratio of 85% or less according to the method of the present invention.
Satisfies crack stop preheating temperature of 20 ° C or less in y-type crack test,
Further, the HAZ toughness of electroslag welding was 20 J or more. In A-2, since the heating temperature was high and the reheating temperature was low, the yield ratio exceeded 85%, and the toughness of the HAZ portion was reduced. In the case of A-3, the heating temperature was low, and air-cooling was performed after rolling, so that the TS was low at 650 MPa. In B-2, since the reheating temperature was high, a high TS value of 900 MPa was obtained, but the yield ratio was a very high value of 96%. B-3
TS is 6 because the reheating temperature and the aging heat treatment temperature are low.
The yield was as low as 80 MPa and the yield ratio was as high as 92%.

【0015】C−2では再加熱を省き、さらに時効熱処
理温度が高いため降伏比が97%と異常に高かった。C
−3では圧延後空冷し、後の熱処理を省いたのでTSが
580MPaにしか達しなかった。D鋼はC,Si,A
lが高く、Cuが低く、Nb,Tiが添加されていな
い。またP値が高く溶接性が劣る。またC,Siが高く
Tiも添加されてないのでHAZ靱性も低い。さらにD
−1に示すようにこの材料を圧延後空冷して890℃で
再熱処理した場合は降伏比が高く、またD−2に示すよ
うに圧延後水冷して再熱処理を省いても同様の結果であ
った。さらにD−3に示すように水冷して、770℃で
再熱処理した場合、降伏比は低下したがTSが750M
Paにしか達さなかった。E鋼はC,Nが低く、Si,
Cr,Nbが高く、V,Ti,Bが添加されていない。
このため溶接性は非常に優れているが、E−1,E−
2,E−3共TSが低くまたHAZ部靱性が悪い。
In C-2, reheating was omitted, and the aging heat treatment temperature was too high, so that the yield ratio was abnormally high at 97%. C
In the case of -3, air-cooling was performed after rolling, and subsequent heat treatment was omitted, so that TS reached only 580 MPa. D steel is C, Si, A
1 is high, Cu is low, and Nb and Ti are not added. Also, the P value is high and the weldability is poor. Further, since C and Si are high and Ti is not added, the HAZ toughness is low. And D
The yield ratio is high when this material is air-cooled after rolling and reheated at 890 ° C. as shown in -1, and the same result is obtained even if the reheat treatment is omitted after rolling and water-cooled as shown in D-2. there were. Further, as shown in D-3, when water-cooled and reheated at 770 ° C., the yield ratio was reduced, but TS was 750 M
Pa was reached only. E steel has low C and N and Si,
Cr and Nb are high, and V, Ti and B are not added.
Therefore, the weldability is very good, but E-1 and E-
Both E-2 and E-3 have low TS and poor HAZ toughness.

【0016】[0016]

【表1A】 [Table 1A]

【0017】[0017]

【表1B】 [Table 1B]

【0018】[0018]

【発明の効果】上記実施例からも明らかなごとく本発明
によれば、強度、低降伏比、さらに溶接性、エレクトロ
スラグ溶接HAZ部靱性を従来材に比べ格段に改善した
高張力鋼を提供することが可能となるものであり、産業
上その効果は極めて顕著である。
According to the present invention, it is apparent from the above embodiments that the present invention provides a high-strength steel in which the strength, the low yield ratio, the weldability, and the toughness of the HAZ portion of the electroslag welding are significantly improved as compared with the conventional material. The effect is extremely remarkable in industry.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−79716(JP,A) 特開 昭64−52023(JP,A) 特開 平3−162518(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21D 8/00 - 8/02 C21D 6/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-79716 (JP, A) JP-A-64-52023 (JP, A) JP-A-3-162518 (JP, A) (58) Field (Int.Cl. 6 , DB name) C21D 8/00-8/02 C21D 6/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量(%)で C:0.06〜0.10% Si:0.1%以下 Mn:0.8〜1.5% Ni:0.5〜1.2% Cu:1.0〜2.0%Cr:0.2〜0.6% Mo:0.2〜0.5% Al:0.01〜0.05% Nb:0.02%以下 V:0.1%以下 Ti:0.03%以下 B:0.002%以下 N:0.004〜0.007% を含有し、しかもC,Mn,Cr,Mo,Vによる溶接
性パラメーターPが0.20%以下を満足し、その他不
可避不純物からなる鋼片を1000℃〜1150℃に加
熱し、圧延後水冷し、さらに780〜830℃の温度に
加熱してのち水冷し、さらに加熱温度500〜550℃
で時効熱処理を施すことを特徴とした溶接性に優れた高
張力鋼の製造方法。 但し、P=C+(Mn+Cr+Mo+V)/20
1. In weight (%) C: 0.06 to 0.10% Si: 0.1% or less Mn: 0.8 to 1.5% Ni: 0.5 to 1.2% Cu: 1 0.0 to 2.0% Cr: 0.2 to 0.6% Mo: 0.2 to 0.5% Al: 0.01 to 0.05% Nb: 0.02% or less V: 0.1% Ti: 0.03% or less B: 0.002% or less N: 0.004 to 0.007%, and the weldability parameter P by C, Mn, Cr, Mo, V is 0.20% or less. The steel slab composed of other unavoidable impurities is heated to 1000 ° C. to 1150 ° C., rolled and water-cooled, further heated to a temperature of 780 to 830 ° C., then water-cooled, and further heated to 500 to 550 ° C.
A method for producing high-strength steel with excellent weldability, characterized by subjecting to aging heat treatment. However, P = C + (Mn + Cr + Mo + V) / 20
JP35121191A 1991-12-13 1991-12-13 Manufacturing method of high strength steel with excellent weldability Expired - Lifetime JP2898455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35121191A JP2898455B2 (en) 1991-12-13 1991-12-13 Manufacturing method of high strength steel with excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35121191A JP2898455B2 (en) 1991-12-13 1991-12-13 Manufacturing method of high strength steel with excellent weldability

Publications (2)

Publication Number Publication Date
JPH05163527A JPH05163527A (en) 1993-06-29
JP2898455B2 true JP2898455B2 (en) 1999-06-02

Family

ID=18415805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35121191A Expired - Lifetime JP2898455B2 (en) 1991-12-13 1991-12-13 Manufacturing method of high strength steel with excellent weldability

Country Status (1)

Country Link
JP (1) JP2898455B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435465B1 (en) * 1999-12-20 2004-06-10 주식회사 포스코 A METHOD FOR MANUFACTURING YS 63kgf/㎟ GRADE THICK STEEL SHEET WITH SUPERIOR LOW TEMPERATURE TOUGHNESS
US6558483B2 (en) 2000-06-12 2003-05-06 Sumitomo Metal Industries, Ltd. Cu precipitation strengthened steel
JP4976905B2 (en) * 2007-04-09 2012-07-18 株式会社神戸製鋼所 Thick steel plate with excellent HAZ toughness and base metal toughness
JP4964007B2 (en) * 2007-04-12 2012-06-27 株式会社神戸製鋼所 Thick steel plate with little material anisotropy and excellent HAZ toughness and low temperature base metal toughness

Also Published As

Publication number Publication date
JPH05163527A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
JP4730102B2 (en) Low yield ratio high strength steel with excellent weldability and manufacturing method thereof
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP2012122111A (en) Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JP5028785B2 (en) High toughness high tensile steel sheet and method for producing the same
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP5151693B2 (en) Manufacturing method of high-strength steel
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP5200600B2 (en) Manufacturing method of high strength and low yield ratio steel
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP2898455B2 (en) Manufacturing method of high strength steel with excellent weldability
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP4951938B2 (en) Manufacturing method of high toughness high tensile steel sheet
JP3863413B2 (en) High toughness high tension non-tempered thick steel plate and manufacturing method thereof
JP4433844B2 (en) Method for producing high strength steel with excellent fire resistance and toughness of heat affected zone
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JP3661510B2 (en) High strength thick steel plate with excellent strain aging resistance and method for producing the same
JP2582147B2 (en) Method for producing low temperature nickel steel sheet with excellent weld toughness
JP4174041B2 (en) Method for producing welding steel having a tensile strength of 1150 MPa or more
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13