JPS6139461A - Manufacture of enclosed alkaline battery - Google Patents

Manufacture of enclosed alkaline battery

Info

Publication number
JPS6139461A
JPS6139461A JP59160581A JP16058184A JPS6139461A JP S6139461 A JPS6139461 A JP S6139461A JP 59160581 A JP59160581 A JP 59160581A JP 16058184 A JP16058184 A JP 16058184A JP S6139461 A JPS6139461 A JP S6139461A
Authority
JP
Japan
Prior art keywords
hydrogen
battery
case
negative electrode
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59160581A
Other languages
Japanese (ja)
Inventor
Motoi Kanda
基 神田
Yuji Sato
優治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59160581A priority Critical patent/JPS6139461A/en
Publication of JPS6139461A publication Critical patent/JPS6139461A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To make a part of the negative pole consisting of a hydrogen occluded alloy chargeable so effectively during a manufacturing process, by letting the negative pole inside a car occlude hydrogen under a hydrogen ambience, while injecting an electrolyte into the case under the hydrogen ambience, and successively sealing a mouth of the cell case. CONSTITUTION:A case 9 in which an elementary cell is inset is put into a pressure vessel 1 and, after exhaust takes place with a vacuum pump, hydrogen gas is led into this vessel 1. Successively, hydrogen is drained out of the vessel 1 and, after hydrogen pressure inside the vessel 1 is made to drop to the extent of atmospheric pressure, an electrolyte is injected in the cell case 9 as much as necessary. Next, with an inert gas led into the pressure vessel 1, the cell case 9 is taken out after the hydrogen gas entirely exhausted, sealing it at once. The amount of hydrogen discharged out of a hydrogen occluded alloy cathode during whiles from an intake of the inert gas to sealing is an negligible as small because the cathode is wetted with the electrolyte, thus a battery in a sound condition is manufacturable.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は水素吸蔵合金を負極とする密閉望アルカリ蓄電
池の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a sealed alkaline storage battery using a hydrogen storage alloy as a negative electrode.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

負極活物質に水素、正極に金属酸化物を夫々用いたアル
カリ蓄電池は、金属酸化物・水素蓄電池と呼ばれ、高エ
ネルギ密度電池として最近、注目されている。しかしな
がら、かかる電池は高圧の水素ガスを使用する必要があ
る。このため、負極に水素吸蔵合金からなる電極を使用
することが考えられ、最近になっていくつ、かの研究が
みられるようになってきた。
Alkaline storage batteries that use hydrogen for the negative electrode active material and metal oxide for the positive electrode are called metal oxide-hydrogen storage batteries, and have recently attracted attention as high energy density batteries. However, such batteries require the use of high pressure hydrogen gas. For this reason, it has been considered to use an electrode made of a hydrogen-absorbing alloy as the negative electrode, and several studies have recently begun to appear.

水素吸蔵合金の水素との反応は次式〔1〕のように考え
られる。
The reaction of the hydrogen storage alloy with hydrogen can be considered as shown in the following formula [1].

M + H2: M (Hatm)2      [1
〕ここで、Mは水素吸蔵合金、M (Hatm)2は水
素が原子状水素としてMの中に2個人つ′たことを示す
。この水素吸蔵合金をアルカリ水溶液中で電極として用
いた場合は、次式〔2〕の反応が起こるものと考えられ
ている。
M + H2: M (Hatm)2 [1
] Here, M is a hydrogen storage alloy, and M (Hatm)2 indicates that two hydrogen atoms are present in M as atomic hydrogen. When this hydrogen storage alloy is used as an electrode in an alkaline aqueous solution, it is thought that the reaction of the following formula [2] occurs.

即ち、ここでは気体の水素は関与していないので、水素
吸蔵合金を負極に使用することにより、基本的には電池
内圧を考慮する必要のない電池が作製可能でちる。しか
しながら、前記〔2〕式で得られるM (Hatm)2
は1前記〔1〕式に示されるよりに気体状水素と平衡関
係におる。
That is, since gaseous hydrogen is not involved here, by using a hydrogen storage alloy for the negative electrode, it is basically possible to fabricate a battery that does not require consideration of battery internal pressure. However, M (Hatm)2 obtained from the above formula [2]
is in an equilibrium relationship with gaseous hydrogen as shown in equation [1] above.

したがって、現実には平衡水素圧の低い水素吸蔵合金を
負極に使用する必要がある。
Therefore, in reality, it is necessary to use a hydrogen storage alloy with a low equilibrium hydrogen pressure for the negative electrode.

ところで、密閉型アルカリ蓄電池を組立てる場合には、
その中に入れる正・負極の電極容量は正極よフも負極の
方が大きくするのが普通である。この時、負極の容量の
過剰分のうちの一部は充電状態とし、残シの部分は未充
電状態になりていることが必要である。かかる状態が、
電池として健全な状態であシ、それが実現されて始めて
電池は正常に動作し、長いサイクル寿命を得ることがで
きる。
By the way, when assembling a sealed alkaline storage battery,
Normally, the capacitance of the positive and negative electrodes inserted into the device is larger for the negative electrode than for the positive electrode. At this time, it is necessary that a part of the excess capacity of the negative electrode be in a charged state, and the remaining part be in an uncharged state. Such a state is
Only when a battery is in a healthy condition can it operate normally and have a long cycle life.

上述した健全な状態を確保するためには、■使用される
負極を素電池に組み上げる以前に(例えば化成工程で)
、その一部を充電状態にしておくか、或いは■素電池を
電池ケースへ挿入し、これに電解液を注入した後、封口
しない状態で素電池を過充電することにより、正極から
酸素が発生して外部へ逃げた分だけ負極が正極よシ余分
に充電されることになるという操作を行なりことが考え
られる。
In order to ensure the above-mentioned healthy condition, ■ Before assembling the negative electrode to be used into a unit cell (for example, in the chemical process)
Oxygen is generated from the positive electrode by leaving a part of the battery in a charged state, or by inserting the battery into the battery case, injecting electrolyte into it, and then overcharging the battery without sealing it. It is conceivable to carry out an operation in which the negative electrode is charged more than the positive electrode by the amount that has escaped to the outside.

しかしながら、上記方法を水素吸蔵合金の負極に適用し
ようとすると、次のような問題がおる。前記■の方法、
つまり予め化成工程で充電する方法は可能であるが、こ
れを素電池に組み上げ電池ケース内へ挿入するまでの間
に負極の水素吸蔵合金中の水素が前記〔1〕式の逆反応
で放出されてしまい、結局、健全な状態の蓄電池を組立
てることができない。また、前記■の方法では、過充電
時に正極から発生する酸素が水素吸蔵合金の負極中の水
素と極めて速く反応してしまうため、外部にわずかしか
放出されない。
However, when trying to apply the above method to a negative electrode of a hydrogen storage alloy, the following problems arise. The method of ■ above,
In other words, it is possible to charge the battery in advance through a chemical formation process, but the hydrogen in the hydrogen storage alloy of the negative electrode is released by the reverse reaction of formula [1] above before it is assembled into a unit cell and inserted into the battery case. As a result, it is not possible to assemble a storage battery in a healthy condition. In addition, in the method (2) above, since the oxygen generated from the positive electrode during overcharging reacts extremely quickly with hydrogen in the negative electrode of the hydrogen storage alloy, only a small amount is released to the outside.

その結果、■の方法でも健全な状態にすることができな
い。
As a result, even method (2) cannot bring the device into a healthy state.

〔発明の目的〕[Purpose of the invention]

本発明は、製造プロセス中に水素吸蔵合金からなる負極
の一部を効果的に充電することが可能な密閉型アルカリ
蓄電池の製造方法を提供しようとするものである。
The present invention aims to provide a method for manufacturing a sealed alkaline storage battery that can effectively charge a portion of the negative electrode made of a hydrogen storage alloy during the manufacturing process.

〔発明の概要〕[Summary of the invention]

本発明は水素吸蔵合金からなる負極と正極とをセパレー
タを介して渦巻状に巻回して素電池とし、これを電池ケ
ース内に挿入した後、水素雰囲気下にて該ケース内の水
素吸蔵合金からなる負極に水素を吸蔵させ、同水素雰囲
気下にて前記ケース内に電解液を注入し、ひきつづき電
池ケースを封口せしめることを特徴とするものでちる。
In the present invention, a negative electrode and a positive electrode made of a hydrogen storage alloy are spirally wound through a separator to form a unit cell, and after inserting this into a battery case, the hydrogen storage alloy inside the case is removed under a hydrogen atmosphere. The battery case is characterized in that hydrogen is occluded in the negative electrode, an electrolytic solution is injected into the case under the same hydrogen atmosphere, and the battery case is subsequently sealed.

かかる本発明方法によれば、水素吸蔵合金負極は電池ケ
ース内で水素を吸蔵し、直ちに水素雰囲気下で電解液が
注入されるので、電気化学的な充電状態が達成され、し
かもその後電池ケースは封口されるので、これらの過程
の間に水素ガスの放出はなく、健全な状態で電池を製造
できる。
According to the method of the present invention, the hydrogen storage alloy negative electrode stores hydrogen within the battery case, and the electrolyte is immediately injected under a hydrogen atmosphere, so that an electrochemical state of charge is achieved, and the battery case is then removed. Since the cap is sealed, no hydrogen gas is released during these processes, allowing the battery to be manufactured in a healthy state.

具体的には、まず素電池を電池ケース内に挿入した後、
このケースを耐圧容器内に入れ、真空ポンプの排気によ
シ容器内を10−3〜10−5torr程度に保持する
。つづいて、排気を停止し、容器内に水素ガスを導入す
る。この時の圧力は電極に使用した水素吸蔵合金の種類
、履歴及び吸蔵すべき水素量に変える(ゲージ圧40〜
hg/In2)。水素雰囲気下に曝す時間も同様である
。−ひきつづき、水素を容器内から抜いて容器内の水素
圧力を大気圧まで低下させた後、電池ケース内に電解液
を必要量だけ注入する。次いで、不活性ガスを耐圧容器
内に導入しながら、水素ガスを完全に排出した後、電池
ケースを取シ出し、直ちに封口する@不活性ガスの導入
から封口までの閾に水素吸蔵合金負極から水素が放出さ
れる量は、該負極が既に電解液で濡ているため、僅かな
ものとなフ、これによって健全壜状態の電池を製造でき
るようになる。
Specifically, after first inserting the unit battery into the battery case,
This case is placed in a pressure-resistant container, and the inside of the container is maintained at approximately 10-3 to 10-5 torr by exhaustion using a vacuum pump. Subsequently, exhaustion is stopped and hydrogen gas is introduced into the container. The pressure at this time is changed depending on the type and history of the hydrogen storage alloy used for the electrode and the amount of hydrogen to be stored (gauge pressure 40~
hg/In2). The same applies to the time of exposure to hydrogen atmosphere. -Subsequently, after removing hydrogen from the container and lowering the hydrogen pressure in the container to atmospheric pressure, the required amount of electrolyte is injected into the battery case. Next, while introducing an inert gas into the pressure container, after completely discharging the hydrogen gas, take out the battery case and seal it immediately. Since the negative electrode is already wet with the electrolyte, the amount of hydrogen released is small, making it possible to manufacture a battery in a healthy bottle state.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明をニッケル酸化物(Ni00H)の正極、
25℃における平衡プラト圧0.4atmのL aN 
l 4,7Atc3の水素吸蔵合金からなる負極を有す
る単3 ffi Nip2m!池(定格500 mAh
) OR造IC適用した例について説明する。
Next, the present invention is applied to a positive electrode of nickel oxide (Ni00H),
L aN with equilibrium plateau pressure 0.4 atm at 25°C
l AA ffi Nip2m with a negative electrode made of a hydrogen storage alloy of 4,7Atc3! Pond (rated 500 mAh
) An example in which an OR-built IC is applied will be explained.

まず、LaN147At、を20μm以下の粒度をもり
た粉末とし、これに?リテトラフルオロエチレン(PT
FE)の懸濁液をその固形分が全体の4係となるように
添加した後、混合、混練した。つづいて、この混線物を
ロールによシ厚さ約0゜5鴫のシート状物質とした後、
片側からニッケル網状体(線径0.125I+oI!1
40メッシ、)全当接させ、圧着して80閣X40.X
o、5閣tの負極を作製し、更にニッケル網状体にリー
ド線を取シ付けた。
First, LaN147At is made into a powder with a particle size of 20 μm or less, and this? Litetrafluoroethylene (PT)
A suspension of FE) was added so that its solid content was 4 parts of the total, and then mixed and kneaded. Next, this mixed material was rolled into a sheet-like material with a thickness of about 0.5 degrees, and then
Nickel mesh (wire diameter 0.125I+oI!1) from one side
40 mesh,) fully abutted, crimped and 80 pieces x 40. X
A negative electrode of 5 mm and 5 mm was prepared, and a lead wire was attached to the nickel mesh body.

なお、この負極は理論容量が約1000 mAhである
が、この時点では全く充電されていない。つづいて、理
論容量600 mAhで放電状態にある二、 ケ/l/
極(寸法70.X40@BX0.6. t )を正極と
して用意し、これと前記負極とをセ/4レー°夕を介し
て渦巻状に巻回して素電池を作製した。ひきつづき、こ
の素電池を金属製の電池ケースに挿入し、負極リードを
電池ケースに、正極リードを封口板の正極端子に夫々抵
抗容接にょシ接続した。
Although this negative electrode has a theoretical capacity of about 1000 mAh, it is not charged at all at this point. Next, 2.ke/l/ is in a discharge state with a theoretical capacity of 600 mAh.
A pole (dimensions 70. Subsequently, this unit cell was inserted into a metal battery case, and the negative electrode lead was connected to the battery case, and the positive electrode lead was connected to the positive electrode terminal of the sealing plate, respectively, by resistance connection.

次いで、前記電池ケース′t−第1図に示す処理装置の
耐圧容器内に入れた。この処理装置は耐圧容器1を有し
、該容器1にはロータリーポンプ(図示せず)に連結さ
れる排気口2、容器1内部の気体の排出口3、水素ガス
導入口4、不活性ガス導入口5及び圧力計6が設けられ
ている。また、前記容器1中央上部にはマイクロシリン
ジの差込口であるシリコンゴム&7.!:、Fl栓7の
ストップキャップ8が設けられている。
Next, the battery case was placed in a pressure-resistant container of a processing apparatus shown in FIG. This processing apparatus has a pressure-resistant container 1, which includes an exhaust port 2 connected to a rotary pump (not shown), an exhaust port 3 for gas inside the container 1, a hydrogen gas inlet 4, and an inert gas inlet 4. An inlet 5 and a pressure gauge 6 are provided. Also, at the upper center of the container 1, there is a silicone rubber &7. ! :, a stop cap 8 for the Fl stopper 7 is provided.

なお、9は電池ケースである。電池ケース9を耐圧容器
1内に入れた後、ロータリーポンプを作動して容器1内
を10−’torrに減圧し、30分間保持した。つづ
いて、水素ガスを導入口4から容器1内へ導入し、圧力
を20ψj2にして30分間放置し、電池ダース9内の
水素吸蔵合金負極に水素を吸蔵させた。ひきつづき、排
出口3から水素ガスを放出し、圧力計6による内圧(ゲ
ージ圧)をOkg/crn2にした後、ストップキャッ
プ8をはずし、マイクロシリンジをシリコンゴム栓7に
差し込んで、電解液である8 M −KOH水溶液を耐
圧容器1の電池ケース9内に注入した。この後、不活性
ガスを導入口5から容器1内へ導入し、容器1内が不活
性ガスで完全に置換された時点(約10分間)で容器1
から電池ケース9を取シ出し、直ちに封口を行なって電
池の組立てを完了した。
Note that 9 is a battery case. After the battery case 9 was placed in the pressure container 1, the rotary pump was operated to reduce the pressure in the container 1 to 10-'torr, and this was maintained for 30 minutes. Subsequently, hydrogen gas was introduced into the container 1 through the inlet 4, the pressure was set to 20ψj2, and the container was left for 30 minutes to cause the hydrogen storage alloy negative electrode in the battery case 9 to store hydrogen. Subsequently, hydrogen gas is released from the discharge port 3 and the internal pressure (gauge pressure) measured by the pressure gauge 6 is set to Okg/crn2, and then the stop cap 8 is removed and the microsyringe is inserted into the silicone rubber stopper 7, and the electrolyte is removed. An 8 M-KOH aqueous solution was injected into the battery case 9 of the pressure container 1 . After that, inert gas is introduced into the container 1 from the inlet 5, and when the inside of the container 1 is completely replaced with the inert gas (about 10 minutes), the container 1 is
The battery case 9 was taken out and sealed immediately to complete battery assembly.

しかして、得られた電池の水素吸蔵合金負極中に上記工
程で充電された電極容量を調べた。
Therefore, the electrode capacity charged in the hydrogen storage alloy negative electrode of the obtained battery in the above process was investigated.

この試験は封口工程の前に素電池を電池ケースから取り
出し、8M−KOH水溶液で満されたビーカ内に入れ、
別に用意した充電状態のニッケル極と水素吸蔵合金負極
の組合せで放電したものである。結果は280 mAh
であった。これは電池組立て終了後に水素吸蔵合金負極
はトータル容Hk 1000 mAhのうち280 m
Ahが充電されていることになる。
In this test, before the sealing process, the unit cell was removed from the battery case and placed in a beaker filled with 8M-KOH aqueous solution.
Discharge was performed using a combination of a separately prepared charged nickel electrode and a hydrogen storage alloy negative electrode. The result is 280mAh
Met. This means that after battery assembly is complete, the hydrogen storage alloy negative electrode has a total capacity of 280 mAh out of a total capacity of Hk 1000 mAh.
This means that Ah is being charged.

また、本実施例の電池について充放電サイクルテストに
おける放電容量を調べたところ、第2図に示す特性図を
得た。なお、第2図中のAは本実施例の特性線、Bは化
成工程で水素吸蔵合金負極を100%充電し、ひきつづ
き水洗工程、幹燥工程、巻回工程、電池ケース挿入工程
、注液工程、封口工程(以上の工程は全てArガス中ニ
ーitなった)を経て組立てられた比較例1の電池の特
性線、Cは水素吸蔵合金負極を予め化成工程を行なわず
に、巻回工程、電池ケース挿入工程、注液工程、電池定
格の200%(1000mAh )を充電を行なう過充
電工程、封口工程によって組立てられた比較例2の電池
の特性線である。但し、比較例1,2の電池組立て完了
後の負極における正極に対する余分な充電量は夫々5 
mAh 、 25 mAhであった。
Further, when the discharge capacity of the battery of this example was examined in a charge/discharge cycle test, the characteristic diagram shown in FIG. 2 was obtained. In addition, A in FIG. 2 is the characteristic line of this example, and B is the characteristic line of the hydrogen storage alloy negative electrode charged to 100% in the chemical formation process, followed by the water washing process, stem drying process, winding process, battery case insertion process, and liquid injection process. , Characteristic curve of the battery of Comparative Example 1 assembled through the sealing process (all the above processes were performed in Ar gas); This is a characteristic line of a battery of Comparative Example 2 assembled by a battery case insertion process, a liquid injection process, an overcharging process of charging to 200% of the battery rating (1000mAh), and a sealing process. However, in Comparative Examples 1 and 2, the amount of extra charge in the negative electrode relative to the positive electrode after battery assembly was completed was 5.
mAh, 25 mAh.

第2図から明らかな如く、比較例1′、2の電池(特性
線B 、C)は夫々30サイクル、70サイクル程度か
ら容量の低下が生じるのに対し、本実施例の電池(特性
線A)では200サイクルを越えても容量低下が認めら
れない。これは、本実施例の電池における水素吸蔵合金
負極の過剰充電量が280 mAhと十分にあるのに対
し、比較例1,2の電池のそれがほとんどないに等しい
ためである。
As is clear from FIG. 2, the capacity of the batteries of Comparative Examples 1' and 2 (characteristic lines B and C) decreases after about 30 and 70 cycles, respectively, whereas the battery of this example (characteristic line A ), no decrease in capacity was observed even after 200 cycles. This is because the amount of excess charge of the hydrogen storage alloy negative electrode in the battery of this example was a sufficient 280 mAh, whereas the amount of excess charge in the batteries of Comparative Examples 1 and 2 was almost negligible.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば水素吸蔵合金負極に
必要な過剰充電を確実に実行でき、サイクル寿命等の良
好な密閉型アルカリ蓄電池の製造方法を提供できる。
As described in detail above, according to the present invention, it is possible to reliably carry out the necessary overcharging of the hydrogen storage alloy negative electrode, and to provide a method for manufacturing a sealed alkaline storage battery with good cycle life.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電池製造における負極への水素吸蔵、
電解液注入工程で用いられる処理装置の概略図、第2図
は本実施例及び比較例1゜2の電池の充放電サイクルテ
ストにおける放電容量変化を示す特性図である。 1・・・耐圧容器、2・・・排気口、3・・・排出口、
6・・・圧力計、7・・・シリコンゴム栓、9・・・電
池ケース。 出願人代理人  弁理士 鈴 江 武 2第1図 第2図 を仲ル(凶)
Figure 1 shows hydrogen storage in the negative electrode in the battery production of the present invention.
FIG. 2 is a schematic diagram of a processing apparatus used in the electrolyte injection process, and a characteristic diagram showing changes in discharge capacity in a charge/discharge cycle test of batteries of the present example and comparative example 1.2. 1...Pressure vessel, 2...Exhaust port, 3...Discharge port,
6...Pressure gauge, 7...Silicone rubber stopper, 9...Battery case. Applicant's agent Patent attorney Takeshi Suzue 2. Figure 1 Figure 2.

Claims (1)

【特許請求の範囲】[Claims] 水素吸蔵合金からなる負極と正極とをセパレータを介し
て渦巻状に巻回して素電池を形成した後、該素電池を電
池ケース内に収納する工程と、水素雰囲気下にて前記ケ
ース内の水素吸蔵合金からなる負極に水素を吸蔵させ、
更に同水素雰囲気下にて前記ケース内に電解液を注入す
る工程と、前記ケースを封口する工程とを具備したこと
を特徴とする密閉型アルカリ蓄電池の製造方法。
After forming a unit cell by spirally winding a negative electrode and a positive electrode made of a hydrogen storage alloy with a separator interposed between them, the unit cell is housed in a battery case, and the hydrogen in the case is removed under a hydrogen atmosphere. Hydrogen is stored in a negative electrode made of a storage alloy,
A method for manufacturing a sealed alkaline storage battery, further comprising the steps of injecting an electrolyte into the case under the same hydrogen atmosphere, and sealing the case.
JP59160581A 1984-07-31 1984-07-31 Manufacture of enclosed alkaline battery Pending JPS6139461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59160581A JPS6139461A (en) 1984-07-31 1984-07-31 Manufacture of enclosed alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59160581A JPS6139461A (en) 1984-07-31 1984-07-31 Manufacture of enclosed alkaline battery

Publications (1)

Publication Number Publication Date
JPS6139461A true JPS6139461A (en) 1986-02-25

Family

ID=15718054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59160581A Pending JPS6139461A (en) 1984-07-31 1984-07-31 Manufacture of enclosed alkaline battery

Country Status (1)

Country Link
JP (1) JPS6139461A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102861A (en) * 1987-10-14 1989-04-20 Matsushita Electric Ind Co Ltd Manufacture of sealed type ni-h secondary battery
JPH01132066A (en) * 1987-11-17 1989-05-24 Matsushita Electric Ind Co Ltd Sealed nickel-hydrogen storage battery using hydrogen absorbing alloy
JPH01161674A (en) * 1987-12-17 1989-06-26 Matsushita Electric Ind Co Ltd Manufacture of alkaline secondary battery using hydrogen storage alloy
JPH01204371A (en) * 1988-02-08 1989-08-16 Matsushita Electric Ind Co Ltd Manufacture of alkaline secondary battery
JPH035541A (en) * 1989-05-31 1991-01-11 Sekisui Chem Co Ltd Unit building
JPH03241129A (en) * 1990-02-15 1991-10-28 Sekisui Chem Co Ltd Prefabricated dwelling house with balcony
JPH0498902U (en) * 1991-02-01 1992-08-26
US5970767A (en) * 1996-07-15 1999-10-26 Crown Cork & Seal Technologies Corporation Systems and methods for making decorative shaped metal cans
JP2010010097A (en) * 2008-06-30 2010-01-14 Panasonic Corp Method of manufacturing nickel metal hydride storage battery
JP2013020817A (en) * 2011-07-11 2013-01-31 Toyota Motor Corp Regeneration method of nickel-hydrogen battery and nickel-hydrogen battery
WO2015118691A1 (en) * 2014-02-10 2015-08-13 エクセルギー・パワー・システムズ株式会社 Alkaline secondary battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01102861A (en) * 1987-10-14 1989-04-20 Matsushita Electric Ind Co Ltd Manufacture of sealed type ni-h secondary battery
JPH01132066A (en) * 1987-11-17 1989-05-24 Matsushita Electric Ind Co Ltd Sealed nickel-hydrogen storage battery using hydrogen absorbing alloy
JPH01161674A (en) * 1987-12-17 1989-06-26 Matsushita Electric Ind Co Ltd Manufacture of alkaline secondary battery using hydrogen storage alloy
JPH01204371A (en) * 1988-02-08 1989-08-16 Matsushita Electric Ind Co Ltd Manufacture of alkaline secondary battery
JPH035541A (en) * 1989-05-31 1991-01-11 Sekisui Chem Co Ltd Unit building
JPH03241129A (en) * 1990-02-15 1991-10-28 Sekisui Chem Co Ltd Prefabricated dwelling house with balcony
JPH0498902U (en) * 1991-02-01 1992-08-26
JP2561304Y2 (en) * 1991-02-01 1998-01-28 ミサワホーム株式会社 Unit house
US5970767A (en) * 1996-07-15 1999-10-26 Crown Cork & Seal Technologies Corporation Systems and methods for making decorative shaped metal cans
JP2010010097A (en) * 2008-06-30 2010-01-14 Panasonic Corp Method of manufacturing nickel metal hydride storage battery
JP2013020817A (en) * 2011-07-11 2013-01-31 Toyota Motor Corp Regeneration method of nickel-hydrogen battery and nickel-hydrogen battery
WO2015118691A1 (en) * 2014-02-10 2015-08-13 エクセルギー・パワー・システムズ株式会社 Alkaline secondary battery
WO2015118892A1 (en) * 2014-02-10 2015-08-13 エクセルギー・パワー・システムズ株式会社 Alkaline secondary battery
JP5927372B2 (en) * 2014-02-10 2016-06-01 エクセルギー・パワー・システムズ株式会社 Alkaline secondary battery and method for producing alkaline secondary battery
CN106133993A (en) * 2014-02-10 2016-11-16 能质力量系统股份有限公司 Alkaline secondary cell
JPWO2015118892A1 (en) * 2014-02-10 2017-03-23 エクセルギー・パワー・システムズ株式会社 Alkaline secondary battery and method for producing alkaline secondary battery
US10381647B2 (en) 2014-02-10 2019-08-13 Exergy Power Systems, Inc. Alkaline secondary cell

Similar Documents

Publication Publication Date Title
JPS6139461A (en) Manufacture of enclosed alkaline battery
JPS62139255A (en) Manufacture of hydrogen absorbing electrode
JPS61156639A (en) Enclosed type alkaline storage battery
JPH0582024B2 (en)
JPH10162818A (en) Hydrogen storage alloy electrode and manufacture of hydrogen storage alloy electrode
US2862986A (en) Storage battery
JP3555177B2 (en) Sealed lead-acid battery
JPH0447676A (en) Manufacture of sealed storage battery
US6129789A (en) Surface treatment method of hydrogen absorbing alloy
JP2610565B2 (en) Manufacturing method of sealed alkaline storage battery using paste-type nickel positive electrode
JPH06283197A (en) Sealed nickel-hydrogen battery and activation thereof
KR100405016B1 (en) Hydrogen Absorbing Alloy Electrode and Method of Producing the Same
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP3114419B2 (en) Sealed storage battery
JPS6139453A (en) Enclosed metallic oxide-hydrogen battery
JP3342506B2 (en) Hydride secondary battery and method for producing the same
JP3103781B2 (en) How to inject the battery
JPH03108273A (en) Manufacture of nickel hydrogen secondary battery
JPS6180771A (en) Enclosed type metallic oxide/hydrogen storage battery
JPH08185856A (en) Surface reforming method for rare earth-nickel series hydrogen storage alloy for battery
JPS6276164A (en) Enclosed type nickel oxide-hydrogen storage batttery
JPH05314983A (en) Manufacture of alkaline storage battery
JPH0756800B2 (en) Method for manufacturing hydrogen storage electrode
JPS6346957B2 (en)
JP3222902B2 (en) Manufacturing method of hydrogen storage alloy electrode