JPS6346957B2 - - Google Patents

Info

Publication number
JPS6346957B2
JPS6346957B2 JP55047077A JP4707780A JPS6346957B2 JP S6346957 B2 JPS6346957 B2 JP S6346957B2 JP 55047077 A JP55047077 A JP 55047077A JP 4707780 A JP4707780 A JP 4707780A JP S6346957 B2 JPS6346957 B2 JP S6346957B2
Authority
JP
Japan
Prior art keywords
cadmium
electrode
battery
electrodes
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55047077A
Other languages
Japanese (ja)
Other versions
JPS56143670A (en
Inventor
Tadayasu Mitsumata
Toshihide Eguchi
Mamoru Ishitobi
Takashi Ishikawa
Tsutomu Iwaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4707780A priority Critical patent/JPS56143670A/en
Publication of JPS56143670A publication Critical patent/JPS56143670A/en
Publication of JPS6346957B2 publication Critical patent/JPS6346957B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 本発明は、アルカリ蓄電池、とくに正極と、圧
極より大きい容量を持ち過充電時に正極より発生
する酸素ガスを吸収する負極を備えている密閉式
ニツケル―カドミウムアルカリ蓄電池に用いられ
るペースト式カドミウム電極の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alkaline storage battery, and particularly to a sealed nickel-cadmium alkaline storage battery comprising a positive electrode and a negative electrode that has a larger capacity than a pressure electrode and absorbs oxygen gas generated from the positive electrode during overcharging. This invention relates to improvements in the paste-type cadmium electrodes used.

密閉式ニツケル―カドミウム蓄電池において
は、電池組立時の電極の充放電状態として、ニツ
ケル極は完全放電状態であるが、カドミウム極は
一部充電した状態で組み立てられるのが常であ
る。これは酸素ガス吸収性を上げるとともに、高
率充放電時の放電性能、サイクル寿命特性を向上
させるためであり、以下これらについて詳細に説
明する。
In a sealed nickel-cadmium storage battery, the nickel electrode is in a fully discharged state, while the cadmium electrode is normally assembled in a partially charged state. This is to increase oxygen gas absorption, as well as to improve discharge performance and cycle life characteristics during high rate charging and discharging, and these will be explained in detail below.

カドミウム極における酸素ガスの吸収反応はつ
ぎのとおりである。
The absorption reaction of oxygen gas at the cadmium electrode is as follows.

化学的吸収 2Cd+O2+2H2O→2Cd(OH)2 ……(1) 電気化学的吸収 O2+2H2O+4e→4OH- ……(2) ここで、(1)式に示すように酸素の化学的消費に
おいては電極内に存在する金属カドミウムが多い
ことが、吸収速度を大きくするために必要であ
り、また(2)式に示す電気化学的反応においても、
電導度を高める上からも金属カドミウムが多いほ
ど酸素ガス吸収性は良くなることは明らかであ
る。
Chemical absorption 2Cd+O 2 +2H 2 O→2Cd(OH) 2 ...(1) Electrochemical absorption O 2 +2H 2 O+4e→4OH - ...(2) Here, as shown in equation (1), the oxygen chemistry In physical consumption, it is necessary to have a large amount of metal cadmium in the electrode to increase the absorption rate, and also in the electrochemical reaction shown in equation (2),
It is clear that the more metal cadmium there is, the better the oxygen gas absorption will be from the standpoint of increasing the electrical conductivity.

また別の観点から考えると、ニツケル極とカド
ミウム極の放電特性を比較すると、高率放電、す
なわち大きな電流値で放電すると、カドミウム極
の利用率はニツケル極のそれに比べて大幅な低下
が一般的に生じる。すなわち、正、負極の放電容
量を同一としたニツケル―カドミウム密閉式蓄電
池においては、0.1C放電時以上になると、通常カ
ドミウム極の容量によつて電池容量が決まること
になる。このような状態で電池を充放電させる
と、カドミウム極の放電容量は充放電サイクルと
共に急激に減少して、寿命に至る放電サイクル数
が短くなる。
From another perspective, when comparing the discharge characteristics of nickel electrodes and cadmium electrodes, we find that when discharged at a high rate, that is, with a large current value, the utilization rate of cadmium electrodes generally decreases significantly compared to that of nickel electrodes. occurs in In other words, in a nickel-cadmium sealed storage battery in which the positive and negative electrodes have the same discharge capacity, the battery capacity is usually determined by the capacity of the cadmium electrode when the discharge reaches 0.1C or more. When a battery is charged and discharged in such a state, the discharge capacity of the cadmium electrode rapidly decreases with each charge and discharge cycle, and the number of discharge cycles until the battery reaches its lifetime becomes shorter.

したがつて正、負極の放電容量が全く同一のと
きは、とくに急速充電が困難であり、また高率放
電時には電池の容量が大幅に低下し、さらにサイ
クルと共に急激に減少することになる。
Therefore, when the discharge capacities of the positive and negative electrodes are exactly the same, rapid charging is particularly difficult, and the capacity of the battery significantly decreases during high-rate discharge, and further decreases rapidly with cycle.

これらの問題点を回避するために、通常カドミ
ウム極の容量の一部を充電した状態で、完全放電
状態のニツケル極と組み合わせて密閉式電池とす
る。すなわち、基本的に余分の金属カドミウム、
換言すれば余分の放電容量を負極が持つているよ
うに電池を設計する。
To avoid these problems, normally a partially charged cadmium electrode is combined with a fully discharged nickel electrode to form a sealed battery. i.e. basically extra metallic cadmium,
In other words, the battery is designed so that the negative electrode has extra discharge capacity.

このためには、焼結式負極、ペースト式負極い
ずれの場合も通常放電状態に相当する活物質が充
てんされるので、この一部を電池組立て前に充放
電して金属カドミウムとするか、あるいは直接金
属カドミウムを一部充てんすることが必要とな
る。
For this purpose, both sintered negative electrodes and paste negative electrodes are filled with an active material that corresponds to the normal discharge state, so a part of this must be charged and discharged to become metal cadmium before battery assembly, or Partial filling with direct metallic cadmium is required.

量産性にすぐれたペースト式カドミウム極で
は、通常、活物質化合物として容量当たりの体積
が小さい酸化カドミウムが用いられる。したがつ
て酸化カドミウムと金属カドミウムを予め混合し
てペーストを練合し塗着するか、または金属カド
ミウムを混合していない酸化カドミウムをペース
トとし、塗着後、必要に応じて加圧成型した後、
アルカリ電解液中で一定電気量だけ充電すること
が必要であつた。
In paste-type cadmium electrodes that are easy to mass-produce, cadmium oxide, which has a small volume per capacity, is usually used as the active material compound. Therefore, either cadmium oxide and metal cadmium are mixed in advance, kneaded into a paste, and applied, or cadmium oxide without metal cadmium is made into a paste, and after application, pressure molding is performed as necessary. ,
It was necessary to charge a certain amount of electricity in an alkaline electrolyte.

ところが、現在までに入手可能であつた金属カ
ドミウムは、粒子径が大きく、また活性度が低い
ために、予め酸化カドミウム粉末中に混合して
も、充分な効果は得られなかつた。特殊製法によ
る微細なカドミウム粉末の入手は不可能であり、
また製造することも極めて困難であり、そのため
非常に高価となつて実用化はできなかつた。
However, the metal cadmium that has been available up to now has a large particle size and low activity, so even if it is mixed into cadmium oxide powder in advance, sufficient effects cannot be obtained. It is impossible to obtain fine cadmium powder using special manufacturing methods.
It was also extremely difficult to manufacture and therefore extremely expensive, making it impossible to put it into practical use.

一方、電極製作後に部分充電、すなわち化成を
行うことが現在実施されているが、工程が複雑で
ある。すなわち、電解液中に浸漬して通電した
後、アルカリを除去するために水洗し、乾燥する
一連の工程を要する。数多くの蓄電池を生産する
場合に、この工程を省略できれば、工業的あるい
は価格的な価値は大きいといえる。
On the other hand, partial charging, ie, chemical formation, is currently performed after electrode fabrication, but the process is complicated. That is, it requires a series of steps of immersing it in an electrolytic solution, energizing it, washing it with water to remove the alkali, and drying it. If this step can be omitted when producing a large number of storage batteries, it can be said to be of great industrial and cost value.

また、この部分充電の別の問題点として、予備
充電時に酸化カドミウムが電解質の水と反応して
水酸化カドミウムに変わり、このようにして化学
的に生じた水酸化カドミウムは充電時に充電効率
が低く、水素ガスを生じ易く、充電がされにくい
ことがあつた。
Another problem with this partial charging is that during precharging, cadmium oxide reacts with water in the electrolyte and turns into cadmium hydroxide, and the chemically generated cadmium hydroxide has a low charging efficiency during charging. , it was easy to generate hydrogen gas and it was difficult to charge the battery.

本発明は、これらの問題点を大幅に軽減するも
のであり、具体的には酸化カドミウム粒子の中心
部に金属カドミウムがある粉末を活物質として用
いることを特徴とする。このような本発明によれ
ば部分充電を行う工程が省略でき、また初充電に
おいても急速充電を行うことも可能となる。
The present invention significantly alleviates these problems, and is specifically characterized by using a powder containing metallic cadmium in the center of cadmium oxide particles as an active material. According to the present invention, the step of performing partial charging can be omitted, and rapid charging can also be performed during initial charging.

酸化カドミウムの乾式製法では、金属カドミウ
ムを加熱して昇華させ、これを空気あるいは酸素
ガス雰囲気のもとで加熱状態で完全に酸化して酸
化カドミウム微粒子とする方法を採つている。従
来、この方法では、酸化度をコントロールするこ
とは非常に困難であり、通常完全な酸化物とする
ことが常であつた。本発明者らは、雰囲気中の酸
素濃度、反応温度、時間などの精密なコントロー
ルによつて、中心部に一部金属カドミウムが残つ
た状態のカドミウム化合物粉末を得ることに成功
した。
The dry manufacturing method for cadmium oxide involves heating metal cadmium to sublimate it, and then completely oxidizing it under heating in an air or oxygen gas atmosphere to form fine cadmium oxide particles. Conventionally, in this method, it has been very difficult to control the degree of oxidation, and a complete oxide has usually been obtained. The present inventors succeeded in obtaining a cadmium compound powder with a portion of metallic cadmium remaining in the center by precisely controlling the oxygen concentration in the atmosphere, reaction temperature, time, etc.

以下、本発明を実施例により説明する。 The present invention will be explained below with reference to Examples.

金属カドミウム1Kgを約400℃に加熱し、この
雰囲気の酸素濃度が約15%になるように、空気と
窒素ガスの混合ガスを送り込んで、昇華とともに
酸化して、大部分は酸化カドミウムであるが、粒
子の中心部には一部金属カドミウムとして残つて
いる状態の粉末を製作した。混合ガスの流量が
100/分のときに金属カドミウムの含有量が重
量比で約20%の粉末A、流量を30/分とすれば
約40%の粉末Bが得られた。
1 kg of metal cadmium is heated to about 400℃, and a mixed gas of air and nitrogen gas is introduced so that the oxygen concentration in the atmosphere is about 15%, and it sublimates and oxidizes, but most of it is cadmium oxide. We produced a powder in which some metal cadmium remained in the center of the particle. The flow rate of the mixed gas is
When the flow rate was 100/min, powder A had a metal cadmium content of about 20% by weight, and when the flow rate was 30/min, powder B had a metal cadmium content of about 40%.

この粉末A500gに、導電材としてのニツケル
粉末75gを混合する。一方、結着剤としてのポリ
ビニルアルコール3gを溶剤であるエチレングリ
コール75c.c.中に130℃に加熱して溶解させ、この
液を上記混合粉末と練合してペーストとした。こ
れを厚さ0.2mmのニツケルメツキした鉄板製のパ
ンチングメタルの両面に均一に塗着した後、乾
燥、加圧、切断してカドミウム極とした。その厚
さは約0.7mm、大きさは37×210mmであり、充てん
理論総容量は約6.5Ahである。これを電極aとす
る。
75 g of nickel powder as a conductive material is mixed with 500 g of this powder A. On the other hand, 3 g of polyvinyl alcohol as a binder was dissolved in 75 cc of ethylene glycol as a solvent by heating to 130° C., and this liquid was kneaded with the above mixed powder to form a paste. This was applied uniformly to both sides of a nickel-plated punched metal plate with a thickness of 0.2 mm, then dried, pressed, and cut to form a cadmium electrode. Its thickness is about 0.7 mm, its size is 37 x 210 mm, and its total theoretical filling capacity is about 6.5 Ah. This will be referred to as electrode a.

また、500gの粉末Aの代わりに、250gの粉末
Bと、全く金属カドミウムを含まない通常の酸化
カドミウム250gとの混合物を用い、その他は全
く電極aと同一条件で製作し、これを電極bとす
る。
In addition, instead of 500 g of powder A, a mixture of 250 g of powder B and 250 g of normal cadmium oxide containing no metal cadmium was used, and other conditions were completely the same as electrode a, and this was used as electrode b. do.

これらと比比するために、従来の方法として完
全な酸化カドミウムとなつている市販酸化カドミ
ウム514g(カドミウム分として電極a,bのそ
れとほぼ等しい)を用い、その他は全く同一条件
で製造したカドミウム極を、15Aの電流で約11分
間という条件で、部分充電をし、水洗、乾燥して
電極cとした。また、平均粒子径が400μmの市販
金属カドミウム100gと市販の粒径約3μmの酸化
カドミウム400gとの混合物を活物質として用い、
同じく同一条件で作つたカドミウム極をdとす
る。
In order to compare with these, we used 514 g of commercially available cadmium oxide, which has become complete cadmium oxide (the cadmium content is almost the same as that of electrodes a and b) as a conventional method, and used a cadmium electrode manufactured under exactly the same conditions. The electrode was partially charged for about 11 minutes at a current of 15 A, washed with water, and dried to form electrode c. In addition, a mixture of 100 g of commercially available metal cadmium with an average particle size of 400 μm and 400 g of commercially available cadmium oxide with a particle size of about 3 μm was used as an active material.
Let d be a cadmium pole made under the same conditions.

これらのカドミウム電極を、それぞれ、大きさ
37×170mm、厚さ約0.9mmの焼結式ニツケル電極と
セパレータを介してうす巻状に巻いて、単2サイ
ズの円筒状電池とした。なお電解液には比重127
のか性カリ水溶液を用い、液量は70c.c./セルとし
た。
The size of each of these cadmium electrodes is
It was wound into a thin spiral with a sintered nickel electrode measuring 37 x 170 mm and approximately 0.9 mm thick and a separator interposed therebetween to form a AA size cylindrical battery. The electrolyte has a specific gravity of 127
A caustic potassium aqueous solution was used, and the liquid volume was 70 c.c./cell.

これらの電池の性能を比較するために、20±
0.5℃の恒温室の中で、初充電として、0.9Aの電
流(0.5C相当)で3時間充電をし、この間の電池
内のガス圧の変化を調べた。その結果を第1図に
示す。図中曲線a,b,c,dはそれぞれカドミ
ウム電極a,b,c,dを用いた電池の特性を示
す。
To compare the performance of these batteries, 20±
As an initial charge, the battery was charged at a current of 0.9 A (equivalent to 0.5 C) for 3 hours in a constant temperature room at 0.5°C, and changes in gas pressure inside the battery were examined during this time. The results are shown in FIG. In the figure, curves a, b, c, and d indicate the characteristics of batteries using cadmium electrodes a, b, c, and d, respectively.

この結果から明らかなように、電極a,bを用
いた電池は、従来法による電極c,dを用いた電
池に比べて充電特性がすぐれていることがわか
る。電極cを用いた電池では、カドミウム極の酸
素吸収性はとくに問題ないが、充電中期、末期に
多少水素ガスが発生して電池内圧を高めていると
考えられ、また電極dを用いたものではカドミウ
ム極の酸素吸収性がよくないためと考えられる。
As is clear from these results, it can be seen that the battery using electrodes a and b has better charging characteristics than the battery using conventional electrodes c and d. In the battery using electrode c, there is no particular problem with the oxygen absorption of the cadmium electrode, but it is thought that some hydrogen gas is generated during the middle and final stages of charging, increasing the internal pressure of the battery, and in the battery using electrode d. This is thought to be due to poor oxygen absorption of the cadmium electrode.

つぎに、これらの電池の充放電性能を比較する
ために、0.5Cで3時間充電し、0.25Cで端子電圧
1.0ボルトまで定電流放電をして、放電容量のサ
イクルによる変化を求めた。その結果を第2図に
示す。この図より、電極a,bを用いた電池はす
ぐれたサイクル特性を示し、カドミウム極のガス
吸収性にも何らの問題点がないことを示してい
る。一方電極cを用いたものではサイクルととも
に若干の容量低下がみられ、とくに電極dを用い
たものでは急激に減少している。これらの電池
は、電池重量が充放電前に比較して減少していた
ので、過充電によつて電解液がガスとして電池外
へ放出していることがわかる。
Next, in order to compare the charging and discharging performance of these batteries, we charged them at 0.5C for 3 hours, and the terminal voltage at 0.25C.
A constant current discharge was performed to 1.0 volts, and the change in discharge capacity due to cycles was determined. The results are shown in FIG. This figure shows that the battery using electrodes a and b exhibits excellent cycle characteristics, and there is no problem with the gas absorbency of the cadmium electrode. On the other hand, the capacitance using electrode c shows a slight decrease in capacity as the cycle progresses, and the capacitance decreases particularly sharply with electrode d. Since the weight of these batteries was reduced compared to before charging and discharging, it can be seen that the electrolyte was released as a gas to the outside of the battery due to overcharging.

以上のように本発明によるカドミウム電極を用
いた電池では、電池組立て前のカドミウム極の部
分充電という工程が省略できるうえに、充放電特
性もすぐれていることがわかる。
As described above, it can be seen that in the battery using the cadmium electrode according to the present invention, the process of partially charging the cadmium electrode before battery assembly can be omitted, and the charging and discharging characteristics are also excellent.

この理由としては前にも示したように、粒子径
数ミクロンという微細な酸化カドミウム粒子の内
部に金属カドミウムが残存し、この微細な金属カ
ドミウムが、酸素ガス吸収能やカドミウム極利用
率向上に大きく貢献していると考えられる。
The reason for this is, as shown earlier, that metallic cadmium remains inside the fine cadmium oxide particles with a particle diameter of several microns, and this fine metallic cadmium greatly improves oxygen gas absorption ability and cadmium polar utilization rate. It is thought that it is contributing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種カドミウム電極を用いた密閉式円
筒状ニツケル―カドミウム蓄電池の初充電時の電
池内圧の変化を示す図、第2図は同じく電池の充
放電サイクルに伴う容量の変化を示す。
FIG. 1 shows the change in internal pressure of a sealed cylindrical nickel-cadmium storage battery using various cadmium electrodes during initial charging, and FIG. 2 similarly shows the change in capacity as the battery is charged and discharged.

Claims (1)

【特許請求の範囲】[Claims] 1 活物質、結着剤を主成分とするペーストを集
電体に塗着したペースト式カドミウム電極であつ
て、活物質の全部または一部が金属カドミウムを
粒子の中心部に有する酸化カドミウム粉末である
ことを特徴とするアルカリ蓄電池用カドミウム電
極。
1 A paste-type cadmium electrode in which a paste containing an active material and a binder as main components is applied to a current collector, where all or part of the active material is cadmium oxide powder having metallic cadmium in the center of the particle. A cadmium electrode for alkaline storage batteries characterized by the following.
JP4707780A 1980-04-09 1980-04-09 Manufacture of cadmium electrode for alkaline storage battery Granted JPS56143670A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4707780A JPS56143670A (en) 1980-04-09 1980-04-09 Manufacture of cadmium electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4707780A JPS56143670A (en) 1980-04-09 1980-04-09 Manufacture of cadmium electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS56143670A JPS56143670A (en) 1981-11-09
JPS6346957B2 true JPS6346957B2 (en) 1988-09-19

Family

ID=12765100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4707780A Granted JPS56143670A (en) 1980-04-09 1980-04-09 Manufacture of cadmium electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPS56143670A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57143265A (en) * 1981-02-27 1982-09-04 Shin Kobe Electric Mach Co Ltd Manufacture of negative plate for alkaline storage battery
DE3519051A1 (en) * 1985-05-28 1986-12-04 Varta Batterie Ag, 3000 Hannover METHOD FOR PRODUCING NEGATIVE CADMIUM ELECTRODES FOR GAS-TIGHTLY SEALED ALKALINE ACCUMULATOR CELLS
JPS6481171A (en) * 1987-09-22 1989-03-27 Mitsui Mining & Smelting Co Manufacture of anode active material for battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51631A (en) * 1974-06-17 1976-01-06 Gen Electric

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51631A (en) * 1974-06-17 1976-01-06 Gen Electric

Also Published As

Publication number Publication date
JPS56143670A (en) 1981-11-09

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
JPS6346957B2 (en)
US5788720A (en) Method for manufacturing positive electrode plates for an alkaline storage battery
JP2975249B2 (en) Manufacturing method of alkaline secondary battery
JPS5983347A (en) Sealed nickel-cadmium storage battery
HU208596B (en) Rechargeable electrochemical cell
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JPS59872A (en) Manufacture of enclosed nickel-cadmium storage battery
JP2797440B2 (en) Alkaline secondary battery
JPH08124595A (en) Activating method for alkaline secondary battery
JP3011386B2 (en) Paste type electrode for alkaline secondary battery
JP3238986B2 (en) Activation method of alkaline storage battery
JP2861057B2 (en) Alkaline secondary battery
JPS617575A (en) Manufacture of sealed alkaline storage battery utilizing hydrogen absorption negative electrode
JP2591982B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2689598B2 (en) Cylindrical sealed nickel-cadmium storage battery and its manufacturing method
US4166010A (en) Sintered negative plate
JPH10189009A (en) Manufacture for organic electrolyte battery
JP2591985B2 (en) Cadmium negative electrode plate and alkaline secondary battery using the negative electrode plate
JP2771584B2 (en) Manufacturing method of non-sintering type sealed alkaline storage battery
JP3573885B2 (en) Method for producing nickel hydroxide active material for alkaline storage battery and alkaline storage battery
JPH0536437A (en) Method for initial charge and discharge of alkaline storage battery
JP2002279955A (en) Separator for alkaline storage battery, manufacturing method therefor and alkaline storage battery
JP2002075318A (en) Secondary battery
JPH03133059A (en) Manufacture of paste type cadmium negative electrode