JPS6128218B2 - - Google Patents

Info

Publication number
JPS6128218B2
JPS6128218B2 JP53125571A JP12557178A JPS6128218B2 JP S6128218 B2 JPS6128218 B2 JP S6128218B2 JP 53125571 A JP53125571 A JP 53125571A JP 12557178 A JP12557178 A JP 12557178A JP S6128218 B2 JPS6128218 B2 JP S6128218B2
Authority
JP
Japan
Prior art keywords
region
wiring
input
conductivity type
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53125571A
Other languages
Japanese (ja)
Other versions
JPS5552240A (en
Inventor
Susumu Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP12557178A priority Critical patent/JPS5552240A/en
Publication of JPS5552240A publication Critical patent/JPS5552240A/en
Publication of JPS6128218B2 publication Critical patent/JPS6128218B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は構成面積が小さくかつ優れた入力クラ
ンプ特性をもつ半導体集積回路装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor integrated circuit device having a small construction area and excellent input clamping characteristics.

半導体集積回路の設計に於いて最も望まれるこ
とは、如何に小面積で良好な特性を持つものを設
計するかということである。
What is most desired in designing a semiconductor integrated circuit is how to design one with a small area and good characteristics.

すなわち、チツプの小形化を狙う余り、その集
積回路に要求される電気的特性を満たさなかつた
り、その反対に電気的特性を良好にするため、多
数の素子を使用し、数多くの配線を行うことによ
りチツプ面積の増大をまねいたりすることは好ま
しくない。
In other words, in an attempt to make the chip smaller, it may not be possible to satisfy the electrical characteristics required for the integrated circuit, or conversely, in order to improve the electrical characteristics, a large number of elements and a large number of wiring lines are used. It is undesirable for this to lead to an increase in the chip area.

以上のことより、半導体集積回路の設計者は使
用素子数を極力減らし、特性に悪影響を与えない
範囲内で各素子面積を小さくし、なおかつ配線を
効果的に行うことにより全体としてチツプ面積が
小さくなるように心掛けねばならない。
Based on the above, designers of semiconductor integrated circuits reduce the overall chip area by reducing the number of elements used as much as possible, reducing the area of each element within a range that does not adversely affect characteristics, and conducting wiring effectively. We must try to do so.

多機能の集積回路を設計する場合、配線が複雑
になり場合によつては電源Vcc,接地GND配線等
の回路内共通配線を取り出し電極(パツド)の外
側に廻した方が配線がトポロジー的に容易となる
場合が多い。
When designing a multi-functional integrated circuit, the wiring becomes complicated, and in some cases it is better to take common wiring within the circuit, such as power supply Vcc and ground GND wiring, and route it to the outside of the electrode (pad) to improve the topology of the wiring. It is often easier.

しかしながら、このようにパツドの外側に配線
することは、ボンデイングのワイヤータツチによ
る悪影響が大きく、またビームリード構造の集積
回路の設計を不可能にする。更にこの構造にする
ことにより、パツドを外部配線との間に必要とさ
れる間隔と、内部配線間に必要とされる間隔との
差分チツプ面積を大きくしてしまう。このように
パツドの外側に配線を廻すことは、トポロジー的
に幾分配線を容易にするものの、上記の如く多く
の欠点を持つている。
However, wiring outside the pad in this manner has a large adverse effect due to the bonding wire touch, and also makes it impossible to design an integrated circuit with a beam lead structure. Furthermore, this structure increases the difference in chip area between the spacing required between the pad and the external wiring and the spacing required between the internal wiring. Although routing the wiring outside the pad in this manner makes the wiring somewhat easier topologically, it has many drawbacks as described above.

この対策の一手段としては、絶縁物をはさむこ
とにより配線を複数段にする多層配線技術もある
が、工程がその分増え、その上配線層間の電気的
接続(スルーホール)がとれにくく歩留りが低下
する等の弊害がある。
One way to counter this problem is to use multilayer wiring technology, which creates multiple layers of wiring by sandwiching insulators, but this increases the number of steps and, in addition, makes it difficult to make electrical connections (through holes) between wiring layers, resulting in lower yields. There are negative effects such as a decrease in

これに対し一般的に良く用いられる方法として
は、高濃度のN型層(N+層)を配線として利用
する方法があり、これを通常トンネル配線構造と
呼んでいる。
On the other hand, a commonly used method is to use a highly doped N-type layer (N + layer) as a wiring, and this is usually called a tunnel wiring structure.

この方法によれば、幾分配線に抵抗が入るもの
の、エミツタ拡散(N+拡散)により形成でき特
別に工程を増やす必要がない。すなわち、N+
ンネル配線方法は複雑な回路の配線設計には非常
に効果的な方法であることがわかる。
According to this method, although some resistance is introduced into the wiring, it can be formed by emitter diffusion (N + diffusion) and there is no need to increase the number of special steps. In other words, it can be seen that the N + tunnel wiring method is a very effective method for wiring design of complex circuits.

一方、TTL(トランジスタ トランジスタ
ロジツク)やDTL(ダイオード トランジスタ
ロジツク)により論理回路網を構成した場合、
信号の変化時に送信側と受信側の間で生ずる反射
により、受信側回路の入力電圧が負の大きな値に
振れる場合がある。この負の電圧が深すぎると反
射係数倍でもどるGND(接地)レベルから正側
への振れも大きくなり、この正側の振れが回路の
閾値電圧以上の値となつている場合は、この正側
の振れが閾値電圧以下に減少しない限り受信側の
入力が最終的に低レベルになつたことにはならな
い。すなわち送信側の出力が一方の論理レベルか
ら他方のレベルへ移行してから最終的に受信側の
出力がそれに見合つた論理レベルへ落着くまでの
時間は、上記の反射による受信側の負の電位への
振れの大きさに大きく依存する。
On the other hand, TTL (transistor
When a logic circuit network is constructed using DTL (diode transistor logic) or DTL (diode transistor logic),
Reflections that occur between the transmitting side and the receiving side when the signal changes may cause the input voltage of the receiving side circuit to swing to a large negative value. If this negative voltage is too deep, the swing from the GND (ground) level, which returns by multiplying the reflection coefficient, to the positive side will also become large, and if this swing on the positive side is greater than the threshold voltage of the circuit, this The receiver input will not eventually go to a low level unless the side deflection is reduced below the threshold voltage. In other words, the time from when the output on the transmitting side shifts from one logic level to the other until the output on the receiving side finally settles to the corresponding logic level is the negative potential on the receiving side due to the above reflection. It depends largely on the magnitude of the swing.

すなわち、TTL,DTLの設計に於いては、入
力点がGNDレベルより負の大きな電位にならぬ
よう、何らかの入力クランプ回路を設ける必要が
あり、第1図に示すように、通常GNDと入力と
の間にGNDをアノード、入力をカソードとする
ダイオード202,203を入れることにより入
力クランプ回路を構成している。
In other words, when designing TTL and DTL, it is necessary to provide some kind of input clamp circuit to prevent the input point from becoming more negative than the GND level. An input clamp circuit is constructed by inserting diodes 202 and 203 between which the anode is connected to GND and the cathode is connected to the input.

前記のトンネル配線構造により、この入力クラ
ンプダイオードを構成した従来例の平面図を第2
図に、また第2図のA―A′方向の断面図を第3
図に示す。
A plan view of a conventional example in which this input clamp diode is constructed using the tunnel wiring structure described above is shown in the second figure.
In addition, the sectional view in the A-A' direction of Figure 2 is shown in Figure 3.
As shown in the figure.

P型半導体基板1にN型埋込層2を設けその上
にN型層をエピタキシヤル成長させ、P型絶縁分
離層4を拡散してN型層の島3を形成する。この
あと島3に高濃度のN層6を選択拡散により設け
絶縁膜7を形成した後、81,82,83部を開
口し、Al配線層91,…,96を設ける。
An N-type buried layer 2 is provided in a P-type semiconductor substrate 1, an N-type layer is epitaxially grown thereon, and a P-type insulating isolation layer 4 is diffused to form an island 3 of the N-type layer. Thereafter, a high concentration N layer 6 is formed on the island 3 by selective diffusion, and an insulating film 7 is formed. After that, portions 81, 82, and 83 are opened, and Al wiring layers 91, . . . , 96 are provided.

尚、100は入力端子のパツドを、94,9
5,96はVccを含む一般配線を示し、また93
は配線トンネルから隔つたところにあるGND配
線を示し、83に於いて絶縁領域を最低電位に接
続してある。
In addition, 100 is the pad of the input terminal, 94, 9
5 and 96 indicate general wiring including Vcc, and 93
shows the GND wiring at a distance from the wiring tunnel, and the insulating region is connected to the lowest potential at 83.

第4図は、第2図および第3図の等価回路図を
示す。101は第3図領域4と領域3,6との間
で形成されるPN接合ダイオードを示し、4′は9
3から上記PN接合迄の領域4による抵抗、6′は
82〜81へかけての領域6による抵抗を示す。
第2図ないし第4図に於いて配線92は第1図の
入力ゲートトランジスタ5のエミツタに接続され
る)図示は省略してある。)。
FIG. 4 shows an equivalent circuit diagram of FIGS. 2 and 3. 101 indicates a PN junction diode formed between region 4 and regions 3 and 6 in FIG. 3, and 4' indicates 9.
3 to the above-mentioned PN junction, and 6' shows the resistance due to region 6 from 82 to 81.
In FIGS. 2 to 4, the wiring 92 (which is connected to the emitter of the input gate transistor 5 in FIG. 1) is omitted from illustration. ).

以上の図の如く、入力配線のトンネル領域の近
傍にGND配線がなく、回路中他の素子を形成し
ている多くの島を経て遠く隔つた処で絶縁領域が
GNDに接続されている場合第4図の抵抗4′(以
降ΓBと呼ぶ)が非常に大きくなり、ひいては或
る入力引き出し電流に伴なう入力点の負の電圧へ
の落ち込みを大きくしてしまう。
As shown in the above diagram, there is no GND wiring near the tunnel area of the input wiring, and the insulation area is located far away through many islands that form other elements in the circuit.
When connected to GND, the resistor 4' in Figure 4 (hereinafter referred to as Γ B ) becomes very large, which in turn increases the drop to negative voltage at the input point due to a certain input draw current. Put it away.

すなわち、第4図に於いて入力引き出し電流I
Iと入力電圧VIとの関係はPNダイオードの順方
向電圧をVDとすると VI=VD+II・ΓB………(1) と近似でき、ΓBが大きくなれば、それに伴ない
Iも大きくなることがわかる。尚第(1)式に於い
て記号は絶対値を示す。
That is, in FIG. 4, the input draw current I
The relationship between I and the input voltage V I can be approximated as V I = V D + I I · Γ B (1), where the forward voltage of the PN diode is V D , and as Γ B increases , It can be seen that V I also becomes large. Note that in equation (1), the symbols indicate absolute values.

ここでΓBを小さくするためには、コンタクト
83を島3のそばに近づければ良いが、他に
GND配線が必要としない場合領域3の近くへ
GND配線をわざわざめぐらすことは配線の効率
が悪く、チツプ面積の増大はまぬがれない。
Here, in order to reduce Γ B , it is better to bring the contact 83 closer to the island 3, but there are other
If GND wiring is not required, place it near area 3.
Routing GND wiring around the circuit is inefficient and inevitably increases the chip area.

このようにトンネルの島と絶縁領域との間で形
成されるPNダイオードを入力クランプダイオー
ドとする従来構造は、その近くにGND配線がな
いとき、PNダイオードのP領域の直列抵抗が大
きくなり、入力引き出し電流が多いとき、入力を
充分クランできないという欠点があつた。
In the conventional structure in which the PN diode formed between the tunnel island and the insulating region is used as the input clamp diode, when there is no GND wiring nearby, the series resistance of the P region of the PN diode becomes large, and the input The drawback was that the input could not be sufficiently clamped when the draw current was large.

本発明はこのような事情に鑑みてなされたもの
で、素子を増やすことなく、極めて優れた入力ク
ランプ特性を有する半導体集積回路装置を提供す
るものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a semiconductor integrated circuit device having extremely excellent input clamping characteristics without increasing the number of elements.

本発明は、入力配線の一部を成すトンネルの島
を分離したのちN型エピタキシヤル領域の一部を
残し、絶縁領域と重なるようにベース拡散を行
い、絶縁層をへだててトンネルの上に配線されて
いるVcc線、あるいは低インピーダンスである高
電位を与える配線と前記ベース拡散されたかつた
エピタキシヤル領域とのコンタクトをとることに
より、Vccをコレクタ、GNDをベース、入力をエ
ミツタとするNPNトランジスタを形成したこと
を特徴とする。
In the present invention, after separating the tunnel island that forms part of the input wiring, a part of the N-type epitaxial region is left, the base is diffused so as to overlap with the insulating region, and the insulating layer is separated to form the wiring above the tunnel. By making contact between the Vcc line that is connected to the base, or the wiring that provides a high potential with low impedance, and the base-diffused epitaxial region, an NPN transistor with Vcc as the collector, GND as the base, and the input as the emitter can be formed. It is characterized by the formation of

すなわち、本発明によれば、第1導電型半導体
基板、該第1導電型半導体基板上に形成された第
2導電型半導体層、該第2導電型半導体層を複数
の第2導電型第1領域にPN接合で分離する第1
導電型第2領域、前記第2導電型第1領域内に設
けられた高濃度第2導電型第3領域を入力配線層
とする半導体集積回路装置において、前記第1導
電型半導体第2領域と少なくとも一部重なつて第
2導電型半導体第1領域に形成された第1導電型
第4領域を有し、該第1導電型第4領域に前記高
濃度第2導電型第3領域を設け、前記第1導電型
第2領域又は第4領域に接地電極を設けたことを
特徴とする半導体集積回路装置が得られる。
That is, according to the present invention, a first conductive type semiconductor substrate, a second conductive type semiconductor layer formed on the first conductive type semiconductor substrate, and a plurality of second conductive type first semiconductor layers formed on the second conductive type semiconductor layer are provided. The first region is separated by a PN junction.
In a semiconductor integrated circuit device in which a second conductivity type region and a highly concentrated second conductivity type third region provided in the second conductivity type first region serve as an input wiring layer, the first conductivity type semiconductor second region and a fourth region of the first conductivity type formed at least partially overlapping the first region of the semiconductor of the second conductivity type; and the third region of the high concentration second conductivity type is provided in the fourth region of the first conductivity type. , there is obtained a semiconductor integrated circuit device characterized in that a ground electrode is provided in the second region or the fourth region of the first conductivity type.

次に、本発明の実施例を図面を用いて説明す
る。
Next, embodiments of the present invention will be described using the drawings.

第5図は本発明の一実施例を示す上面図、第6
図は第5図のA―A′の断面図、第7図は第5図
B―B′断面図、第8図はその等価回路図である。
FIG. 5 is a top view showing one embodiment of the present invention, and FIG.
The figure is a sectional view taken along line AA' in FIG. 5, FIG. 7 is a sectional view taken along line BB' in FIG. 5, and FIG. 8 is an equivalent circuit diagram thereof.

IはP型半導体基板、2はN型埋込層、3はP
型半導体基板1上に形成したN型エピタキシヤル
層で、P型絶縁分離層4(第2領域)によつて島
状の第1領域が形成されている。この島状の第1
領域3には領域31を残してP型不純物を拡散し
てP型の第4領域5が形成されており、その上に
高濃度のN型不純物を拡散し第3領域61が形成
されている。このとき領域31にも高濃度のN型
不純物を拡散し領域62が形成される。更にその
上に形成された絶縁膜7には開口81,82,8
3,84が設けられていて、この開口を覆つてア
ルミニウム配線層91〜96が設けられている。
尚100は入力端子のパツドを93は配線トンネ
ル(第3領域61)から隔つたところにある
GND配線、94はVcc配線、95,96は一般配
線を示す。
I is a P-type semiconductor substrate, 2 is an N-type buried layer, and 3 is a P-type semiconductor substrate.
In the N type epitaxial layer formed on the type semiconductor substrate 1, an island-shaped first region is formed by the P type insulating separation layer 4 (second region). This island-like first
In the region 3, a P-type impurity is diffused leaving the region 31 to form a P-type fourth region 5, and a third region 61 is formed thereon by diffusing a high concentration N-type impurity. . At this time, a high concentration of N-type impurity is diffused also in the region 31 to form a region 62. Furthermore, openings 81, 82, 8 are formed in the insulating film 7 formed thereon.
3 and 84 are provided, and aluminum wiring layers 91 to 96 are provided to cover these openings.
Note that 100 is the pad of the input terminal, and 93 is the part separated from the wiring tunnel (third area 61).
GND wiring, 94 is Vcc wiring, and 95 and 96 are general wiring.

なお配線92は例えばTTLゲート回路の入力
ゲートトランジスタのエミツタに接続されている
が、煩しいので図示は省略してある。
Note that the wiring 92 is connected to, for example, the emitter of the input gate transistor of the TTL gate circuit, but is not shown because it is cumbersome.

この実施例から明らかなように本発明の主要部
の等価回路は第8図に示すようになる。抵抗
4′,は絶縁領域4による抵抗、抵抗61′は高濃
度N型領域61による抵抗である。
As is clear from this embodiment, the equivalent circuit of the main part of the present invention is shown in FIG. Resistor 4' is a resistance caused by the insulating region 4, and resistance 61' is a resistance caused by the heavily doped N-type region 61.

次に本発明の作用・効果について説明する。 Next, the functions and effects of the present invention will be explained.

入力91がGND電位から負の電位になり、PN
ダイオード順方向電圧一段分の電圧(約0.7V)
より負の大きな値となると第8図のトランジスタ
102のエミツタ接合が順方向バイアスされ、ト
ランジスタ102が動作し始める。すなわちVcc
配線94からトランジスタ102のコレクタ電流
が流れこの電流と、GND配線93から流れ込む
ベース電流を加えたものが入力電流として流れ出
る。尚このとき入力電流のほとんどはトランジス
タのコレクタ電流がしめる。よつて、入力電流を
多く引き出したときに於いても、本発明によれ
ば、抵抗4′による電圧降下が少なく、半導体集
積回路の入力クランプ特性の改善に著しい効果が
ある。
Input 91 changes from GND potential to negative potential, and PN
Voltage for one stage of diode forward voltage (approximately 0.7V)
When the value becomes more negative, the emitter junction of transistor 102 in FIG. 8 becomes forward biased, and transistor 102 begins to operate. i.e. Vcc
A collector current of the transistor 102 flows from the wiring 94, and the sum of this current and the base current flowing from the GND wiring 93 flows out as an input current. At this time, most of the input current comes from the collector current of the transistor. Therefore, even when a large input current is drawn, according to the present invention, the voltage drop caused by the resistor 4' is small, and the input clamping characteristics of the semiconductor integrated circuit are significantly improved.

次にこのことを詳しく説明すると、トランジス
タ102の電流増巾率をhFE,ベース―エミツタ
順方向電圧をVBE,抵抗4′の抵抗値をΓBとする
と、入力電圧VIは VI=VBE+RB・II/hFE……(2) となる。従来の場合のVIを示す式〔第(1)式〕と
本発明の場合の式〔第(2)式〕とを較べるに、第(1)
式のIIが第(2)式ではII/hFEとなつている。す
なわち、同じIIに対し、従来〔第(1)式〕に比較
し本発明〔第(2)式〕においては抵抗ΓBによる電
圧降下がhFE分の1となつており著るしく寄生抵
抗ΓBの悪影響が少なくなつていることがわか
る。
Next, to explain this in detail, if the current amplification factor of the transistor 102 is h FE , the base-emitter forward voltage is V BE , and the resistance value of the resistor 4' is Γ B , then the input voltage V I is V I = V BE +R B・I I /h FE ...(2). Comparing the equation showing V I in the conventional case [Equation (1)] and the equation [Equation (2)] in the case of the present invention, it is found that Equation (1)
I I in the formula becomes I I /h FE in formula (2). That is, for the same I I , the voltage drop due to the resistance Γ B in the present invention [Equation (2)] is 1/h FE compared to the conventional [Equation (1)], and the parasitic effect is significantly It can be seen that the negative influence of the resistance Γ B has diminished.

次に本発明の他の実施例を説明する。 Next, another embodiment of the present invention will be described.

第9図は本発明の他の実施例を示す平面図、第
10図および第11図はそれぞれ第9図のA―
A′断面図、B―B′断面図である。
FIG. 9 is a plan view showing another embodiment of the present invention, and FIGS. 10 and 11 are A--A in FIG. 9, respectively.
They are an A' cross-sectional view and a B-B' cross-sectional view.

この実施例に於いては、論理回路内の回路的に
必要な抵抗103をP型拡散層52として作り込
む島3に、第6図に示す第4領域5と同等の作用
をさせるための領域51を設け、該領域51に高
濃度のN型不純物を拡散し、領域61を形成しこ
の部分をトンネル配線としたことを特徴としてい
る。この場合においても高濃度N形不純物より成
る配線トンネル領域61と領域51又は4と、領
域62の間でNPNトランジスタが形成され等価
回路は第8図で示されることは明らかである。
In this embodiment, an area is provided in the island 3 in which the circuit-required resistor 103 in the logic circuit is formed as a P-type diffusion layer 52 to have the same effect as the fourth area 5 shown in FIG. 51 is provided, and a high concentration of N-type impurity is diffused into the region 51 to form a region 61, and this portion is used as a tunnel wiring. It is clear that even in this case, an NPN transistor is formed between the wiring tunnel region 61 made of high concentration N-type impurity, the region 51 or 4, and the region 62, and the equivalent circuit is shown in FIG.

なお、アルミニウム配線96および高濃度N型
領域62は抵抗103(P型拡散層52)のため
に必要なものである。
Note that the aluminum wiring 96 and the heavily doped N-type region 62 are necessary for the resistor 103 (P-type diffusion layer 52).

これらの実施例においては、入力引き出し電流
に伴なう入力点の負の電圧の落ち込みは例えば所
定の条件・配置関係において−13Vから−0.9Vに
改善される。
In these embodiments, the drop in the negative voltage at the input point due to the input draw current is improved, for example, from -13V to -0.9V under predetermined conditions and arrangement relationships.

以上詳細に説明したように本発明によれば、ベ
ース電極配線は必要がないし、Vcc配線も若干の
レイアウトの修正をすればよいので占有面積をほ
とんど増加させることなく極めて優れた入力クラ
ンプ特性を有する半導体集積回路装置を得ること
ができる。
As explained in detail above, according to the present invention, there is no need for base electrode wiring, and the layout of Vcc wiring only needs to be slightly modified, so that extremely excellent input clamping characteristics can be achieved without increasing the occupied area. A semiconductor integrated circuit device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の半導体集積回路装置の一例で
ある入力クランプダイオードを有する通常の
TTLの一回路例を示す回路接続図、第2図はト
ンネル配線構造により入力クランプダイオードを
構成した従来の半導体集積回路装置を説明するた
めの平面図、第3図は第2図のA―A′断面図、
第4図は第2〜第4図で示される従来例の等価回
路図、第5図は本発明の一実施例を示す平面図、
第6図は第5図のA―A′断面図、第7図は第5
図のB―B′断面図、第8図は本発明構造の一実施
例の等価回路図、第9図は本発明の他の実施例を
示す平面図、第10図は第9図のA―A′断面
図、第11図は第9図のB―B′断面図である。 201……入力端子、202,203,21
0,101……ダイオード、204,206,2
08,211,103……抵抗、205,20
7,209,212,102…トランジスタ、2
14……Vcc端子、213……出力端子、1,
4,5,51,52……P型半導体、2,3,
6,61,62……N型半導体、7……絶縁体、
91〜96……アルミニウム配線、100…ボン
デイングパツド。
Figure 1 shows a typical semiconductor integrated circuit device with an input clamp diode, which is an example of a conventional semiconductor integrated circuit device.
A circuit connection diagram showing an example of a TTL circuit, FIG. 2 is a plan view illustrating a conventional semiconductor integrated circuit device in which an input clamp diode is constructed using a tunnel wiring structure, and FIG. 3 is A-A of FIG. 2. 'Cross-sectional view,
FIG. 4 is an equivalent circuit diagram of the conventional example shown in FIGS. 2 to 4, and FIG. 5 is a plan view showing an embodiment of the present invention.
Figure 6 is a sectional view taken along line A-A' in Figure 5, and Figure 7 is a cross-sectional view of Figure 5.
8 is an equivalent circuit diagram of one embodiment of the structure of the present invention, FIG. 9 is a plan view showing another embodiment of the present invention, and FIG. 10 is A of FIG. 9. -A' sectional view, and FIG. 11 is a BB' sectional view in FIG. 201...Input terminal, 202, 203, 21
0,101...Diode, 204,206,2
08,211,103...Resistance, 205,20
7,209,212,102...Transistor, 2
14...Vcc terminal, 213...Output terminal, 1,
4, 5, 51, 52...P-type semiconductor, 2, 3,
6, 61, 62...N-type semiconductor, 7...Insulator,
91-96... Aluminum wiring, 100... Bonding pad.

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型半導体基板、該第1導電型半導体
基板上に形成された第2導電型半導体層、該第2
導電型半導体層を複数の第2導電型第1領域に
PN接合で分離する第1導電型第2領域、前記第
2導電型第1領域内に設けられた高濃度第2導電
型第3領域を入力配線層とする半導体集積回路装
置において、前記第1導電型半導体第2領域と少
なくとも一部重なつて第2導電型半導体第1領域
に形成された第1導電型第4領域を有し、該第1
導電型第4領域に前記高濃度第2導電型第3領域
を設け、前記第1導電型第2領域又は第4領域に
接地電極を設けたことを特徴とする半導体集積回
路。
1 a first conductive type semiconductor substrate, a second conductive type semiconductor layer formed on the first conductive type semiconductor substrate, and a second conductive type semiconductor layer formed on the first conductive type semiconductor substrate;
A conductive type semiconductor layer is formed into a plurality of second conductive type first regions.
In a semiconductor integrated circuit device in which an input wiring layer is a second region of a first conductivity type separated by a PN junction and a third region of a high concentration second conductivity type provided in the first region of the second conductivity type, the first a fourth region of the first conductivity type formed in the first region of the second conductivity type semiconductor so as to at least partially overlap the second region of the semiconductor of the second conductivity type;
A semiconductor integrated circuit characterized in that the third region of the high concentration second conductivity type is provided in the fourth region of the conductivity type, and a ground electrode is provided in the second region or the fourth region of the first conductivity type.
JP12557178A 1978-10-11 1978-10-11 Semiconductor integrated circuit device Granted JPS5552240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12557178A JPS5552240A (en) 1978-10-11 1978-10-11 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12557178A JPS5552240A (en) 1978-10-11 1978-10-11 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS5552240A JPS5552240A (en) 1980-04-16
JPS6128218B2 true JPS6128218B2 (en) 1986-06-28

Family

ID=14913474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12557178A Granted JPS5552240A (en) 1978-10-11 1978-10-11 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5552240A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58143565A (en) * 1982-02-19 1983-08-26 Matsushita Electronics Corp Semiconductor circuit wiring body
JPS61240668A (en) * 1985-04-17 1986-10-25 Sanyo Electric Co Ltd Semiconductor integrated circuit

Also Published As

Publication number Publication date
JPS5552240A (en) 1980-04-16

Similar Documents

Publication Publication Date Title
US5027183A (en) Isolated semiconductor macro circuit
US4599631A (en) Semiconductor apparatus having a zener diode integral with a resistor-transistor combination
US4631570A (en) Integrated circuit having buried oxide isolation and low resistivity substrate for power supply interconnection
KR930001220B1 (en) Semiconductor intergrated circuit device and manufacture thereof
US3659162A (en) Semiconductor integrated circuit device having improved wiring layer structure
JPS6128218B2 (en)
US4595942A (en) Integrated circuit
JPS5848956A (en) Integrated circuit
EP0037930B1 (en) Semiconductor memory device
JP2627330B2 (en) Voltage drop control diode
JPH0955471A (en) Surge protective circuit
US20040120085A1 (en) Semiconductor device with surge protection circuit
JP3483174B2 (en) Composite circuit components
US4577123A (en) Integrated logic circuit having collector node with pull-up and clamp
US4134124A (en) Semiconductor devices and circuit arrangements including such devices
JP2518929B2 (en) Bipolar semiconductor integrated circuit
JP2833913B2 (en) Bipolar integrated circuit device
JPS61210668A (en) Semiconductor device
US4785339A (en) Integrated lateral PNP transistor and current limiting resistor
EP0537782A1 (en) Semicustom-made integrated circuit device with resistors over transistor array
JP2001230260A (en) Semiconductor device and manufacturing method thereof
JPS5984541A (en) Semiconductor device
JPS6332259B2 (en)
JPH0336308B2 (en)
JPH0750783B2 (en) Electrostatic protection circuit