JPS61255238A - Fuel controller for engine - Google Patents

Fuel controller for engine

Info

Publication number
JPS61255238A
JPS61255238A JP9852885A JP9852885A JPS61255238A JP S61255238 A JPS61255238 A JP S61255238A JP 9852885 A JP9852885 A JP 9852885A JP 9852885 A JP9852885 A JP 9852885A JP S61255238 A JPS61255238 A JP S61255238A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
engine
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9852885A
Other languages
Japanese (ja)
Inventor
Seishi Wataya
綿谷 晴司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP9852885A priority Critical patent/JPS61255238A/en
Priority to DE8686902028T priority patent/DE3663380D1/en
Priority to EP19860902028 priority patent/EP0222019B1/en
Priority to PCT/JP1986/000146 priority patent/WO1986006792A1/en
Publication of JPS61255238A publication Critical patent/JPS61255238A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/149Replacing of the control value by an other parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To obtain the always superior combustion state by controlling the valve opening time of an injection valve according to the output of an air flow sensor when the output of an air-fuel ratio sensor is in lean side and carrying out the air-fuel ratio feedback control by using the output of the air flow sensor when the output is in rich side. CONSTITUTION:A heating wire type air flow sensor 7 is installed onto the upstream side of a throttle valve 6 in an intake pipe 5 whose downstream edge is connected to a surge tank 4. An air-fuel ratio sensor 10 for detecting the air-fuel ratio on the rich side on the basis of the exhaust gas component is installed onto an exhaust system, and the output signal is input into a controller 8. When the output signal of the air-fuel ratio sensor 10 is in the rich side with respect to a prescribed value previously determined, the because of the controller 8 valve opening time of a fuel injection valve 3 is controlled on the basis of the output signal of the air flow sensor 7. When the output signal of the air-fuel ratio sensor 10 shows rich, feedback control is performed so that the air-fuel ratio becomes equal to said prescribed value on the basis of the output signal of the air-fuel ratio sensor 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、熱放散原理に基づくエアフローセンサ(た
とえば熱線式エアフローセンサンを用いたガソリンエン
ジンの燃料噴射する場合に、特に高負荷時の空燃比精度
を改良したエンジンの燃料制御装置に関する。
Detailed Description of the Invention [Industrial Field of Application] This invention is applicable to fuel injection into a gasoline engine using an air flow sensor based on the heat dissipation principle (for example, a hot wire type air flow sensor), especially when the air flow sensor is used under high load. The present invention relates to an engine fuel control device with improved fuel ratio accuracy.

〔従来の技術〕[Conventional technology]

第6図は従来のエンジンの燃料制御装置の構成を示す図
である。この第6図において、1はエンジン、2は吸気
マニホールドである。この吸気マニホールr2に電磁式
の燃料噴射弁3が設けられており、燃料噴射弁3は制御
装置8により制御されるようになっている。
FIG. 6 is a diagram showing the configuration of a conventional engine fuel control device. In this FIG. 6, 1 is an engine and 2 is an intake manifold. An electromagnetic fuel injection valve 3 is provided in this intake manifold r2, and the fuel injection valve 3 is controlled by a control device 8.

また、吸気マニホールP2けサージタンク4に連結され
ており、サージタンク41′i吸気管5に連結されてい
る。吸気管5内には、絞シ弁6が配設されている。この
吸気管5には、熱線式のエアフローセンサ7が設ケられ
ている。エアフローセンサ7の出力は制御装置8に送ら
れるようにしている。 ′ また、エンジン1の回転数は回転検出器9で検出し、そ
の検出出力は制御装置Bに送るようにしている。制御装
置8はこの回転検出器9の出力とエアフローセンサ7の
出力により、燃料噴射弁3を制御するようにしている。
Further, the intake manifold P2 is connected to the surge tank 4, and the surge tank 41'i is connected to the intake pipe 5. A throttle valve 6 is disposed within the intake pipe 5. This intake pipe 5 is provided with a hot wire type air flow sensor 7. The output of the air flow sensor 7 is sent to a control device 8. ' Also, the rotation speed of the engine 1 is detected by a rotation detector 9, and the detection output is sent to the control device B. The control device 8 controls the fuel injection valve 3 based on the output of the rotation detector 9 and the output of the air flow sensor 7.

制御装置8は第7図に示すように構成され、エアフロー
センサ7の出力はA/Dコンバータ81でディジタル信
号に変換して、マイクロプロセッサ83に送出するよう
になっている。
The control device 8 is configured as shown in FIG. 7, and the output of the air flow sensor 7 is converted into a digital signal by an A/D converter 81 and sent to a microprocessor 83.

また、回転検出器9の出力はインタフェース回路82を
通してマイクロプロセッサ83に送出するようになって
いる。マイクロプロセッサ83はこのように、エアフロ
ーセンサ7の出力と回転検出器9からの情報に基づいて
、所要燃料量を演算し、アンプ86で増幅した後、燃料
噴射弁3を制御するようにしている。
Further, the output of the rotation detector 9 is sent to a microprocessor 83 through an interface circuit 82. In this way, the microprocessor 83 calculates the required amount of fuel based on the output of the air flow sensor 7 and the information from the rotation detector 9, amplifies it with the amplifier 86, and then controls the fuel injection valve 3. .

マイクロプロセッサ83には、RAM84、ROM85
が接続されている。RAM84は演算時に使用され、R
OM85は演算手順や制御データを記憶している。
The microprocessor 83 includes RAM 84 and ROM 85.
is connected. RAM84 is used during calculation, and R
The OM85 stores calculation procedures and control data.

次に動作について説明する。エンジン1が絞シ全開(W
OT)近傍以外の運転状態では、エアフローセンサ7か
ら得られる出力は、第8図の(alに示すように正常な
りップルを含んだ波形となり、この波形の面積を計算す
れば、真の吸入空気量が得られるので、マイクロプロセ
ッサ83で吸入空気量をエンジン回転数で除算した値に
基づいて燃料噴射弁3の駆動)にルス幅を制御すれば、
H[望の空燃比を制御することができる。
Next, the operation will be explained. Engine 1 is fully throttled (W
In operating conditions other than near OT), the output obtained from the air flow sensor 7 has a normal waveform that includes some pulls, as shown in (al) in Figure 8, and if the area of this waveform is calculated, it can be determined that the true intake air Since the amount is obtained, if the microprocessor 83 controls the pulse width of the fuel injection valve 3 based on the value obtained by dividing the intake air amount by the engine speed,
H [The desired air-fuel ratio can be controlled.

しかし、WOT近傍の特定回転数領域(一般的には、1
000〜3000 ppm )においては、エンジン1
からの吹返しによってエアフローセンサ7の出力波形は
第8図の(b)に示すようになシ、斜線で表わした部分
が真の空気針に対して余分に加算されてしまう。
However, a specific rotation speed region near WOT (generally 1
000-3000 ppm), engine 1
Due to the air blowback, the output waveform of the air flow sensor 7 becomes as shown in FIG. 8(b), and the shaded portion is added to the true air needle.

これは熱線式のエアフローセンサ7が空気の流れ方向に
力)かわらず、吸気量として検出して出力することに起
因している。
This is because the hot wire type air flow sensor 7 detects and outputs the intake air amount regardless of the force in the air flow direction.

この吹返しによる検出誤差は第9図に示すごとく、回転
数によって異なり、通常は吸気管負圧が−50mnHg
近傍から生じ、WOT領域では最大5゜チに達する。
As shown in Figure 9, the detection error due to this blowback varies depending on the rotation speed, and normally the intake pipe negative pressure is -50 mnHg.
It originates from the vicinity and reaches a maximum of 5° in the WOT region.

このような大きな誤差を含む値を用いて燃料量を算出し
て噴射すると、空燃比は大幅にリッチとなり、実用に供
し得ないので、従来は第10図に示すごとく、吹返しに
よって誤差を生ずる領域aに対して、エンジンに対応し
て決まる最大空気量を上限値として(破線で示した値)
制御装置8内のROM85に記憶しておき、第8図の(
b)に示すヨウニ、この値を越えたエアフローセンサ7
の検出値を無視して、上限値でクリップすることによシ
、空燃比が過濃になるのを抑制している。
If the fuel amount is calculated and injected using a value that includes such a large error, the air-fuel ratio will become significantly richer and cannot be used for practical purposes. Conventionally, as shown in Figure 10, an error is caused by blowback. For region a, the maximum air amount determined according to the engine is the upper limit (value shown by the broken line)
It is stored in the ROM 85 in the control device 8, and the (
Air flow sensor 7 shown in b) exceeds this value.
By ignoring the detected value and clipping it at the upper limit value, the air-fuel ratio is suppressed from becoming excessively rich.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、この上限値は低地(sea 1evel )
で常温において対象となるエンジンの吸入空気量特性に
合わせて設定さざるを得ないため、必然的に低地で常温
における質量流量の上限値となる。
By the way, this upper limit is lowland (sea 1 level)
Since it has to be set according to the intake air flow characteristics of the target engine at room temperature, it inevitably becomes the upper limit of the mass flow rate at room temperature at low altitudes.

しかるに、たとえば、大気密度の低い高地走行において
高負荷運転されると、エアフローセンサ7の出力レベル
は第8図の(e)に示すように平均値が予め定めだ上限
値に達しないため吹き返しを含む出力レベルの平均値が
そのまま燃料演算に用いられ、第11図に示すごとく、
高度に対して空燃比が大幅妬過濃になってしまうという
欠点を有している。
However, if the air flow sensor 7 is operated under high load while driving at high altitudes where the air density is low, the average value of the output level of the air flow sensor 7 will not reach the predetermined upper limit as shown in (e) of FIG. The average value of the included output levels is used as is for fuel calculation, and as shown in Figure 11,
The drawback is that the air-fuel ratio becomes significantly richer as the altitude increases.

このように、従来、熱線式エアフローセンサを用いて4
気筒エンジンの吸入空気量を検出する場合、絞シ弁を全
開にすると吸入空気がエアフローセンサに対して吹返し
による逆流現象を生じるため、エアフローセンサは真の
吸入空気量を検出できず、出力は真の値よシ大きくなり
誤差を生じてしまう。
In this way, conventionally, a hot wire air flow sensor has been used to
When detecting the amount of intake air in a cylinder engine, when the throttle valve is fully opened, the intake air blows back against the airflow sensor, causing a backflow phenomenon, so the airflow sensor cannot detect the true amount of intake air, and the output is It becomes larger than the true value and causes an error.

この誤差の値は大きいときには約50%に達するため、
そのままの値を用いて燃料量を算出すると、空燃比が大
幅にリッチとなり、エンジンの運転が不能になる。
This error value reaches approximately 50% when it is large, so
If the fuel amount is calculated using the same value, the air-fuel ratio will become significantly rich, making it impossible to operate the engine.

このため、従来はエンジンの吸入空気量特性に合せて予
めエアフローセンサ出力の上限値を制御装置内のメモリ
に記憶しておき、エアフローセンサの出゛力値が吹返し
によシ異常に大きくなっても空燃比に大きな誤差が生じ
ないようにしていた。
For this reason, conventionally, the upper limit value of the airflow sensor output is stored in advance in the memory of the control device according to the intake air amount characteristics of the engine, and the output value of the airflow sensor is abnormally large due to blowback. This was done to prevent large errors in the air-fuel ratio.

しかし、この方法では、上限値を低地の常温近辺でエン
ジンに合せて決定するため、高地走行や高低温雰囲気で
は空燃比の誤差が大きくなるという欠点を有していた。
However, this method has the disadvantage that the upper limit value is determined in accordance with the engine at low altitudes near room temperature, and the error in the air-fuel ratio increases when driving at high altitudes or in high-temperature atmospheres.

この発明は、かかる問題点を解決するためになされたも
ので、大気圧(高地)や吸気温度による空燃比誤差を除
去でき、エンジンのあらゆる運転条件において、安定し
た燃焼状態を確保できるエンジンの燃料制御装置を得る
ことを目的とする。
This invention was made to solve these problems, and is an engine fuel that can eliminate air-fuel ratio errors caused by atmospheric pressure (at high altitudes) and intake air temperature, and can ensure stable combustion under all engine operating conditions. The purpose is to obtain a control device.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

この発明に係るエンジンの燃料制御装置は、排気ガス成
分からリッチ領域の空燃比の検出が可能な空燃比センサ
を設けたものである。
A fuel control device for an engine according to the present invention is provided with an air-fuel ratio sensor capable of detecting an air-fuel ratio in a rich region from exhaust gas components.

〔作 用〕[For production]

この発明においては、空燃比センサを用いて空燃比が所
定値以上リッチにならないようにフィードバック制御を
行い、吸入空気の吹返しによって生じるエアフローセン
サ出力信号の異常増加があっても、空燃比センサでリッ
チ化ヲ所定値にクリップする。
In this invention, feedback control is performed using the air-fuel ratio sensor to prevent the air-fuel ratio from becoming richer than a predetermined value, and even if there is an abnormal increase in the air flow sensor output signal caused by blowback of intake air, the air-fuel ratio sensor Clip the enrichment to a predetermined value.

〔実施例〕〔Example〕

以下、この発明のエンジンの燃料制御装置の実施例につ
いて図面に基づき説明する。第1図はその一実施例の構
成全示す図であり、この第1図において、第6図と同一
部分には同一符号を付してその構成の説明を省略し、第
6図とは異なる部分を主体に述べる。
Embodiments of the engine fuel control device of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the entire configuration of one embodiment. In FIG. 1, the same parts as in FIG. I will mainly discuss the parts.

この第1図を第6図と比較しても明らかなように、第1
図では第6図の構成に新たに空燃比センサ10i設けた
ものであり、との空燃比センサ10はエンジン]の排気
ガス成分から空燃比i 1Jニアに検出可能なものであ
る。その他の構成は第6図と同様である。
As is clear from comparing Figure 1 with Figure 6,
In the figure, an air-fuel ratio sensor 10i is newly added to the configuration shown in FIG. 6, and the air-fuel ratio sensor 10 is capable of detecting an air-fuel ratio i1J from the exhaust gas components of the engine. The other configurations are the same as in FIG. 6.

この空燃比センサ10は第2図に示すように、制御装置
8内のA/Dコンノ々−夕81に出力を送出するように
している。この第2図は従来の第7図に示す制御装置に
対応するもので、この第2図の構成も第7図の構成に新
たに空燃比センサ10の出力’k A/Dコンバータ8
1に送出するように構成した点が第7図と異なるもので
あシ、その他の構成は第7図と同様である。
As shown in FIG. 2, this air-fuel ratio sensor 10 is configured to send an output to an A/D controller 81 within the control device 8. This FIG. 2 corresponds to the conventional control device shown in FIG. 7, and the configuration of this FIG. 2 also has a new configuration in FIG.
The difference from FIG. 7 is that the configuration is configured so that the data is sent to 1, and the other configurations are the same as FIG. 7.

空燃比をリニアに検出可能なセンサとしては従来から理
論空燃比点でスイッチング特性を示すジルコニアタイプ
の酸素電池(片側が大気で他の一万が酸素ポンプの影響
を受ける排気ガスが供給される)と酸素ポンプとを組合
せたものが周知であシ、排気ガス中の成分であるNOx
、Co 中の酸素全還元して酸素電池の反大気圧側に酸
素を供給するように酸素ポンプに電圧を印加し、作動さ
せるととにより、リッチ側の空燃比をも検出できること
が確められている。この空燃比センサ10の空燃比に対
する出力電圧は第3図に示すようになっている。
As a sensor capable of linearly detecting the air-fuel ratio, a zirconia-type oxygen battery that exhibits switching characteristics at the stoichiometric air-fuel ratio point has traditionally been used (one side is the atmosphere and the other side is supplied with exhaust gas that is affected by the oxygen pump). A combination of an oxygen pump and an oxygen pump is well known.
It was confirmed that the air-fuel ratio on the rich side could also be detected by applying a voltage to the oxygen pump and operating it so as to completely reduce the oxygen in Co2 and supply oxygen to the anti-atmospheric pressure side of the oxygen cell. ing. The output voltage of the air-fuel ratio sensor 10 with respect to the air-fuel ratio is as shown in FIG.

以上の構成において、エンジン1が全負荷まで運転され
たときの動作を第4図のタイムチャートと第5図のフロ
ーチャートにしだがって詳細に説明する。第4図(a)
に示すごとくスロットル開度ヲ犬きくしてゆくと吸入空
気の吹返しによってエアフローセンサ7の出力が真値よ
り過大となるため、空燃比は第4図(b)の(a)のよ
うにリッチ側に犬きく変動し、燃焼不完全になるが、空
燃比センサ10によシ実際の空燃比を検出しα(たとえ
ば空燃比12)なる値に達すると、空燃比がαを中心と
して曲線(b)のように、燃料噴射弁3のノぐルス幅(
第4図(C))も(blのようにフィードバック制御さ
れるので安定な燃焼状態が確保できる。
In the above configuration, the operation when the engine 1 is operated to full load will be explained in detail with reference to the time chart of FIG. 4 and the flow chart of FIG. 5. Figure 4(a)
As shown in Figure 4(b), as the throttle opening increases, the output of the airflow sensor 7 becomes excessive than the true value due to the blowback of intake air, so the air-fuel ratio shifts to the rich side as shown in (a) of Figure 4(b). However, when the air-fuel ratio sensor 10 detects the actual air-fuel ratio and reaches a value α (for example, air-fuel ratio 12), the air-fuel ratio changes to a curve (b) centered around α. ), the noggle width of the fuel injector 3 (
FIG. 4(C)) is also feedback-controlled like (bl), so a stable combustion state can be ensured.

実際の制御手順としては、第5図に示すように、ステッ
プ100で主要)ξラメータである吸入空気量Qaとエ
ンジン回転数Ne f読み込み、次のステップ101で
これらの入力情報から燃料噴射弁3の駆動ノξルス幅τ
Bk演算し、次のステップ102で空燃比センサ10の
出力が予め定めた空燃比α(たとえば12)よシ大きい
か否かを判定し、大きければ(リーン側)最終の駆動ノ
ξルス幅τはτBに決定される(ステップ104)。
In the actual control procedure, as shown in FIG. 5, in step 100, the main ξ parameters, ie, the intake air amount Qa and the engine speed Nef are read, and in the next step 101, the fuel injection valve 3 is read from these input information. Driving nose ξ width τ
Bk is calculated, and in the next step 102, it is determined whether the output of the air-fuel ratio sensor 10 is larger than a predetermined air-fuel ratio α (for example, 12), and if it is larger (lean side), the final drive noise ξ pulse width τ is determined. is determined to be τB (step 104).

もし、エアフローセンサ7が吹返しの影響を受けて、燃
料噴射弁3の駆動パルス幅τBが過大となり空燃比がα
よジ小さければ(リッチ側)、ステップ105で第4図
(e)のように、フラグをセットし、ステップ106で
第4図(d)のように、積分補正項(CFB) ’e4
Xさい側にシフトさせてゆき、ステップ1.08〜11
0で第4図(c)のように、インジェクタの駆動ノぐル
ス幅τC=τB X CFBとして空燃比をリーン側に
シフトさせる。
If the air flow sensor 7 is affected by blowback, the driving pulse width τB of the fuel injection valve 3 becomes excessive and the air-fuel ratio becomes α.
If the deviation is small (rich side), a flag is set in step 105 as shown in FIG. 4(e), and an integral correction term (CFB) 'e4 is set in step 106 as shown in FIG. 4(d).
Shift to the X side, steps 1.08 to 11
0, the air-fuel ratio is shifted to the lean side by setting the injector driving noggle width τC=τB X CFB as shown in FIG. 4(c).

その結果、空燃比はαよりも太キ<(リーン側)なると
、ステップ102〜107で積分補正項(CpB)’e
第4図(dlのように大きくしてゆきリッチ側にシフト
させる。
As a result, if the air-fuel ratio becomes thicker than α (lean side), the integral correction term (CpB) 'e
Fig. 4 (Increase as dl and shift to rich side.

この動作が繰返されて、実際の空燃比は前述のように空
燃比αを中心にフィードバック制御される。この動作は
フィートノセック制御による燃料噴射弁3の駆動パルス
幅τCが、吸入空気量Qaと回転数Neから算出された
燃料噴射弁3の駆動ノクルス幅τBよジも小さい間継続
し、τCがτBよりも大きくなると、ステップ111で
フラグがリセットされて燃料噴射弁3はτBなる)ぐル
ス幅で制御される。
This operation is repeated, and the actual air-fuel ratio is feedback-controlled around the air-fuel ratio α as described above. This operation continues while the drive pulse width τC of the fuel injection valve 3 due to the foot nosec control is smaller than the drive pulse width τB of the fuel injection valve 3 calculated from the intake air amount Qa and the rotational speed Ne, and τC When it becomes larger than τB, the flag is reset in step 111, and the fuel injection valve 3 is controlled with a pulse width of τB.

以上の説明において、リッチ側の空燃比がリニアに検出
可能な空燃センサ10を用いてフィートノセック制御を
行なわせたが、空燃比センサ10の特性としては所定空
燃比(たとえば12)でスイッチング的に出力が反転す
るものを用いても同様の効果が得られることは言うまで
もない。
In the above explanation, the air-fuel ratio sensor 10 capable of linearly detecting the air-fuel ratio on the rich side was used to perform foot nosec control. It goes without saying that the same effect can be obtained by using a device whose output is reversed.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上説明したとおり、リッチ側の空燃比を
空燃比センサで検出して、エンジンの全開領域における
吸入空気の吹返し現象に伴う空燃比誤差を抑制するよう
にしたので、エンジンのあらゆる運転条件において安定
な燃焼状態全確保できる。
As explained above, this invention detects the air-fuel ratio on the rich side with an air-fuel ratio sensor and suppresses air-fuel ratio errors caused by the blowback phenomenon of intake air in the fully open region of the engine. A stable combustion state can be ensured under all operating conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のエンジンの燃料制御装置の一実施例
の全体の構成を示す図、第2図は第1図のエンジンの燃
料制御装置における制御装置の内部構成を示すブロック
図、第3図はこの発明のエンジンの燃料制御装置におけ
る空燃比センサの特性図、第4図はこの発明の詳細な説
明するためのタイムチャート、第5図はこのエンジンの
燃料制御装置の動作の流れを示すフローチャート、第6
図は従来のエンジンの燃料制御装置の全体の構成を示す
図、第7図は第6図のエンジンの燃料制御装置忙おける
制御装置の内部構成を示すブロック図、第8図は第6図
のエンジンの燃料制御装置におけるエアフローセンサの
特性図、第9図/fi第6図のエンジンの燃料制御装置
におけるエアフローセンサの検出誤差を示す図、第10
図は同上エアフローセンサのエンジンの回転数に対する
出力特性図、第11図は従来のエンジンの燃料制御装置
における同上エアフローセンサによる高度に対する誤差
を示す図である。 1・・・エンジン、3・・・燃料噴射弁、6・・・絞シ
弁、7・・・エアフローセンサ、8・・・制御装置、9
・・・回転検出器、10・・・空燃比センサ。 なお、図中同一符号は同一またけ相当部分を示す。 代理人   大  岩  増  雉 第1図 2:可V薩マニホールド 3ニス′?9→螺I碑弁 4:ザー7タノク 5:槻砦管 6:重文り弁 7:エアフローセンサ 9:回畢T不灸用型 1〇二空ip’几13ン“iブー セl對報袂寸月砕騎目 第11図 (m)
FIG. 1 is a diagram showing the overall configuration of an embodiment of the engine fuel control device of the present invention, FIG. 2 is a block diagram showing the internal configuration of the control device in the engine fuel control device of FIG. 1, and FIG. The figure is a characteristic diagram of the air-fuel ratio sensor in the fuel control device for an engine of this invention, FIG. 4 is a time chart for explaining the invention in detail, and FIG. 5 is a flowchart of the operation of the fuel control device for this engine. Flowchart, No. 6
The figure shows the overall configuration of a conventional engine fuel control device, FIG. 7 is a block diagram showing the internal configuration of the engine fuel control device shown in FIG. 6, and FIG. A characteristic diagram of the air flow sensor in the engine fuel control device, Fig. 9/fi A diagram showing the detection error of the air flow sensor in the engine fuel control device of Fig. 6, Fig. 10
The figure is a diagram showing the output characteristics of the above air flow sensor with respect to the engine rotation speed, and FIG. 11 is a diagram showing the error with respect to altitude due to the above air flow sensor in a conventional engine fuel control device. DESCRIPTION OF SYMBOLS 1... Engine, 3... Fuel injection valve, 6... Throttle valve, 7... Air flow sensor, 8... Control device, 9
... Rotation detector, 10... Air-fuel ratio sensor. Note that the same reference numerals in the figures indicate parts corresponding to the same straddle. Agent Masu Oiwa Pheasant Figure 1 2: Possible V Satsuma manifold 3 varnish'? 9 → Screw I Monument Valve 4: Zar 7 Tanok 5: Tsuki Fortress Pipe 6: Heavy Monument Valve 7: Air Flow Sensor 9: Regeneration T Moxibustion Type 102 Sky IP'几 13 N'i Bucerl Newsletter Sungetsu-Haikime Figure 11 (m)

Claims (1)

【特許請求の範囲】[Claims] エンジンの吸入空気量を熱放散原理に基づき検出するエ
アフローセンサ、上記エンジンの排出ガス成分に基づき
リッチ側の空燃比を検出する空燃比センサ、上記エンジ
ンに燃料を噴射する電磁式の燃料噴射弁、上記空燃比セ
ンサの信号が予め定められた所定値よりもリーンを示す
ときは上記エアフローセンサの信号を主パラメータとし
て上記燃料噴射弁の開弁時間を制御しかつ上記空燃比セ
ンサの信号が上記所定値よりもリッチを示すときは上記
空燃比センサの信号に基づいて空燃比が上記所定値にな
るようにフィードバック制御する制御装置を備えてなる
ことを特徴とするエンジンの燃料制御装置。
an air flow sensor that detects the intake air amount of the engine based on the heat dissipation principle; an air-fuel ratio sensor that detects a rich air-fuel ratio based on the exhaust gas components of the engine; an electromagnetic fuel injection valve that injects fuel into the engine; When the signal of the air-fuel ratio sensor indicates leaner than the predetermined value, the valve opening time of the fuel injection valve is controlled using the signal of the air flow sensor as a main parameter, and the signal of the air-fuel ratio sensor is set to the predetermined value. 1. A fuel control device for an engine, comprising: a control device that performs feedback control so that the air-fuel ratio becomes the predetermined value based on a signal from the air-fuel ratio sensor when the air-fuel ratio is richer than the predetermined value.
JP9852885A 1985-05-07 1985-05-07 Fuel controller for engine Pending JPS61255238A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9852885A JPS61255238A (en) 1985-05-07 1985-05-07 Fuel controller for engine
DE8686902028T DE3663380D1 (en) 1985-05-07 1986-03-27 Fuel controller for engine
EP19860902028 EP0222019B1 (en) 1985-05-07 1986-03-27 Fuel controller for engine
PCT/JP1986/000146 WO1986006792A1 (en) 1985-05-07 1986-03-27 Fuel controller for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9852885A JPS61255238A (en) 1985-05-07 1985-05-07 Fuel controller for engine

Publications (1)

Publication Number Publication Date
JPS61255238A true JPS61255238A (en) 1986-11-12

Family

ID=14222172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9852885A Pending JPS61255238A (en) 1985-05-07 1985-05-07 Fuel controller for engine

Country Status (4)

Country Link
EP (1) EP0222019B1 (en)
JP (1) JPS61255238A (en)
DE (1) DE3663380D1 (en)
WO (1) WO1986006792A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5616264B2 (en) * 2011-03-24 2014-10-29 株式会社ケーヒン Engine control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543292A (en) * 1978-09-20 1980-03-27 Bosch Gmbh Robert Device for determining fuel quantity signal for internal combustion engine
JPS55139938A (en) * 1979-04-19 1980-11-01 Japan Electronic Control Syst Co Ltd Suction air amount computing method of internal combustion engine
JPS57148041A (en) * 1981-03-09 1982-09-13 Suzuki Motor Co Ltd Controller of air-fuel ratio in carburetor
JPS58131329A (en) * 1982-01-29 1983-08-05 Nippon Denso Co Ltd Fuel injection controlling method
JPS603446A (en) * 1983-06-21 1985-01-09 Mitsubishi Electric Corp Air-fuel ratio controller of engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2229928C3 (en) * 1972-06-20 1981-03-19 Robert Bosch Gmbh, 7000 Stuttgart Method and device for reducing harmful components of exhaust gas emissions from internal combustion engines
DE2417187C2 (en) * 1974-04-09 1982-12-23 Robert Bosch Gmbh, 7000 Stuttgart Method and device for regulating the operating behavior of an internal combustion engine
GB1568960A (en) * 1975-10-22 1980-06-11 Lucas Industries Ltd Fuel control system for an internal combustion engine
DE2633617C2 (en) * 1976-07-27 1986-09-25 Robert Bosch Gmbh, 7000 Stuttgart Method and device for determining setting variables in an internal combustion engine, in particular the duration of fuel injection pulses, the ignition angle, the exhaust gas recirculation rate
JPS6060019B2 (en) * 1977-10-17 1985-12-27 株式会社日立製作所 How to control the engine
JPS58150046A (en) * 1982-03-03 1983-09-06 Hitachi Ltd Fuel injection controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543292A (en) * 1978-09-20 1980-03-27 Bosch Gmbh Robert Device for determining fuel quantity signal for internal combustion engine
JPS55139938A (en) * 1979-04-19 1980-11-01 Japan Electronic Control Syst Co Ltd Suction air amount computing method of internal combustion engine
JPS57148041A (en) * 1981-03-09 1982-09-13 Suzuki Motor Co Ltd Controller of air-fuel ratio in carburetor
JPS58131329A (en) * 1982-01-29 1983-08-05 Nippon Denso Co Ltd Fuel injection controlling method
JPS603446A (en) * 1983-06-21 1985-01-09 Mitsubishi Electric Corp Air-fuel ratio controller of engine

Also Published As

Publication number Publication date
EP0222019A1 (en) 1987-05-20
DE3663380D1 (en) 1989-06-22
EP0222019B1 (en) 1989-05-17
WO1986006792A1 (en) 1986-11-20

Similar Documents

Publication Publication Date Title
US7200988B2 (en) Air-fuel ratio control system and method
US6374818B2 (en) Apparatus for determining a failure of an oxygen concentration sensor
JPS6118663B2 (en)
JPS61255238A (en) Fuel controller for engine
JPS62103437A (en) Suction device for engine
JPH01106936A (en) Control device for air-fuel ratio of internal combustion engine
JPS5898637A (en) Air-fuel ratio controlling device for internal combustion engine
JP3055378B2 (en) Control device for internal combustion engine
JP2867816B2 (en) Air-fuel ratio control device for internal combustion engine
WO2023223504A1 (en) Device and method for controlling oxygen storage amount in three-way catalyst
US8186336B2 (en) Fuel control system and method for improved response to feedback from an exhaust system
JP3997971B2 (en) Air-fuel ratio control device for internal combustion engine
JP2906052B2 (en) Engine exhaust recirculation control device
JP2517699B2 (en) Engine air-fuel ratio control device
JPH07119520A (en) Air-fuel ratio controller of engine
JPS6339785B2 (en)
JPH11173218A (en) Egr rate estimation device for engine
JPH0330601Y2 (en)
JPS6119815B2 (en)
JPS6260957A (en) Air-fuel ratio controller for internal combustion engine
JPH0151665B2 (en)
JPH0868353A (en) Air-fuel ratio control device for internal combustion engine
JPS6270632A (en) Air-fuel ratio control device of internal combustion engine
JPH045451A (en) Method for controlling air-fuel ratio of internal combustion engine
JPH0886249A (en) Exhaust gas recirculation control device for lean burn engine