JPS61200805A - Polyether sulfone microporous hollow yarn membrane and its production - Google Patents

Polyether sulfone microporous hollow yarn membrane and its production

Info

Publication number
JPS61200805A
JPS61200805A JP3868185A JP3868185A JPS61200805A JP S61200805 A JPS61200805 A JP S61200805A JP 3868185 A JP3868185 A JP 3868185A JP 3868185 A JP3868185 A JP 3868185A JP S61200805 A JPS61200805 A JP S61200805A
Authority
JP
Japan
Prior art keywords
membrane
polyether sulfone
water
hollow fiber
microporous hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3868185A
Other languages
Japanese (ja)
Inventor
Ryozo Hasegawa
長谷川 僚三
Eiichi Murakami
瑛一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP3868185A priority Critical patent/JPS61200805A/en
Publication of JPS61200805A publication Critical patent/JPS61200805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain a polyether sulfone hollow yarn membrane excellent in the separability of a solute and water transmitting flow flux, by forming a three-layered structure comprising dense layers in the vicinity of both surfaces and an intermediate layer having a reticulated structure so that the void ratio of a membrane as a whole is a specific range and the elongation of the membrane in a wet state is a specific value or more. CONSTITUTION:A raw spinning solution is prepared from polyether sulfone, a solvent such as dimethylsuloxide and water-soluble polyhydric alcohol such as polyethylene glycol to be extruded from the outer ring part of a double tube nozzle and a core solution is simultaneously emitted from the inner ring part to perform the spinning of a hollow yarn while the formed hollow yarn is guided to a water coagulation bath through the open air and subsequently washed with water. By this method, a polyether sulfone microporous hollow yarn membrane, of which the void ratio is 70-90% and the elongation in a wet state is 50% or more, having a three-layered structure is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は限外濾過等の水系溶液の濃縮、物質分離等の工
業的操作0発酵ないし細胞培養等の生物工業的操作およ
び濾過型人工腎臓、人工肺等の医学的応用に適するポリ
エーテルスルホン微孔中空糸膜に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention is applicable to industrial operations such as concentration of aqueous solutions such as ultrafiltration and separation of substances, bioindustrial operations such as fermentation and cell culture, and filtration type artificial kidneys. , relates to a polyethersulfone microporous hollow fiber membrane suitable for medical applications such as artificial lungs.

[従来技術] 近年、微多孔膜は電子工業用の超純水の製造、紙バルブ
排液等の工業排水処理、製糖工業等の分離精製、濾過型
人工腎臓、血漿分離、血漿アルブミン回収等の血液浄化
、除菌や脱パイ0ジエン用の精i濾過等の工業用ないし
医療用の分離精製技術に利用されてきている。
[Prior art] In recent years, microporous membranes have been used for the production of ultrapure water for the electronics industry, the treatment of industrial wastewater such as wastewater from paper valves, separation and purification in the sugar industry, filtration-type artificial kidneys, plasma separation, plasma albumin recovery, etc. It has been used in industrial and medical separation and purification techniques such as blood purification, sterilization, and filtration for depyrolysis and diene removal.

この様な目的のために、従来セルロースエステル系、ポ
リカーボネート系、ポリプロピレン系の微多孔質が用い
られている。多孔膜の製法としては、溶媒蒸発乾式法、
ミクロ相分離湿式法、フィルム延伸法、添加剤抽出法、
放射線照射後エツチング法等が公知である。しかしなが
らポリマー素材および微多孔膜構造とその安定性につい
て、とくに透過性能9機械的強度、耐熱性、耐溶剤性に
ついては必ずしも満足できるものではない。
For such purposes, microporous materials such as cellulose ester, polycarbonate, and polypropylene have been conventionally used. Porous membrane manufacturing methods include solvent evaporation drying method,
Microphase separation wet method, film stretching method, additive extraction method,
Etching methods after radiation irradiation are known. However, the polymer material, the microporous membrane structure, and its stability are not always satisfactory, especially in terms of permeability, mechanical strength, heat resistance, and solvent resistance.

かかる観点から、機械的強度、耐熱性、耐溶剤性におい
てすぐれた特性を具備するポリスルホン系の樹脂が注目
され、その微多孔膜に関していくつかの技術が開示され
ている。特公昭50−22508号公報および特公昭5
2−29712号公報がポリスルホン膜技術の源流であ
り、以降数多くの製膜利用技術が開示されている。すな
わち特開昭54−16381号公報、特開昭s4−ze
2g3号公報、および特開昭54−143777号公報
では、表面に緻密層を有し膜中間層にマクロボイド(フ
ィンガータイプ)を含む非対称膜構造のポリスルホン膜
が限外濾過等に応用されている。特開昭55−1062
43号公報、特開昭57−35906号公報、および特
開昭59−183761号公報では、微多孔膜構造を有
した膜で溶液分離等に応用されている。
From this point of view, polysulfone resins, which have excellent properties in terms of mechanical strength, heat resistance, and solvent resistance, have attracted attention, and several techniques have been disclosed regarding microporous membranes thereof. Special Publication No. 50-22508 and Special Publication No. 5
Publication No. 2-29712 is the origin of polysulfone membrane technology, and since then many membrane forming techniques have been disclosed. That is, JP-A-54-16381, JP-A-S4-ZE
2g3 and Japanese Patent Application Laid-open No. 54-143777, polysulfone membranes with an asymmetric membrane structure having a dense layer on the surface and macrovoids (finger type) in the middle layer of the membrane are applied to ultrafiltration, etc. . Japanese Patent Publication No. 55-1062
No. 43, JP-A-57-35906, and JP-A-59-183761 disclose membranes having a microporous membrane structure that are applied to solution separation and the like.

また特開昭56−81521号公報ではポリスルホン非
対称膜を用いて蛋白質溶液分離が試みられている。
Further, in JP-A-56-81521, an attempt has been made to separate protein solutions using a polysulfone asymmetric membrane.

これらの先行技術の実施例に用いられているポリスルホ
ンは、(I)式の繰返単位の構造を有するものである。
The polysulfones used in these prior art examples have a repeating unit structure of formula (I).

またポリスルホンには、ポリエーテルスルホンと称する
(IF)式の繰返単位の構造を有するものもある。
Further, some polysulfones have a repeating unit structure of the (IF) formula, which is called polyethersulfone.

ポリエーテルスルホンは機械的強度、耐熱性。Polyether sulfone has mechanical strength and heat resistance.

耐化学薬品性も(I)式のポリスルホンと同等であり、
極性溶媒に溶解するので湿式製膜、湿式紡糸等の加工手
段で透過性徴多孔膜をつくることができる。しかしなが
ら具体的にポリエーテルスルホンを使用した膜の技術的
開示は少なく、特開昭54−16378号公報、特開昭
54−14377号公報、特開昭55・−106243
号公報、特開昭56−99422号公報、特開昭56−
86941号公報、特開昭59−112027号公報等
に止まる。(I)式のポリスルホンおよび(n)式のポ
リエーテルスルホンに関して上述した開示例の平膜およ
び中空糸膜は限外濾過膜、精密濾過膜および気体分離用
支持膜等に多岐にわたって使用されるものである。しか
しながら、それらは分離すべき溶質の分離性および溶液
ないし溶媒(一般に水)の透過流束において必ずしも満
足のいくものではない。
Chemical resistance is also equivalent to polysulfone of formula (I),
Since it is soluble in a polar solvent, a permeable porous membrane can be produced by processing methods such as wet membrane formation and wet spinning. However, there are few technical disclosures regarding membranes specifically using polyether sulfone, such as JP-A-54-16378, JP-A-54-14377, and JP-A-55-106243.
JP-A-56-99422, JP-A-56-99422, JP-A-56-99422
No. 86941, Japanese Unexamined Patent Publication No. 59-112027, etc. The flat membranes and hollow fiber membranes disclosed above for polysulfones of formula (I) and polyethersulfones of formula (n) are used in a wide variety of applications such as ultrafiltration membranes, precision filtration membranes, and support membranes for gas separation. It is. However, they are not always satisfactory in terms of the separation of the solutes to be separated and the permeation flux of the solution or solvent (generally water).

[発明の目的] かかる状況に鑑み、ポリエーテルスルホンの優れた特性
を活かし、三層構造の微孔膜をうろことおよび親水性を
賦与して工業用および医療用として有益な中空糸膜を得
ることを目的とし、鋭意研究し本発明を完成するに至っ
た。
[Objective of the invention] In view of the above situation, it is an object of the present invention to utilize the excellent properties of polyether sulfone to impart scale and hydrophilicity to a three-layer microporous membrane to obtain a hollow fiber membrane useful for industrial and medical purposes. With this in mind, we have conducted extensive research and have completed the present invention.

[発明の構成] すなわち本発明は、ポリエーテルスルホンから実質的に
成る膜であって、該層が外表面近傍の緻密層、内表面近
傍の緻密層、および該両層の間で膜厚の大部分を占める
連通した細孔を有する網目状組織から成る中間層とから
成る三層構造を有し、膜全体の空隙率が70〜90%で
あり、且つ該層の湿潤状態での伸度が50%以上である
ことことを特徴とするポリエーテルスルホン微孔中空糸
膜であり、好ましくは微孔中空糸膜の水限外濾過速度が
1〜600Id/Td−h「・aIIHgの範囲内で、
午血清アルブミンを実質的に透過しないものである。
[Structure of the Invention] That is, the present invention provides a membrane consisting essentially of polyether sulfone, which layer includes a dense layer near the outer surface, a dense layer near the inner surface, and a film thickness between the two layers. It has a three-layer structure consisting of an intermediate layer consisting of a network structure with communicating pores that occupies most of the membrane, and the porosity of the entire membrane is 70 to 90%, and the elongation of this layer in a wet state is is 50% or more, and preferably the water ultrafiltration rate of the microporous hollow fiber membrane is within the range of 1 to 600 Id/Td-h'・aIIHg. in,
It is substantially impermeable to afternoon serum albumin.

さらに本発明は、ポリエーテルスルホン、ポリエーテル
スルホンの溶媒、および水溶性多価アルコールより成る
紡糸原液を調製し、二重管ノズルから内部に芯液を伴な
って押し出し、気体中を経た後凝固浴に導くか、あるい
は直接、凝固浴に導くことにより凝固し、次いで洗浄す
ることを特徴とするポリエーテルスルホン微孔中空糸膜
の製造方法である。
Furthermore, the present invention prepares a spinning dope consisting of polyether sulfone, a solvent for polyether sulfone, and a water-soluble polyhydric alcohol, extrudes it through a double tube nozzle together with the core liquid, and solidifies after passing through a gas atmosphere. This is a method for producing a polyethersulfone microporous hollow fiber membrane, characterized by coagulating it by introducing it into a bath or directly introducing it into a coagulation bath, and then washing it.

以下、本発明について詳細に説明する。ポリエーテルス
ルホンは前述(n)式の繰−返単位を有するものであり
、通常分子量20000〜40000のポリマーが使用
しやすい。ポリエーテルスルホンから実質的になる膜と
は、20重」%程度まで異種のポリマーや添加物等を含
んでもよく、その場合には膜の物性、構造が本質的にポ
リエーテルスルホン単独膜と変らないことが望ましい。
The present invention will be explained in detail below. The polyether sulfone has a repeating unit of the above-mentioned formula (n), and a polymer having a molecular weight of 20,000 to 40,000 is usually easily used. A membrane made essentially of polyether sulfone may contain up to 20% by weight of different polymers, additives, etc. In that case, the physical properties and structure of the membrane are essentially different from those of a membrane made solely of polyether sulfone. It is desirable that there is no such thing.

本発明の膜の特徴は、該層が外表面近傍の緻密層、内表
面近傍の緻密層、および該両層の間の膜厚の大部分を占
める連通した細孔を有する網目状組織から成る中間層と
から成る三層構造を有していることである。第1図(ω
に本発明の微孔中空糸膜の一例の走査型電子顕微鏡によ
る断面写真および+b+にその拡大写真を示す。中空糸
膜の凍結活断面がでている第1図(b)において、該三
層構造がみられる。中間層には大部分が0.05〜5μ
径の連通した細孔網からなるが、従来の非対称膜にみら
れるフィンガータイプ等の市璽〒嘗イイマクロボイドや
、傾斜型の非対称網組織は認められない。
The membrane of the present invention is characterized by a dense layer near the outer surface, a dense layer near the inner surface, and a network structure with communicating pores occupying most of the film thickness between the two layers. It has a three-layer structure consisting of an intermediate layer and an intermediate layer. Figure 1 (ω
1 shows a cross-sectional photograph taken by a scanning electron microscope of an example of the microporous hollow fiber membrane of the present invention, and +b+ shows an enlarged photograph thereof. In FIG. 1(b), which shows a frozen cross section of the hollow fiber membrane, the three-layer structure can be seen. Most of the middle layer is 0.05~5μ
It consists of a network of pores with a continuous diameter, but the finger-type macrovoids and inclined asymmetric network structure found in conventional asymmetric membranes are not observed.

また第2図に本発明の微孔中空糸膜の外表面の写真を示
す。その(ωは表面に0.05重以上の細孔が認められ
ない例で、市)は約0.3μ以下の細孔が認められる例
である。第3図は内表面の写真を例示するが、(田は網
目状組織で約0.5μ以下の細孔が認められる例であり
、(b)は配向した約0.2μ以下の細孔が認められる
例である。
Further, FIG. 2 shows a photograph of the outer surface of the microporous hollow fiber membrane of the present invention. (ω is an example in which pores of 0.05 times or more are not observed on the surface, and 1) is an example in which pores of about 0.3 μ or less are observed. Figure 3 shows photographs of the inner surface. (B) is an example in which pores of approximately 0.5μ or less are observed in a network structure, and (b) is an example in which oriented pores of approximately 0.2μ or less are observed. This is an acceptable example.

本発明の膜における溶質透過性は、両表面近傍の緻密層
にて律せられる。一方中間層が比較的粗な連通細孔網目
状組織から成り、溶液ないし溶媒、水の高流束透過を具
現できるものである。
The solute permeability in the membrane of the present invention is controlled by the dense layer near both surfaces. On the other hand, the intermediate layer is composed of a relatively coarse network of communicating pores and can realize high flux permeation of solutions, solvents, and water.

さらに本発明の微孔中空糸膜は、膜全体の空隙率が70
〜90%であることを特徴とする。空隙率はポリエーテ
ルスルホンの密度1.37 g/C1jを用いて下式で
求める。
Furthermore, the microporous hollow fiber membrane of the present invention has a porosity of 70
It is characterized by being 90%. The porosity is determined by the following formula using the density of polyether sulfone, 1.37 g/C1j.

空隙率が90%を越えると膜が弱く、また70%未満で
は全体が密になり過ぎ膜特性が劣る。
If the porosity exceeds 90%, the membrane will be weak, and if it is less than 70%, the entire membrane will become too dense and the membrane properties will be poor.

加えて本発明の微孔中空糸膜は、引張試験機による水で
湿潤した状態での伸度が50%以上である。
In addition, the microporous hollow fiber membrane of the present invention has an elongation of 50% or more in a water-wet state measured by a tensile tester.

これは本発明のマクロボイドを含まない三層構造のため
に粘り強い膜が生成していることを示す。
This indicates that a tenacious film is produced due to the three-layer structure containing no macrovoids of the present invention.

両緻密層の高分子凝集体と中間層の網目状構造体が複合
されて、膜物性が改良されている。製膜紡糸方法および
発現した膜構造により異なるが50〜200%の伸度が
好ましい。
The polymer aggregates in both dense layers and the network structure in the intermediate layer are combined to improve the physical properties of the film. The elongation is preferably 50 to 200%, although it varies depending on the membrane spinning method and developed membrane structure.

このような膜構造をもつ本発明の微孔中空膜の水限外濾
過速度は1〜600sd! / rtL −hr・履H
gの範囲内で、分子量6600Gの牛血清アルブミンを
実質的に透過しないものである。水および溶液の限外濾
過速度は中空糸膜ミニモジュール(膜面積約200Td
)を用いて、100履HQ以下の圧力下で回収率30〜
50%の濾過測定により求める。限外濾過速度1M1/
7IL−hr−lIIIHg未満では透水性が小さすぎ
て実用性が小さい。一方、600ai!/ rtt−h
r・tm Hgを越える膜ではアルブミンが透過する場
合が多い。好ましくは10〜600al! / i ・
hr 6 s HQ、さらに好ましくは100〜600
Id/ rd−hr−ml−1(1である。アルブミン
を実質透過しないということは、下式で示す溶質透過率
SC(%)が20%以下、好ましくは10%以下を意味
する。
The water ultrafiltration rate of the microporous hollow membrane of the present invention having such a membrane structure is 1 to 600 sd! / rtL -hr・wearH
Within this range, bovine serum albumin with a molecular weight of 6,600 G does not substantially permeate. The ultrafiltration speed of water and solutions is determined by the hollow fiber membrane mini module (membrane area approximately 200Td).
), the recovery rate is 30 ~ under pressure of 100 HQ or less.
Determined by 50% filtration measurement. Ultrafiltration rate 1M1/
If it is less than 7IL-hr-lIIIHg, the water permeability is too low to be practical. On the other hand, 600ai! /rtt-h
Albumin often permeates membranes that exceed r.tm Hg. Preferably 10-600al! /i・
hr 6 s HQ, more preferably 100-600
Id/rd-hr-ml-1 (1. Substantially not permeating albumin means that the solute permeability SC (%) expressed by the following formula is 20% or less, preferably 10% or less.

ポリエーテルスルホンの溶媒としては、N−メチルピロ
リドン、ジメチルアセトアミド、ジメチルホルムアミド
、ジメチルスルホキシド、およびε−カプロラクトン等
が用いられるが、膜壁内部にマクロボイドを含まないほ
ぼ均質な膜を形成するジメチルスルホキシドが好ましい
。水溶性多価アルコールとしてはエチレングリコール、
プロピレングリコール、ジエチレングリコール、トリエ
チレングリコール、常温で液体であるポリエチレングリ
コール(PEGと略す)等があるが、とくに常温で液体
であるPEGが好ましく分子量が200、 400.お
よび600であるもの等が具体例として挙げられる。
N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylsulfoxide, and ε-caprolactone are used as solvents for polyethersulfone, but dimethylsulfoxide forms a nearly homogeneous film without macrovoids inside the membrane wall. is preferred. Water-soluble polyhydric alcohols include ethylene glycol,
There are propylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol (abbreviated as PEG) which is liquid at room temperature, etc., but PEG which is liquid at room temperature is particularly preferred and has a molecular weight of 200, 400. and 600 as specific examples.

紡糸原液としてポリエーテルスルホン10〜35重量 
(D下wt) %、溶@ 10〜85wt% 、 オヨ
U 水m 性多価アルコール5〜90wt%から紡糸原
液を調製する。ポリマー濃度は原液の粘度および膜特性
から適宜選べるが、薄いと原液粘度が低く紡糸困難とな
り、高いと膜が緻密となり膜特性が劣る。水溶性多価ア
ルコールの添加量はその種類によって異なり、例えばジ
エチレングリコールなら1owt%程度であり、PEG
400では90W【%も添加できる。
10 to 35 weight polyether sulfone as spinning dope
A spinning stock solution is prepared from (D lower wt) %, dissolved @ 10 to 85 wt %, and 5 to 90 wt % of polyhydric alcohol. The polymer concentration can be appropriately selected depending on the viscosity of the stock solution and the film properties; if it is too thin, the stock solution viscosity is low and spinning becomes difficult, and if it is too high, the film becomes dense and the film properties are poor. The amount of water-soluble polyhydric alcohol added varies depending on its type; for example, diethylene glycol is about 1wt%, and PEG
400 can add as much as 90W%.

一般に添加量が多いと膜特性があがる。加温溶解、脱泡
した原液を二重管ノズルの外環部から押し出し、同時に
内環部から芯液を吐出して中空糸の形状に紡糸する。吐
出した糸状物は気体中をへるかまたは直接凝固浴に導き
、凝固して中空糸膜となす。次いで洗浄浴にて溶媒、添
加剤、場合によっては芯液を除去して本発明の中空糸膜
を得る。さらに公知の方法により芯液除去や中空糸膜の
グリセリン付着乾燥を行うことができる。
Generally, when the amount added is large, the film properties improve. The stock solution, which has been dissolved and defoamed by heating, is extruded from the outer ring part of the double tube nozzle, and at the same time, the core liquid is discharged from the inner ring part to spin into hollow fibers. The discharged filamentous material passes through the gas or directly into a coagulation bath, where it is coagulated to form a hollow fiber membrane. Next, the solvent, additives, and in some cases the core liquid are removed in a cleaning bath to obtain the hollow fiber membrane of the present invention. Furthermore, the core liquid can be removed and the hollow fiber membranes can be dried with glycerin by known methods.

紡糸凝固浴には水かアルコールを用いることができる。Water or alcohol can be used in the spinning coagulation bath.

また芯液には溶媒ないし添加剤を加えると曳糸性が向上
する場合もある。何れにしても、少なくとも1つの表面
に微多孔性を与える必要があるときは溶媒や添加剤の含
量が多い方が好ましい。洗浄浴には一般に水を用いる。
Additionally, the stringiness may be improved by adding a solvent or additive to the core liquid. In any case, when it is necessary to impart microporosity to at least one surface, it is preferable to increase the content of the solvent or additive. Water is generally used in the cleaning bath.

中空糸膜の寸法は適宜設計しつるが、内径10〜200
0μ、膜厚5〜500μが好ましい。
The dimensions of the hollow fiber membrane can be designed as appropriate, but the inner diameter is 10 to 200 mm.
Preferably, the film thickness is 0μ and the film thickness is 5 to 500μ.

[発明の効果] 本発明の微孔中空糸膜は両表面近傍の緻密層と網目状組
織の中間層とから成る三層構造を有し高伸度の強い膜で
、蛋白質等の水溶液の限外濾過膜として優れた特性を有
する。すなわち実質的にアルブミンを透過しないが、分
子量10000程度の中分子量物は透過し、かつ限外濾
過量が高い。ポリエーテルスルホンは熱的に安定であり
熱滅菌が可能である。特に湿潤時の伸度が50%以上と
大きいことから伸縮性に富んでおり、破損しにくく、製
造時や分離器等に組込む際の取扱いが容易であって、さ
らに熱滅菌時等の熱応力に対しても非常に安定である。
[Effects of the Invention] The microporous hollow fiber membrane of the present invention has a three-layer structure consisting of a dense layer near both surfaces and an intermediate layer with a network structure, and is a strong membrane with high elongation, and is able to withstand the limitations of aqueous solutions such as proteins. It has excellent properties as an outer filtration membrane. That is, it does not substantially permeate albumin, but it permeates medium molecular weight substances with a molecular weight of about 10,000, and has a high ultrafiltration rate. Polyether sulfone is thermally stable and can be heat sterilized. In particular, it has a high elongation of 50% or more when wet, so it is highly elastic, difficult to break, easy to handle when manufacturing or incorporating into separators, etc., and is also susceptible to thermal stress during heat sterilization. It is also very stable.

また、水溶性多価アルコールの添加は洗浄後も膜の親水
性維持に役立っている。よって本発明の膜は食品工業、
製薬工業、濾過型人工腎臓として医療に有用である。さ
らに細胞培養用隔膜(分離。
Furthermore, the addition of water-soluble polyhydric alcohol helps to maintain the hydrophilicity of the membrane even after washing. Therefore, the membrane of the present invention can be used in the food industry,
It is useful in the pharmaceutical industry and in medicine as a filtering artificial kidney. In addition, cell culture diaphragms (separation).

担体も兼ねうる)としても応力できる。また気体の分離
及び濾過清浄にも用いることができる。
(It can also serve as a carrier) and can also be stressed. It can also be used for gas separation and filtration cleaning.

以下実施例を用いて説明するが、本発明はこれらの実施
例に限定されるものではない。
The present invention will be explained below using Examples, but the present invention is not limited to these Examples.

実施例1゜ ポリエーテルスルホン[以下PESと略す]にIC1社
製(住友化学扱) 、 Victrex(lt録商1り
4800P (旧グレート名300P)を用い、ポリエ
チレングリコールに日本油脂製PEG400を用いて、
P E S 25wt%(全量に対する重量%、以下同
じ)。
Example 1 Polyether sulfone (hereinafter abbreviated as PES) was made by IC1 (manufactured by Sumitomo Chemical), Victrex (LT Rokusho 1, 4800P (formerly known as Grate 300P) was used, and polyethylene glycol was made using NOF PEG400. ,
PES 25wt% (weight% based on the total amount, the same applies hereinafter).

P E G 400 : 25wt%およびジメチルス
ルホキシドE以下DMSOと略す] 50wt%から成
る紡糸原液を加温溶解して調製した。芯液にPEG40
0/メタノール(3/1 )混合溶液を用いて中空糸紡
糸を行い、大気中を6cIR通して水凝固浴に導き、次
いで水洗浴にて洗浄して中空糸膜を得た。中空糸膜は外
径450μ、内径270μで、三層構造であり10μ以
上のマクロボイドを認められなかった。膜の空隙率は8
2%、湿潤強度は0.11g/de、伸度は198%で
あった。
A spinning stock solution containing 50 wt% of PEG 400 and 50 wt% of dimethyl sulfoxide E (abbreviated as DMSO) was prepared by heating and dissolving. PEG40 in core liquid
Hollow fiber spinning was performed using a mixed solution of 0/methanol (3/1), the atmosphere was passed through 6cIR into a water coagulation bath, and then washed in a water washing bath to obtain a hollow fiber membrane. The hollow fiber membrane had a three-layer structure with an outer diameter of 450 μm and an inner diameter of 270 μm, and no macrovoids larger than 10 μm were observed. The porosity of the membrane is 8
2%, wet strength was 0.11 g/de, and elongation was 198%.

膜性能を第1表に示すが分子量分画の優れた限外濾過膜
が得られ、とくにアルブミンは全く透過しないものであ
る。
The membrane performance is shown in Table 1, and an ultrafiltration membrane with an excellent molecular weight fraction was obtained, and in particular, albumin did not permeate at all.

実施例2゜ PE520wt%、 PEG 400;70wt%、 
オヨUDMSO10wt%から成る紡糸原液を用い、他
は実施例1と同様に紡糸して空隙率78%9強度o、1
49/de、伸度53%の中空糸膜を得た。性能は第1
表に示すが優れた濾過特性を有した。
Example 2 PE520wt%, PEG 400; 70wt%,
Using a spinning dope consisting of 10 wt% Oyo UDMSO, the spinning was carried out in the same manner as in Example 1 except that the porosity was 78%, the strength was o, 1
A hollow fiber membrane with an elongation of 49/de and an elongation of 53% was obtained. Performance comes first
As shown in the table, it had excellent filtration characteristics.

(以下余白) 第1表 (以下余白)(Margin below) Table 1 (Margin below)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明のポリエーテルスルホン微孔中空糸膜
の断面、第2図はその外表面、および第3図はその内表
面の走査型電子顕微鏡写真を例示したものである。 雀f 1,3 (a) (bン 笛2図 (a) (b) 覚31図 (a) (b) 手続補正書(菰) 1、事件の表示 特願昭 60−38681  号 2、発明の名称 ポリエーテルスルホン微孔中空糸膜およびその製造方法
3、補正をする者 事件との関係 特許出願人 大阪府大阪市東区南本町1丁目11番地(300)帝人
株式会社 代表者  岡  本 佐 四 部 4、代 理 人    東京都千代田区内幸町2丁目1
番1号7、補正の内容 以上
FIG. 1 shows a cross section of the polyethersulfone microporous hollow fiber membrane of the present invention, FIG. 2 shows its outer surface, and FIG. 3 shows a scanning electron micrograph of its inner surface. Sparrow f 1, 3 (a) (Bn whistle 2 diagram (a) (b) Kaku 31 diagram (a) (b) Procedural amendment (com) 1. Case indication patent application No. 1986-38681 2. Invention Name of Polyether Sulfone Microporous Hollow Fiber Membrane and Process for Producing the Same 3, Relationship with the Amendment Case Patent Applicant 1-11 Minamihonmachi (300), Higashi-ku, Osaka-shi, Osaka Prefecture Representative of Teijin Limited Sasuke Okamoto Department 4, Agent 2-1 Uchisaiwaicho, Chiyoda-ku, Tokyo
No. 1 No. 7, contents of amendment

Claims (1)

【特許請求の範囲】 1)ポリエーテルスルホンから実質的に成る膜であって
、該膜が外表面近傍の緻密層、内表面近傍の緻密層、お
よび該両層の間で膜厚の大部分を占める連通した細孔を
有する網目状組織から成る中間層とから成る三層構造を
有し、膜全体の空隙率が70〜90%であり、且つ該膜
の湿潤状態での伸度が50%以上であることを特徴とす
るポリエーテルスルホン微孔中空糸膜。 2)該膜の水限外濾過速度が1〜600ml/m^2・
hr・mmHgの範囲中で、牛血清アルブミンを実質的
に透過しない、特許請求の範囲第1項記載の微孔中空糸
膜。 3)ポリエーテルスルホン、ポリエーテルスルホンの溶
媒、および水溶性多価アルコールより成る紡糸原液を調
製し、二重管ノズルから内部に芯液を伴なって押し出し
、気体中を経た後凝固浴に導くか、あるいは直接、凝固
浴に導くことにより凝固し、次いで洗浄することを特徴
とするポリエーテルスルホン微孔中空糸膜の製造方法。 4)該溶媒がジメチルスルホキシドである特許請求の範
囲第3項記載の微孔中空糸膜の製造方法。 5)該水溶性多価アルコールが常温で液体であるポリエ
チレングリコールである特許請求の範囲第3項記載の微
孔中空糸膜の製造方法。
[Scope of Claims] 1) A membrane consisting essentially of polyether sulfone, the membrane comprising a dense layer near the outer surface, a dense layer near the inner surface, and a majority of the film thickness between the two layers. The membrane has a three-layer structure consisting of an intermediate layer consisting of a network structure with communicating pores occupying the entire membrane, the porosity of the entire membrane is 70 to 90%, and the elongation of the membrane in a wet state is 50%. % or more of polyethersulfone microporous hollow fiber membranes. 2) The water ultrafiltration rate of the membrane is 1 to 600 ml/m^2.
The microporous hollow fiber membrane according to claim 1, which is substantially impermeable to bovine serum albumin within the range of hr/mmHg. 3) Prepare a spinning dope consisting of polyether sulfone, a solvent for polyether sulfone, and a water-soluble polyhydric alcohol, extrude it through a double tube nozzle along with the core liquid, pass through gas, and then introduce it to a coagulation bath. Alternatively, a method for producing a polyethersulfone microporous hollow fiber membrane, characterized in that it is coagulated by introducing it directly into a coagulation bath, and then washed. 4) The method for producing a microporous hollow fiber membrane according to claim 3, wherein the solvent is dimethyl sulfoxide. 5) The method for producing a microporous hollow fiber membrane according to claim 3, wherein the water-soluble polyhydric alcohol is polyethylene glycol that is liquid at room temperature.
JP3868185A 1985-03-01 1985-03-01 Polyether sulfone microporous hollow yarn membrane and its production Pending JPS61200805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3868185A JPS61200805A (en) 1985-03-01 1985-03-01 Polyether sulfone microporous hollow yarn membrane and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3868185A JPS61200805A (en) 1985-03-01 1985-03-01 Polyether sulfone microporous hollow yarn membrane and its production

Publications (1)

Publication Number Publication Date
JPS61200805A true JPS61200805A (en) 1986-09-05

Family

ID=12532023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3868185A Pending JPS61200805A (en) 1985-03-01 1985-03-01 Polyether sulfone microporous hollow yarn membrane and its production

Country Status (1)

Country Link
JP (1) JPS61200805A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100902A (en) * 1986-10-17 1988-05-06 Kanegafuchi Chem Ind Co Ltd Aromatic polysulfone hollow yarn membrane and its manufacture
JP2004121608A (en) * 2002-10-03 2004-04-22 Toyobo Co Ltd Hollow fiber membrane for dialysis liquid purification, and method for producing the same
JP2008221050A (en) * 2007-03-08 2008-09-25 Nikkiso Co Ltd Semipermeable membrane
JP2016540635A (en) * 2013-12-20 2016-12-28 エルジー エレクトロニクス インコーポレイティド Hollow fiber membrane
WO2018167280A1 (en) 2017-03-17 2018-09-20 Fresenius Medical Care Deutschland Gmbh Hollow fiber membrane having improved diffusion properties

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100902A (en) * 1986-10-17 1988-05-06 Kanegafuchi Chem Ind Co Ltd Aromatic polysulfone hollow yarn membrane and its manufacture
JP2004121608A (en) * 2002-10-03 2004-04-22 Toyobo Co Ltd Hollow fiber membrane for dialysis liquid purification, and method for producing the same
JP2008221050A (en) * 2007-03-08 2008-09-25 Nikkiso Co Ltd Semipermeable membrane
JP2016540635A (en) * 2013-12-20 2016-12-28 エルジー エレクトロニクス インコーポレイティド Hollow fiber membrane
US10596524B2 (en) 2013-12-20 2020-03-24 Lg Chem, Ltd. Hollow fiber membrane
WO2018167280A1 (en) 2017-03-17 2018-09-20 Fresenius Medical Care Deutschland Gmbh Hollow fiber membrane having improved diffusion properties
US11628407B2 (en) 2017-03-17 2023-04-18 Fresenius Medical Care Deutschland Gmbh Hollow fiber membrane having improved diffusion properties

Similar Documents

Publication Publication Date Title
US4612119A (en) Hollow fiber filter medium and process for preparing the same
EP0294737B1 (en) Polysulfone hollow fiber membrane and process for making the same
US5958989A (en) Highly asymmetric ultrafiltration membranes
EP2845641B1 (en) Permselective asymmetric membranes with high molecular weight polyvinylpyrrolidone, the preparation and use thereof
JPH0194901A (en) Permiation-selective unsymmetrical membrane suitable for blood dialysis
CN110079887B (en) Performance enhancing additives for fiber formation and polysulfone fibers
WO1997022405A1 (en) Hollow fiber type filtration membrane
WO2007125943A1 (en) Polymeric porous hollow fiber membrane
JPS6356802B2 (en)
JP2008284471A (en) Polymeric porous hollow fiber membrane
JPH06238139A (en) Polysulfone semipermeable membrane and its production
JP5212837B2 (en) Permselective hollow fiber membrane
JPS61200806A (en) Polyether sulfone porous hollow yarn membrane and its production
JPS61200805A (en) Polyether sulfone microporous hollow yarn membrane and its production
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JP3594946B2 (en) High performance microfiltration membrane
JPH09308685A (en) Hollow fiber membrane for blood purification and blood purifying device
JPH1066725A (en) Selective-permeability hollow fiber membrane
JPH10263375A (en) Selective permeable hollow fiber membrane
JP2002045662A (en) Permselective hollow fiber membrane
JP2000107577A (en) Production of permselective hollow fiber membranes
JPH10165774A (en) Permselective hollow yarn membrane
JP2905208B2 (en) Polysulfone hollow fiber separation membrane
JP4455019B2 (en) Hollow fiber membrane for medical dialysis and production method thereof
JPH10243999A (en) Polysulfone-base blood dialysis membrane