JPH10243999A - Polysulfone-base blood dialysis membrane - Google Patents

Polysulfone-base blood dialysis membrane

Info

Publication number
JPH10243999A
JPH10243999A JP6902097A JP6902097A JPH10243999A JP H10243999 A JPH10243999 A JP H10243999A JP 6902097 A JP6902097 A JP 6902097A JP 6902097 A JP6902097 A JP 6902097A JP H10243999 A JPH10243999 A JP H10243999A
Authority
JP
Japan
Prior art keywords
hydrophilic polymer
polysulfone
membrane
hollow fiber
separation layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6902097A
Other languages
Japanese (ja)
Inventor
Masaya Fukuya
正哉 福家
Tomoji Hanai
智司 花井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Medical Co Ltd filed Critical Asahi Medical Co Ltd
Priority to JP6902097A priority Critical patent/JPH10243999A/en
Publication of JPH10243999A publication Critical patent/JPH10243999A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress the elution of a hydrophilic polymer and to embody the removal of unnecessary materials and the recovery of a useful material with good efficiency by specifying selective sepn. layers having a thickness of a specific numerical value and the hydrophilic polymer to be extracted with hot water to specific values per unit weight of hollow fiber membranes or below. SOLUTION: Polyvinyl pyrrolidone which is the hydrophilic polymer and a polysulfone polymer are, dissolved in a common solvent to obtain a uniform spinning stock soln. and thereafter, the stock soln. is made into the hollow fibers by dry and wet process spinning. The thickness of the selective sepn. layers having substantially a sepn. function of the hollow fiber membranes is required to be 2 to 15μm, further preferably 3 to 12μm, more preferably 5 to 10μm. The measures quantity of the hydrophilic polymer extracted by the hot water is required to be <=0.5mg per 1g hollow fiber membrane. The weight ratio of the hydrophilic polymer is required to be 1 to 5%, further preferably 2 to 4.5. Further, the sieving coefft. of albumin is <=0.02, more preferably <=0.01.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、親水性高分子を含
有するポリスルホン系中空糸膜に関する。更に詳細に
は、選択分離層の厚みを適切にし、分画特性を改良した
ポリスルホン系血液透析膜に関する。
TECHNICAL FIELD The present invention relates to a polysulfone-based hollow fiber membrane containing a hydrophilic polymer. More specifically, the present invention relates to a polysulfone-based hemodialysis membrane having an appropriate thickness of a selective separation layer and improved fractionation characteristics.

【0002】[0002]

【従来の技術】ポリスルホン系ポリマーは疎水性の素材
であるために、これを素材とした選択透過性分離膜は、
セルロース系、ポリアクリロニトリル系、ポリアミド系
などの親水性の素材を用いた選択透過性分離膜に比べ
て、水濡れ性が悪い。そこでポリスルホン系ポリマーか
らなる選択透過性分離膜に親水性ポリマーを含有させた
選択透過性分離膜とその製法が提案されている。例えば
特公平5−54373号には疎水性ポリマー及びそれら
の共通溶媒からなる低粘度の原液を紡糸する事により製
造された、親水性ポリマーを1〜10重量%含有させ、
かつ3〜10%の吸水能力を有する血液処理用の中空繊
維膜とその製法が開示されている。特開平4−3006
36号には、架橋して水に不溶化し、ヒドロゲル状態で
膜中に存在する親水性高分子を含むポリスルホン系選択
透過性中空糸膜とその製造法が開示されている。特開平
6−165926号には内表面側に緻密層を持つポリス
ルホン系中空繊維膜において、少なくとも1重量%のポ
リグリコール類と1〜8重量%のビニルピロリドン系ポ
リマーを含有し、かつ中空繊維膜の内表面の緻密層に存
在するポリスルホン系ポリマーとビニルピロリドン系ポ
リマーの重量比率が90:10〜60:40で、しかも
中空繊維膜の内表面の上記緻密層に存在するビニルピロ
リドン系ポリマーの重量比率が外表面層に存在するビニ
ルピロリドン系ポリマーの重量比率の少なくとも1.1
倍であることを特徴とするポリスルホン系中空繊維膜と
その製造方法が開示されている。近年、透析合併症の原
因として、β2−ミクログロブリン等の低分子蛋白が挙
げられ、これらを血液から効率よく除去できる高性能な
透析膜が望まれている。上記した従来の技術では、分画
性に対する十分な検討がなされておらず、必ずしも満足
いくものではない。即ち、低分子蛋白の除去を良くしよ
うと膜の透過性能を上げると、アルブミンなど有用タン
パクのリークが問題となるからである。
2. Description of the Related Art Since a polysulfone-based polymer is a hydrophobic material, a permselective separation membrane using this material is
It has poor water wettability as compared with a permselective separation membrane using a hydrophilic material such as cellulose, polyacrylonitrile, and polyamide. Therefore, a permselective separation membrane in which a hydrophilic polymer is contained in a permselective separation membrane made of a polysulfone-based polymer and a method for producing the same have been proposed. For example, Japanese Patent Publication No. 5-54373 discloses that a low-viscosity undiluted solution composed of a hydrophobic polymer and a common solvent thereof is spun to contain a hydrophilic polymer in an amount of 1 to 10% by weight.
A hollow fiber membrane for blood treatment having a water absorption capacity of 3 to 10% and a method for producing the same are disclosed. JP-A-4-3006
No. 36 discloses a polysulfone-based selectively permeable hollow fiber membrane containing a hydrophilic polymer which is crosslinked and insoluble in water and present in a hydrogel state in the membrane, and a method for producing the same. JP-A-6-165926 discloses a polysulfone-based hollow fiber membrane having a dense layer on the inner surface side, wherein the hollow fiber membrane contains at least 1% by weight of a polyglycol and 1 to 8% by weight of a vinylpyrrolidone-based polymer. The weight ratio of the polysulfone-based polymer to the vinylpyrrolidone-based polymer present in the dense layer on the inner surface is 90:10 to 60:40, and the weight of the vinylpyrrolidone-based polymer present in the dense layer on the inner surface of the hollow fiber membrane The ratio is at least 1.1 of the weight ratio of the vinylpyrrolidone-based polymer present in the outer surface layer.
A polysulfone-based hollow fiber membrane characterized by a factor of two and a method for producing the same are disclosed. In recent years, low molecular proteins such as β2-microglobulin have been cited as a cause of dialysis complications, and a high-performance dialysis membrane capable of efficiently removing these from blood has been desired. In the above-mentioned conventional techniques, sufficient studies have not been made on the fractionation properties, and they are not always satisfactory. That is, if the permeation performance of the membrane is increased in order to improve the removal of the low molecular weight protein, leakage of useful proteins such as albumin becomes a problem.

【0003】[0003]

【発明が解決しようとする課題】本発明は従来技術の問
題点を解消し、親水性高分子を含有するが、その溶出が
抑えられ、かつ不要物質の除去、有用物質の回収を効率
よく行うことができる分子量分画性がシャープなポリス
ルホン系血液透析膜を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the problems of the prior art and contains a hydrophilic polymer, but its elution is suppressed, and the removal of unnecessary substances and the recovery of useful substances are carried out efficiently. It is an object of the present invention to provide a polysulfone-based hemodialysis membrane having a sharp molecular weight fractionation property.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記課題
を達成すべく鋭意検討した結果、膜中で実質的に溶質分
子をふるい分ける効果を持つ選択分離層の厚みを適切に
制御し、溶出しやすい親水性高分子を選択除去し、その
溶出を抑えることにより、上記課題が解決されることを
見出した。即ち、本発明は、親水性高分子を含有するポ
リスルホン系中空糸膜において、選択分離層の厚さが2
〜15μmであり、熱水で抽出される親水性高分子が中
空糸膜1g当たり0.5mg以下であることを特徴とす
るポリスルホン系血液透析膜を提供する。溶質分子のふ
るい分けは、溶質分子の大きさと膜の孔の大きさによっ
て決められる。即ち、膜の孔径よりも小さい溶質分子
は、膜を透過できるが、膜の孔径よりも大きな溶質分子
は透過できない。この原理によって、溶質分子のふるい
分けが起きる訳であるが、膜構造が不均一な膜の場合、
膜断面方向で孔径が小さくなったところ、即ち、本発明
でいう選択分離層でふるい分けが起こる。一般に、ポリ
マー部分の緻密な構造のところで膜孔径は小さく、従っ
て、本発明でいう選択分離層は、膜断面の透過型電子顕
微鏡像から判読できる。即ち、膜断面の透過型電子顕微
鏡の像を一定の幅で区切り、画像解析を行い、ポリマー
部分が占める割合(組織率)を求める。この操作を中空
糸内側から中空糸外側に向けて行うと、中空糸膜断面方
向での組織率の分布が判明する。後述するように、膜内
には孔径分布があるが、それを考慮し、本発明では、選
択分離層を、画像解析の幅を0.5〜1.0μmとして
画像解析したとき、組織率の最も高かった値から、30
%以内の範囲にある部分と定義し、その厚みを測定し
た。膜の分画特性は多層構造モデルで説明される。即
ち、膜面に対して平行に(従って、膜断面に対して垂直
に)膜をスライスした多数の層が積層した構造を想定す
る。溶質分子は、この層毎にふるい分けられ、膜全体で
は多段濾過が行われていると考える。層毎に平均孔径は
異なっているが、1つの層を取り上げると、その層内の
孔径には分布があるため、平均孔径が最小の層だけが溶
質をふるい分ける効果があるのではなく、平均孔径が若
干大きくなった層も、通り抜けてきた大きな溶質分子を
捕捉することができる。言い換えると平均孔径が小さな
層で孔径の大きなところをすり抜けてきた溶質分子が、
平均孔径がやや大きくなったが溶質分子よりもサイズの
小さな孔で十分に捕捉される。従って、選択分離層とし
ては、平均孔径が最小な層から若干大きくなった層まで
が有効である。本発明では、選択分離層の平均孔径は、
膜断面の透過型電子顕微鏡の画像より、その空隙のサイ
ズを読み取ることによっても算出できるが、繁雑な作業
であると共にサイズ自身小さくて誤差が大きくなる。こ
のため、本発明では、孔径そのものでなく、比較的大き
な溶質の透過性に置き換えて評価する。即ち、本発明で
は、ヒト血清を用いて測定したα1−ミクログロブリン
(α1−MG)のふるい係数を用いて、選択分離層の孔
の大きさを評価する。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, have appropriately controlled the thickness of a selective separation layer having an effect of substantially filtering solute molecules in a membrane. It has been found that the above problem can be solved by selectively removing a hydrophilic polymer which is easily eluted and suppressing the elution. That is, the present invention provides a polysulfone-based hollow fiber membrane containing a hydrophilic polymer, wherein the thickness of the selective separation layer is 2
A polysulfone-based hemodialysis membrane, characterized in that the hydrophilic polymer extracted with hot water is 0.5 mg or less per 1 g of the hollow fiber membrane. Sieving of solute molecules is determined by the size of the solute molecules and the size of the pores in the membrane. That is, solute molecules smaller than the pore size of the membrane can pass through the membrane, but solute molecules larger than the pore size of the membrane cannot. This principle causes solute molecules to be sieved, but in the case of a membrane with an uneven membrane structure,
When the pore diameter becomes smaller in the cross-sectional direction of the membrane, that is, sieving occurs in the selective separation layer according to the present invention. Generally, the pore diameter of the membrane is small at the dense structure of the polymer portion. Therefore, the selective separation layer in the present invention can be read from a transmission electron microscope image of the cross section of the membrane. That is, the transmission electron microscope image of the cross section of the film is sectioned at a fixed width, image analysis is performed, and the ratio (tissue ratio) occupied by the polymer portion is determined. When this operation is performed from the inside of the hollow fiber to the outside of the hollow fiber, the distribution of the tissue ratio in the cross-sectional direction of the hollow fiber membrane becomes clear. As will be described later, there is a pore size distribution in the membrane, and in consideration of this, in the present invention, when the selective separation layer is subjected to image analysis with an image analysis width of 0.5 to 1.0 μm, the tissue ratio is reduced. From the highest value, 30
%, And the thickness was measured. The fractionation properties of the membrane are described in a multilayer structure model. That is, a structure in which a number of layers obtained by slicing the film in parallel to the film surface (and therefore perpendicular to the film cross section) is stacked is assumed. It is considered that the solute molecules are sieved for each layer, and that the entire membrane is subjected to multi-stage filtration. The average pore size differs for each layer, but if one layer is taken up, there is a distribution of pore sizes in that layer, so only the layer with the smallest average pore size has the effect of sieving solutes. The layer having a slightly larger pore size can also capture large solute molecules that have passed through. In other words, a solute molecule that has passed through a large pore size in a layer with a small average pore size,
Although the average pore size was slightly larger, it was sufficiently captured by pores smaller in size than the solute molecules. Therefore, as the selective separation layer, a layer from the layer having the smallest average pore diameter to the layer having a slightly larger average pore diameter is effective. In the present invention, the average pore size of the selective separation layer,
It can also be calculated by reading the size of the gap from the image of the cross section of the membrane with a transmission electron microscope, but this is a complicated operation and the size itself is small and the error increases. For this reason, in the present invention, the evaluation is made by replacing the pore diameter itself with a relatively large solute permeability. That is, in the present invention, the pore size of the selective separation layer is evaluated using the sieving coefficient of α1-microglobulin (α1-MG) measured using human serum.

【0005】分画特性のシャープさには、選択分離層の
厚みが重要である。選択分離層が薄い場合は、平均孔径
を少し上げて分子量分画性を良くしようとすると有用な
血漿蛋白であるアルブミンが透過しやすくなる。これ
は、選択分離層内には孔径の分布があり、平均孔径をあ
げるとそれに応じてアルブミンが透過できる孔も多くな
る。選択分離層が薄い場合は一旦孔径の大きな部分から
リークしたアルブミンを捕捉する別な選択分離層がない
ため、そのまま膜を透過することになる。また、紡糸条
件の僅かな変動等の影響で選択分離層に構造欠陥が生じ
た場合にも、特に高分子量物質のリークが顕著になる。
一方、選択分離層が厚い場合は、膜構造を比較的ルーズ
にして、α1−MGのふるい係数を上げても、その厚さ
が厚ければアルブミンのリークは少なく、即ち分子量分
画特性がシャープになる。これは、膜の選択分離層が厚
いために、1つの層でアルブミンが透過しても、選択分
離層のどこかの層で捕捉され、結果的に膜を透過する確
率が低くなるためである。しかしながら、選択分離層が
厚すぎると透過抵抗が大きくなりすぎるため、本発明で
は、2μm〜15μmであることが必要であり、更に好
ましくは3μm〜12μmであり、5μm〜10μmが
より望ましい。不要な血漿蛋白を除去するためには、選
択分離層の孔径が大きいほど望ましく、本発明の膜で
は、α1−MGのふるい係数が0.1以上が好ましく、
更に0.2以上が望ましい。更に、本発明では、選択分
離層の厚みを適切にすることにより、このようなα1−
MG ふるい係数を有しながら、アルブミンのふるい係
数が、0.02以下、好ましくは0.01以下である中
空糸膜を提供することができる。中空糸膜断面における
選択分離層の位置は、中空糸内側にあっても、断面中心
部にあっても、あるいは中空糸内側と中空糸外側の両方
にあっても良く、位置は特に限定されないが、中空糸内
側に流通する血液から蛋白が膜に侵入し、膜内が蛋白で
汚染されやすくなるので、本発明では選択分離層が中空
糸内側にあることが好ましい。
[0005] The thickness of the selective separation layer is important for the sharpness of the fractionation characteristics. When the selective separation layer is thin, albumin, which is a useful plasma protein, is easily permeated if the average pore size is slightly increased to improve the molecular weight fractionability. This is because there is a distribution of pore sizes in the selective separation layer, and as the average pore size increases, the number of pores through which albumin can permeate increases. When the selective separation layer is thin, there is no other selective separation layer that traps albumin that has once leaked from a portion having a large pore diameter, so that the membrane permeates the membrane as it is. In addition, even when a structural defect occurs in the selective separation layer due to a slight change in spinning conditions or the like, leakage of a high molecular weight substance is particularly remarkable.
On the other hand, when the selective separation layer is thick, even if the membrane structure is relatively loose and the sieving coefficient of α1-MG is increased, the thicker the thickness, the smaller the leakage of albumin, that is, the sharper the molecular weight fractionation characteristics. become. This is because, because the selective separation layer of the membrane is thick, even if albumin permeates in one layer, it is trapped in any layer of the selective separation layer, and as a result, the probability of permeation through the membrane decreases. . However, if the selective separation layer is too thick, the permeation resistance becomes too large. Therefore, in the present invention, it is necessary to be 2 μm to 15 μm, more preferably 3 μm to 12 μm, and more preferably 5 μm to 10 μm. In order to remove unnecessary plasma proteins, it is desirable that the pore size of the selective separation layer is large. In the membrane of the present invention, the sieving coefficient of α1-MG is preferably 0.1 or more,
Further, it is preferably 0.2 or more. Furthermore, in the present invention, by making the thickness of the selective separation layer appropriate, such α1-
A hollow fiber membrane having an MG sieving coefficient and a sieving coefficient for albumin of 0.02 or less, preferably 0.01 or less, can be provided. The position of the selective separation layer in the cross section of the hollow fiber membrane may be inside the hollow fiber, in the center of the cross section, or both inside the hollow fiber and outside the hollow fiber, and the position is not particularly limited. In the present invention, it is preferable that the selective separation layer is located inside the hollow fiber because the protein infiltrates the membrane from the blood flowing inside the hollow fiber and the inside of the membrane is easily contaminated with the protein.

【0006】本発明におけるポリスルホン系血液透析膜
は親水性高分子を含有するものである。親水性高分子の
含有量が少ないと、膜表面の親水性が悪くなり、血漿蛋
白を吸着して性能劣化を招くと共に血液凝固が起こり易
くなる。逆に、多すぎても、膜表面の親水性付与には役
立たず、紡糸原液への仕込み量の増加に伴って、粘度が
増大し、安定な紡糸が難しくなること及び製造コストが
高くなることなどの不利なことが出てくる。それだけで
なく、ポリスルホン系ポリマー粒子に強く取り込まれず
に溶出し易くなっている親水性高分子の量が増えるだけ
という欠点も発生する。このため、本発明では、親水性
高分子の重量比率が1〜5%であることが好ましく、2
〜4.5%であることが更に好ましい。ここで、ポリス
ルホン系血液透析膜中に存在する親水性高分子の重量比
率を測定する方法としては、元素分析を用いて測定した
総窒素から算出する方法、または熱分解ガスクロマトグ
ラフィーなどの手法で定量する方法が例示できる。
[0006] The polysulfone hemodialysis membrane of the present invention contains a hydrophilic polymer. When the content of the hydrophilic polymer is small, the hydrophilicity of the membrane surface is deteriorated, the plasma protein is adsorbed, the performance is deteriorated, and blood coagulation is liable to occur. Conversely, if the amount is too large, it does not contribute to imparting hydrophilicity to the membrane surface, and the viscosity increases with an increase in the amount charged in the spinning solution, making stable spinning difficult and increasing the production cost. Disadvantages such as come out. In addition, there is also a disadvantage that the amount of the hydrophilic polymer that is easily taken out without being strongly taken into the polysulfone-based polymer particles only increases. For this reason, in the present invention, the weight ratio of the hydrophilic polymer is preferably 1 to 5%, preferably 2 to 5%.
More preferably, it is 4.5%. Here, as a method of measuring the weight ratio of the hydrophilic polymer present in the polysulfone-based hemodialysis membrane, a method of calculating from the total nitrogen measured using elemental analysis, or a method such as pyrolysis gas chromatography A quantification method can be exemplified.

【0007】本発明におけるポリスルホン系血液透析膜
は、親水性高分子を含有するものであるが、膜からの溶
出が抑えられたものである。本発明では、分画特性を良
くするため、選択分離層、即ちポリマー部分の多い緻密
層を上述のような適切な厚みに設定している。緻密層は
空隙も少なく、この部位の親水性高分子が洗浄され難
く、このため親水性高分子の溶出がより多くなることは
容易に推測される。本発明では、後述するようにこのよ
うな洗浄し難い親水性高分子が洗浄出来ることを見いだ
し、溶出可能な親水性高分子を極力減らすことにより、
膜からの溶出量を低減させたものである。本発明では、
親水性高分子の膜からの溶出は、次のように評価され
る。即ち、中空糸膜0.1gを細かく切り刻み、70℃
の熱水5cc中に浸漬し、1時間抽出を行う。抽出液を
被検液とし、GPC(ゲルパーミエーションクロマトグ
ラフィー)にて親水性高分子の定量を行う。このような
方法により、熱水で抽出される親水性高分子量が測定出
来るが、本発明では、その量は、中空糸膜1g当たり
0.5mg以下であることが必要であり、これにより、
本発明の中空糸膜を血液透析用途で使用する場合、血液
中への親水性高分子の溶出量を実質上無視出来る程度に
抑えることが出来る。本発明では、膜中に直径が1μm
以上の空隙を有するボイド状構造の膜であっても構わな
いが、この空隙に空気が残存して血液凝固を悪化させる
こともある。このため、本発明では、実質的にこのよう
な空隙を含まないスポンジ状の膜構造であることが好ま
しい。
[0007] The polysulfone-based hemodialysis membrane of the present invention contains a hydrophilic polymer, but its elution from the membrane is suppressed. In the present invention, in order to improve the fractionation characteristics, the selective separation layer, that is, the dense layer having many polymer portions is set to the appropriate thickness as described above. The dense layer has few voids, and it is difficult to wash the hydrophilic polymer at this portion, and it is easily assumed that the elution of the hydrophilic polymer is further increased. In the present invention, it is found that such a hard-to-wash hydrophilic polymer can be washed as described later, and by reducing the elutable hydrophilic polymer as much as possible,
The amount of elution from the membrane was reduced. In the present invention,
Elution of the hydrophilic polymer from the membrane is evaluated as follows. That is, 0.1 g of the hollow fiber membrane was finely chopped, and 70 ° C.
Immersed in 5 cc of hot water and extracted for 1 hour. Using the extract as a test liquid, the amount of the hydrophilic polymer is determined by GPC (gel permeation chromatography). According to such a method, the amount of the hydrophilic polymer extracted with hot water can be measured. In the present invention, the amount needs to be 0.5 mg or less per 1 g of the hollow fiber membrane.
When the hollow fiber membrane of the present invention is used for hemodialysis, the amount of the hydrophilic polymer eluted into the blood can be suppressed to a substantially negligible level. In the present invention, the diameter of the film is 1 μm.
Although a film having a void-like structure having the above-mentioned voids may be used, air may remain in these voids to deteriorate blood coagulation. For this reason, in the present invention, it is preferable that the sponge-like film structure does not substantially include such a void.

【0008】本発明で使用されるポリスルホン系ポリマ
ーとは、化1もしくは化2の繰り返し単位からなるポリ
マーであるが、官能基を含んでいたり、アルキル系の基
を含むものでもよく、特に限定されるものではない。
The polysulfone polymer used in the present invention is a polymer comprising a repeating unit of the formula (1) or (2), but may be a polymer containing a functional group or an alkyl group, and is not particularly limited. Not something.

【0009】[0009]

【化1】 Embedded image

【0010】[0010]

【化2】 Embedded image

【0011】また、本発明で使用される親水性高分子と
しては、例えばポリビニルピロリドン(以下PVPとい
う)、ポリエチレングリコール、ポリグリコールモノエ
ステル、デンプン及びその誘導体、カルボキシメチルセ
ルロース、酢酸セルロースなどの水溶性セルロース誘導
体を挙げることができる。これら親水性高分子は、それ
ぞれ単独で使用することができ、また組み合わせて使用
することも可能である。これら水溶性高分子とポリスル
ホン系ポリマーをそれらに共通の溶媒に溶解し、均一な
紡糸原液を得た後、乾湿式紡糸で中空糸に製膜する。孔
径制御のため、紡糸原液には水などの添加物を加えても
良い。ここで、ポリスルホン系ポリマー及び親水性高分
子を共に溶解する溶媒としては、例えば、ジメチルアセ
トアミド(以下DMACという)、ジメチルスルホキシ
ド(以下DMSOという)、N−メチル−2−ピロリド
ン、ジメチルホルムアミド、スルホラン、ジオキサン等
を挙げることができる。これら溶媒は、それぞれ単独で
使用することができ、また組み合わせて使用することも
可能である。
Examples of the hydrophilic polymer used in the present invention include water-soluble cellulose such as polyvinylpyrrolidone (hereinafter referred to as PVP), polyethylene glycol, polyglycol monoester, starch and derivatives thereof, carboxymethylcellulose and cellulose acetate. Derivatives can be mentioned. These hydrophilic polymers can be used alone or in combination. The water-soluble polymer and the polysulfone-based polymer are dissolved in a common solvent to obtain a uniform spinning solution, and then formed into a hollow fiber by dry-wet spinning. An additive such as water may be added to the spinning dope for controlling the pore size. Here, as a solvent for dissolving both the polysulfone-based polymer and the hydrophilic polymer, for example, dimethylacetamide (hereinafter referred to as DMAC), dimethylsulfoxide (hereinafter referred to as DMSO), N-methyl-2-pyrrolidone, dimethylformamide, sulfolane, Dioxane and the like can be mentioned. These solvents can be used alone or in combination.

【0012】中空糸膜を製膜するに際してはチューブイ
ンオリフィス型の二重紡口を用い、該紡口から前記紡糸
原液と該紡糸原液を凝固させる為の中空内液とを同時に
空中に押し出し、空走部を走行させた後、紡口下部に設
置した水を主体とする凝固浴中へ浸漬、凝固させた後巻
き取る。巻き取られた中空糸膜から、洗浄により過剰な
親水性高分子や溶剤が除去され、必要に応じてグリセリ
ンを付与した後、乾熱等により乾燥する。過剰な親水性
高分子を洗浄除去する洗浄液として、アルコール系溶剤
やポリスルホン系ポリマーの良溶媒と貧溶媒の混合溶剤
が例示される。より詳細には、130〜160℃の高温
のグリセリンや50〜98℃のDMAC水溶液及びまた
はDMSO水溶液が挙げられる。洗浄方式として、これ
ら洗浄液に中空糸を浸漬する方法、これら洗浄液を中空
糸にシャワーする方法、これら洗浄液中を中空糸を走行
させる方法等が挙げられるが、これらに限定されるもの
ではなく、洗浄液と中空糸との接触を図る方法であれば
よい。
When forming a hollow fiber membrane, a tube-in-orifice-type double spinneret is used, and the spinning stock solution and a hollow inner solution for coagulating the spinning stock solution are simultaneously extruded from the spinneret into the air. After running in the idle running section, it is immersed and coagulated in a coagulation bath mainly composed of water installed under the spinneret and then wound up. Excessive hydrophilic polymer and solvent are removed from the wound hollow fiber membrane by washing, and glycerin is applied as necessary, and then dried by dry heat or the like. Examples of the cleaning solution for cleaning and removing excess hydrophilic polymer include a mixed solvent of a good solvent and a poor solvent of an alcohol solvent or a polysulfone polymer. More specifically, high temperature glycerin at 130 to 160 ° C. and aqueous DMAC and / or DMSO at 50 to 98 ° C. are exemplified. Examples of the washing method include a method of dipping hollow fibers in these washing liquids, a method of showering these washing liquids on hollow fibers, and a method of running hollow fibers in these washing liquids, but are not limited thereto. Any method may be used as long as the method makes contact with the hollow fiber.

【0013】本発明の目的を達成するためには、選択分
離層の平均孔径(言い換えると膜の疎密)と厚みが重要
であり、これらを制御するには、上記製膜の工程が大き
く関与する。まず、中空内液の種類及び濃度が重要であ
り、ポリスルホン系ポリマーの良溶媒と貧溶媒の混合溶
剤、たとえばジメチルアセトアミド水溶液が好んで用い
られる。中空内液中の溶剤濃度を高くすると凝固力が弱
くなるために緩やかに凝固が進む結果、緻密な凝集構造
をとることができず、選択分離層は疎な構造になる。次
に、紡糸原液の粘度が重要で、粘度が高いと凝固時にポ
リスルホン系ポリマーの移動が抑えられ、同条件で粘度
が低い場合に比べて選択分離層は厚くなる。紡糸原液の
粘度は、親水性高分子の分子量、紡糸原液中のポリスル
ホン系ポリマー及び親水性高分子の濃度、紡糸原液の温
度等に依存し、どの要因も選択分離層の形成に重大な影
響を及ぼす。また、紡糸ドラフトも重要な要因で、厚い
選択分離層を持たせるためには紡糸ドラフトを上げる必
要がある。選択分離層の形成に影響を及ぼす因子は、こ
の他にも、紡糸口金から凝固浴までの空走部の距離、紡
口サイズ、凝固浴の温度と組成、紡速、紡糸原液に使用
する溶剤などがあるが、溶質の透過性能との兼ね合い、
目的等を考慮して設定する必要がある。
In order to achieve the object of the present invention, the average pore size (in other words, the density of the membrane) and the thickness of the selective separation layer are important. . First, the type and concentration of the liquid in the hollow are important, and a mixed solvent of a good solvent and a poor solvent for the polysulfone-based polymer, for example, a dimethylacetamide aqueous solution is preferably used. If the concentration of the solvent in the hollow internal solution is increased, the coagulation force is weakened, so that the coagulation proceeds slowly. As a result, a dense coagulated structure cannot be obtained, and the selective separation layer has a sparse structure. Next, the viscosity of the spinning solution is important. If the viscosity is high, the movement of the polysulfone polymer during coagulation is suppressed, and the selective separation layer becomes thicker than when the viscosity is low under the same conditions. The viscosity of the spinning dope depends on the molecular weight of the hydrophilic polymer, the concentration of the polysulfone polymer and the hydrophilic polymer in the spinning dope, the temperature of the spinning dope, and all factors have a significant effect on the formation of the selective separation layer. Exert. The spinning draft is also an important factor, and it is necessary to increase the spinning draft to have a thick selective separation layer. Other factors affecting the formation of the selective separation layer include the distance between the spinneret and the coagulation bath, the spinneret size, the temperature and composition of the coagulation bath, the spinning speed, and the solvent used for the spinning solution. There is a balance with solute permeation performance,
It is necessary to set in consideration of the purpose.

【0014】以下、本発明の実施例を比較例と共に示す
が、本発明はこれに限定されるものではない。
Examples of the present invention will be described below together with comparative examples, but the present invention is not limited to these examples.

【実施例1】ポリスルホン(P−1700:AMOCO
社製)18重量部とPVP(K−90:ISP社製)5
重量部をDMAC77重量部に溶解し、10時間攪拌し
紡糸原液とした。40重量%のDMAC水溶液を中空内
液とし、上記紡糸原液を45℃の状態で同時に二重紡口
からドラフト率3.2倍で押し出し、30cmの空走部
を経て、50℃の水からなる凝固浴に導いた後カセ状に
巻き取った。85℃の45%DMAC水溶液で50分洗
浄した後、90℃の熱水で20時間水洗を行い、グリセ
リンを付与し、更に乾熱乾燥した。得られた中空糸膜か
らグリセリンを除いた後、四酸化オスミウム水溶液で染
色し、脱水後エポキシ樹脂で包埋し、硬化後超ミクロト
ームを用いて約60nmの超薄切片を作成してTEM
(JEM2000FX)観察を行った。得られたTEM
像を用いて0.7μm間隔で中空糸内表面側から外表面
側に向けて画像解析装置(IP−1000:旭化成社
製)を用いて組織率を測定した。得られたデータを膜内
表面からの距離に対してプロットし、選択分離層の厚み
を求めた。結果を表1に示す。
Example 1 Polysulfone (P-1700: AMOCO
18 parts by weight and PVP (K-90: ISP) 5
Parts by weight were dissolved in 77 parts by weight of DMAC and stirred for 10 hours to obtain a spinning stock solution. A 40% by weight aqueous solution of DMAC is used as a hollow inner solution, and the above spinning stock solution is simultaneously extruded at a draft rate of 3.2 times from a double spinneret at a temperature of 45 ° C. After being led to the coagulation bath, it was wound into a scallop. After washing with a 45% aqueous solution of DMAC at 85 ° C. for 50 minutes, it was washed with hot water at 90 ° C. for 20 hours to give glycerin, and further dried with dry heat. After glycerin was removed from the obtained hollow fiber membrane, it was stained with an osmium tetroxide aqueous solution, dehydrated, embedded in an epoxy resin, and after curing, an ultra-thin section of about 60 nm was prepared using an ultramicrotome to obtain a TEM.
(JEM2000FX) was observed. Obtained TEM
Using the image, the tissue ratio was measured at 0.7 μm intervals from the inner surface side of the hollow fiber toward the outer surface side using an image analyzer (IP-1000: manufactured by Asahi Kasei Corporation). The obtained data was plotted against the distance from the inner surface of the membrane to determine the thickness of the selective separation layer. Table 1 shows the results.

【0015】[0015]

【実施例2】ポリスルホン(P−1700:AMOCO
社製)16重量部とPVP(K−90:ISP社製)4
重量部をDMAC80重量部に溶解し、10時間攪拌し
紡糸原液とした。30重量%のDMAC水溶液を中空内
液とし、上記紡糸原液を55℃の状態で同時に二重紡口
からドラフト率1.4倍で押し出し、55cmの空走部
を経て、50℃の水からなる凝固浴に導いた後カセ状に
巻き取った。85℃の45%DMAC水溶液で50分洗
浄した後、90℃の熱水で20時間水洗を行い、グリセ
リンを付与し、更に乾熱乾燥した。得られた中空糸膜か
らグリセリンを除いた後、四酸化オスミウム水溶液で染
色し、脱水後エポキシ樹脂で包埋し、硬化後超ミクロト
ームを用いて約60nmの超薄切片を作成してTEM
(JEM2000FX)観察を行った。得られたTEM
像を用いて0.7μm間隔で中空糸内表面側から外表面
側に向けて画像解析装置(IP−1000:旭化成社
製)を用いて組織率を測定した。得られたデータを膜内
表面からの距離に対してプロットし、選択分離層の厚み
を求めた。結果を表1に示す。
Example 2 Polysulfone (P-1700: AMOCO
16 parts by weight and PVP (K-90: ISP) 4
Parts by weight were dissolved in 80 parts by weight of DMAC and stirred for 10 hours to obtain a spinning stock solution. A 30% by weight aqueous solution of DMAC is made into a hollow inner solution, and the above spinning stock solution is simultaneously extruded at a draft rate of 1.4 times from a double spinneret at a temperature of 55 ° C. After being led to the coagulation bath, it was wound into a scallop. After washing with a 45% aqueous solution of DMAC at 85 ° C. for 50 minutes, it was washed with hot water at 90 ° C. for 20 hours to give glycerin, and further dried with dry heat. After glycerin was removed from the obtained hollow fiber membrane, it was stained with an osmium tetroxide aqueous solution, dehydrated, embedded in an epoxy resin, and after curing, an ultra-thin section of about 60 nm was prepared using an ultramicrotome to obtain a TEM.
(JEM2000FX) was observed. Obtained TEM
Using the image, the tissue ratio was measured at 0.7 μm intervals from the inner surface side of the hollow fiber toward the outer surface side using an image analyzer (IP-1000: manufactured by Asahi Kasei Corporation). The obtained data was plotted against the distance from the inner surface of the membrane to determine the thickness of the selective separation layer. Table 1 shows the results.

【0016】[0016]

【比較例1】ポリスルホン(P−1700:AMOCO
社製)20部とPVP(K−90:ISP社製)6重量
部をDMAC74重量部に溶解し、10時間攪拌し紡糸
原液とした。45重量%のDMAC水溶液を中空内液と
し、上記紡糸原液を45℃の状態で同時に二重紡口から
ドラフト率3.4倍で押し出し、70cmの空走部を経
て、50℃の水からなる凝固浴に導いた後カセ状に巻き
取った。85℃の45%DMAC水溶液で50分洗浄し
た後、90℃の熱水で20時間水洗を行い、グリセリン
を付与し、更に乾熱乾燥した。得られた中空糸膜からグ
リセリンを除いた後、四酸化オスミウム水溶液で染色
し、脱水後エポキシ樹脂で包埋し、硬化後超ミクロトー
ムを用いて約60nmの超薄切片を作成してTEM(J
EM2000FX)観察を行った。得られたTEM像を
用いて0.7μm間隔で中空糸内表面側から外表面側に
向けて画像解析装置(IP−1000:旭化成社製)を
用いて組織率を測定した。得られたデータを膜内表面か
らの距離に対してプロットし、選択分離層の厚みを求め
た。結果を表1に示す。
Comparative Example 1 Polysulfone (P-1700: AMOCO)
20 parts) and 6 parts by weight of PVP (K-90: made by ISP) were dissolved in 74 parts by weight of DMAC and stirred for 10 hours to prepare a spinning dope. A 45 wt% DMAC aqueous solution is used as a hollow inner solution, and the above spinning stock solution is simultaneously extruded at a draft rate of 3.4 times from a double spinneret at a temperature of 45 ° C., and passes through a 70 cm idle running section and is made of water at 50 ° C. After being led to the coagulation bath, it was wound into a scallop. After washing with a 45% aqueous solution of DMAC at 85 ° C. for 50 minutes, it was washed with hot water at 90 ° C. for 20 hours to give glycerin, and further dried with dry heat. After glycerin was removed from the obtained hollow fiber membrane, it was stained with an osmium tetroxide aqueous solution, dehydrated, embedded in an epoxy resin, cured, and then formed into an ultrathin section of about 60 nm using an ultramicrotome.
EM2000FX) was observed. Using the obtained TEM image, the tissue ratio was measured at an interval of 0.7 μm from the inner surface side of the hollow fiber toward the outer surface side using an image analyzer (IP-1000: manufactured by Asahi Kasei Corporation). The obtained data was plotted against the distance from the inner surface of the membrane to determine the thickness of the selective separation layer. Table 1 shows the results.

【0017】[0017]

【比較例2】ポリスルホン(P−1700:AMOCO
社製)18部とPVP(K−30:ISP社製)9重量
部をDMAC43重量部とDMSO29重量部及び水1
重量部に加えて溶解し、10時間攪拌し紡糸原液とし
た。30重量%のDMAC水溶液を中空内液とし、上記
紡糸原液を60℃の状態で同時に二重紡口からドラフト
率1.3倍で押し出し、30cmの空走部を経て、50
℃の水からなる凝固浴に導いた後カセ状に巻き取った。
85℃の45%DMAC水溶液で50分洗浄した後、9
0℃の熱水で20時間水洗を行い、グリセリンを付与
し、更に乾熱乾燥した。得られた中空糸膜からグリセリ
ンを除いた後、四酸化オスミウム水溶液で染色し、脱水
後エポキシ樹脂で包埋し、硬化後超ミクロトームを用い
て約60nmの超薄切片を作成してTEM(JEM20
00FX)観察を行った。得られたTEM像を用いて
0.7μm間隔で中空糸内表面側から外表面側に向けて
画像解析装置(IP−1000:旭化成社製)を用いて
組織率を測定した。得られたデータを膜内表面からの距
離に対してプロットし、選択分離層の厚みを求めた。結
果を表1に示す。
Comparative Example 2 Polysulfone (P-1700: AMOCO
18 parts), 9 parts by weight of PVP (K-30: manufactured by ISP), 43 parts by weight of DMAC, 29 parts by weight of DMSO, and 1 part of water.
The resulting solution was added to parts by weight, dissolved, and stirred for 10 hours to obtain a spinning stock solution. A 30% by weight aqueous solution of DMAC was used as a hollow inner solution, and the above spinning stock solution was simultaneously extruded at a draft rate of 1.3 times from a double spinneret at 60 ° C., and passed through a 30 cm idle running portion to obtain a spinning solution of 50%.
After being led to a coagulation bath consisting of water at a temperature of ° C., it was wound into a scab.
After washing with a 45% aqueous solution of DMAC at 85 ° C. for 50 minutes, 9
The resultant was washed with hot water of 0 ° C. for 20 hours to give glycerin, and further dried by dry heat. After glycerin was removed from the obtained hollow fiber membrane, it was stained with an osmium tetroxide aqueous solution, dehydrated, embedded in an epoxy resin, cured, and then formed into an ultrathin section of about 60 nm using an ultramicrotome.
00FX) Observations were made. Using the obtained TEM image, the tissue ratio was measured at an interval of 0.7 μm from the inner surface side of the hollow fiber toward the outer surface side using an image analyzer (IP-1000: manufactured by Asahi Kasei Corporation). The obtained data was plotted against the distance from the inner surface of the membrane to determine the thickness of the selective separation layer. Table 1 shows the results.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【実施例3】実施例1、2及び比較例1、2で得られた
中空糸を用い、100本からなるミニモジュール(有効
長25cm)を作成し、蛋白濃度6.5g/dLの人血
清を線速度0.4cm/秒で中空糸内側に流通した。膜
間圧力差25mmHgで採取した濾液及び元液中のα1
−MGおよびアルブミンの濃度を測定し、その比よりふ
るい係数を算出した。結果を表2に示す。
Example 3 Using the hollow fibers obtained in Examples 1 and 2 and Comparative Examples 1 and 2, a mini-module (effective length 25 cm) consisting of 100 fibers was prepared, and a human serum having a protein concentration of 6.5 g / dL was prepared. At a linear velocity of 0.4 cm / sec. Α1 in the filtrate and the original solution collected at a transmembrane pressure difference of 25 mmHg
-The concentrations of MG and albumin were measured, and the sieving coefficient was calculated from the ratio. Table 2 shows the results.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【実施例4】実施例1、2及び比較例1、2で得られた
中空糸の膜中に存在する親水性高分子の重量比率を元素
分析から求めた値、及び親水性高分子の熱水への抽出量
を表1に示す。
EXAMPLE 4 The weight ratio of the hydrophilic polymer present in the membranes of the hollow fibers obtained in Examples 1 and 2 and Comparative Examples 1 and 2 was determined by elemental analysis, and the heat ratio of the hydrophilic polymer was determined. Table 1 shows the extraction amount in water.

【0022】[0022]

【発明の効果】本発明のポリスルホン系血液透析膜は、
公知の同種透析膜に比較して、表1及び表2に示すよう
に、親水性高分子を含有するがその溶出が抑えられ、か
つ不要物質の除去、有用物質の回収を効率良く行うこと
ができる分子量分画性がシャープな膜であり、その有用
性は大きい。
The polysulfone hemodialysis membrane of the present invention is
As shown in Tables 1 and 2, as compared with known homogenous dialysis membranes, they contain a hydrophilic polymer but its elution is suppressed, and it is possible to efficiently remove unnecessary substances and collect useful substances. The membrane has a sharp molecular weight fractionation property, and its usefulness is great.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 親水性高分子を含有するポリスルホン系
中空糸膜において、実質的に分離機能を有する選択分離
層の厚さが2〜15μmであり、熱水で抽出される親水
性高分子が中空糸膜1g当たり0.5mg以下であるこ
とを特徴とするポリスルホン系血液透析膜。
1. In a polysulfone-based hollow fiber membrane containing a hydrophilic polymer, a selective separation layer having a substantial separation function has a thickness of 2 to 15 μm, and a hydrophilic polymer extracted with hot water is used. A polysulfone-based hemodialysis membrane characterized by being 0.5 mg or less per 1 g of a hollow fiber membrane.
【請求項2】 選択分離層が中空糸内表面側に存在する
請求項1記載のポリスルホン系血液透析膜。
2. The polysulfone-based hemodialysis membrane according to claim 1, wherein the selective separation layer exists on the inner surface side of the hollow fiber.
【請求項3】 親水性高分子がポリビニルピロリドンで
ある請求項1記載のポリスルホン系血液透析膜。
3. The polysulfone hemodialysis membrane according to claim 1, wherein the hydrophilic polymer is polyvinylpyrrolidone.
【請求項4】 ポリスルホン系血液透析膜中に存在する
親水性高分子の重量比率が1〜5重量%である請求項1
記載のポリスルホン系血液透析膜。
4. The weight ratio of the hydrophilic polymer present in the polysulfone-based hemodialysis membrane is 1 to 5% by weight.
The polysulfone-based hemodialysis membrane according to the above.
【請求項5】 アルブミンのふるい係数が0.02以下
であり、かつα1−ミクログロブリンのふるい係数が
0.1以上である請求項1記載のポリスルホン系血液透
析膜。
5. The polysulfone-based hemodialysis membrane according to claim 1, wherein the sieving coefficient of albumin is 0.02 or less, and the sieving coefficient of α1-microglobulin is 0.1 or more.
JP6902097A 1997-03-07 1997-03-07 Polysulfone-base blood dialysis membrane Pending JPH10243999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6902097A JPH10243999A (en) 1997-03-07 1997-03-07 Polysulfone-base blood dialysis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6902097A JPH10243999A (en) 1997-03-07 1997-03-07 Polysulfone-base blood dialysis membrane

Publications (1)

Publication Number Publication Date
JPH10243999A true JPH10243999A (en) 1998-09-14

Family

ID=13390492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6902097A Pending JPH10243999A (en) 1997-03-07 1997-03-07 Polysulfone-base blood dialysis membrane

Country Status (1)

Country Link
JP (1) JPH10243999A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046763A1 (en) 2003-11-17 2005-05-26 Asahi Kasei Medical Co., Ltd. Hollow fiber membrane for blood purification and blood purification apparatus including the same
WO2005051460A1 (en) * 2003-11-26 2005-06-09 Toyo Boseki Kabushiki Kaisha Polysulfone-based hollow-fiber membrane with selective permeability
US20110259816A1 (en) * 2008-12-25 2011-10-27 Toyo Boseki Kabushiki Kaisha porous hollow fiber membrane and a porous hollow fiber membrane for the treatment of a protein-containing liquid
US9616393B2 (en) 2007-12-06 2017-04-11 Asahi Kasei Medical Co., Ltd. Porous hollow fiber membrane for treating blood

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005046763A1 (en) 2003-11-17 2005-05-26 Asahi Kasei Medical Co., Ltd. Hollow fiber membrane for blood purification and blood purification apparatus including the same
KR101139594B1 (en) 2003-11-17 2012-04-27 아사히 카세이 쿠라레 메디칼 가부시키가이샤 Hollow fiber membrane for blood purification and blood purification apparatus inculding the same
US9849427B2 (en) 2003-11-17 2017-12-26 Asahi Kasei Medical Co., Ltd. Hollow fiber membrane for blood purification and blood purification apparatus using the same
WO2005051460A1 (en) * 2003-11-26 2005-06-09 Toyo Boseki Kabushiki Kaisha Polysulfone-based hollow-fiber membrane with selective permeability
US7638052B2 (en) 2003-11-26 2009-12-29 Toyo Boseki Kabushiki Kaisha Polysulfone-based hollow-fiber membrane with selective permeability
US9616393B2 (en) 2007-12-06 2017-04-11 Asahi Kasei Medical Co., Ltd. Porous hollow fiber membrane for treating blood
US20110259816A1 (en) * 2008-12-25 2011-10-27 Toyo Boseki Kabushiki Kaisha porous hollow fiber membrane and a porous hollow fiber membrane for the treatment of a protein-containing liquid
US9795932B2 (en) * 2008-12-25 2017-10-24 Toyo Boseki Kabushiki Kaisha Porous hollow fiber membrane and a porous hollow fiber membrane for the treatment of a protein-containing liquid

Similar Documents

Publication Publication Date Title
JP3474205B2 (en) Polysulfone hollow fiber type blood purification membrane and method for producing the same
US4874522A (en) Polysulfone hollow fiber membrane and process for making the same
CN100457242C (en) Dialysis membrane having improved average molecular distance
JP3117575B2 (en) Polysulfone-based hollow fiber membrane and method for producing the same
JP5129962B2 (en) Integral asymmetric membrane, method for producing the same and use thereof
JP5433921B2 (en) Polymer porous hollow fiber membrane
JP4940576B2 (en) Hollow fiber membrane and blood purifier
JPWO2002009857A1 (en) Modified hollow fiber membrane
JP2792556B2 (en) Blood purification module, blood purification membrane and method for producing the same
JP3617194B2 (en) Permselective separation membrane and method for producing the same
JPH10230148A (en) Semipermeable membrane
JPH0478729B2 (en)
JP2703266B2 (en) Polysulfone hollow fiber membrane and method for producing the same
JPH10243999A (en) Polysulfone-base blood dialysis membrane
JPH11309355A (en) Polysulfone hollow fiber type blood purifying membrane and its production
JP3212313B2 (en) Hollow fiber blood purification membrane and method for producing the same
JP4029312B2 (en) Permselective hollow fiber membrane
JP3594946B2 (en) High performance microfiltration membrane
JPH1066725A (en) Selective-permeability hollow fiber membrane
JP4093134B2 (en) Hollow fiber blood purification membrane
JPH09220455A (en) Hollow yarn type selective separation membrane
JP4076144B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane
JP2001038171A (en) Hollow fiber membrane
JP2003275300A (en) Regenerated cellulose hollow fiber membrane for blood purification, its manufacturing method, and blood purifying apparatus
JP4386607B2 (en) Polysulfone blood purification membrane production method and polysulfone blood purification membrane