JPS6118982B2 - - Google Patents

Info

Publication number
JPS6118982B2
JPS6118982B2 JP32179A JP32179A JPS6118982B2 JP S6118982 B2 JPS6118982 B2 JP S6118982B2 JP 32179 A JP32179 A JP 32179A JP 32179 A JP32179 A JP 32179A JP S6118982 B2 JPS6118982 B2 JP S6118982B2
Authority
JP
Japan
Prior art keywords
wavelength range
spectrum
reaction solution
hemolysis
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP32179A
Other languages
Japanese (ja)
Other versions
JPS54116283A (en
Inventor
Toshuki Sagusa
Yasushi Nomura
Ryohei Yabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32179A priority Critical patent/JPS54116283A/en
Publication of JPS54116283A publication Critical patent/JPS54116283A/en
Publication of JPS6118982B2 publication Critical patent/JPS6118982B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の利用分野〕 本発明は生化学試料中に含まれる乳び、溶血、
黄たん等のクロモゲンを光学的に測定するに好適
な分析方法に関する。 〔発明の背景〕 生化学検査の分野における最近の自動化の傾向
は極めて著しいものがある。自動分析装置も又、
初期のフロータイプから最近の種々のデイスクリ
ートタイプ迄多種多様にわたる機種が開発されて
いる。これら各種の自動分析装置は、検査件数全
体の拡大と、測定結果の精密度の向上の両面にお
いて著しい効果を発揮している。しかし、測定結
果の正確度の点を考慮すると、現在使用されてい
る各種の自動分析装置は未だ幾多の問題点を有
し、使用者の要求を満たすには程遠いものがあ
る。とりわけ、溶血(ヘモグロビン)、黄たん
(ビリルビン)、乳び(濁り)を始めとするクロモ
ゲンが生化学自動分析装置による一般検査項目の
測定の正確度を失わしめている。 生化学検査においては、生体試料を反応容器に
採取して試薬と反応させ、反応液を光学的に測定
する分析方法が一般的である。なかでも測光部と
して、反応液を透過した光を多数の波長に分散し
てそれらを検知することができる多波長光度計を
用いたものは、適用領域を拡大できる可能性を有
している。 第1図に、各妨害物質と吸収スペクトルの関係
を模型的に示す。図において、スペクトル10
は、前述のような妨害物質を全く含まない理想的
な血清の反応液の吸収スペクトル、スペクトル1
2は、乳び、黄たん、溶血等の妨害物質を含む実
際の血清の反応液の吸収スペクトルである。第1
図に示すような例において、波長λにより1波
長比色を行なつた場合を考えると、これら2つの
検体中の目的物質の濃度は本来同程度であるにも
かかわらず、スペクトル12は、スペクトル10
の約2倍の分析値を与える。 一方、従来からクロモゲンによる一般検査項目
の測定値への影響を考慮することは行なわれてい
たが、その検査結果は検査員の目視に基づいて含
有すると思われる量を記号(例えば〓、〓、+、−
の4段階)で表示していた。したがつて検査結果
は検査員による個人差も大きく、妨害クロモゲン
量を定量的に知ることはできなかつた。 〔発明の目的〕 本発明の目的は、測定しようとする分析項目の
ための試料と試薬の反応を生ぜしめてその分析項
目を測定する一方で、各クロモゲンをも測定し得
る生化学分析方法を提供することにある。 〔発明の概要〕 本発明では、血液試料と測定すべき分析項目用
の試薬を反応させてその分析項目の濃度と関連し
て紫外域に吸収を持つ反応液を得ること、上記反
応液に光を照射し、紫外域の吸収を測定すること
によつて上記分析項目濃度を求めること、上記反
応液に関し、可視光波長域で、乳び、溶血および
黄たんを測定すること、上記乳びの程度は、可視
光波長域のうちの溶血および黄たんの影響が実質
的にない長波長域を測定して求めること、上記溶
血の程度は、可視光波長域のうちの黄たんの影響
が実質的にない中波長域での測定値と上記長波長
域での測定値に基づいて求めること、および上記
黄たんの程度は、可視光波長域のうちの短波長域
での測定値と上記長波長域での測定値および上記
中波長域での測定値に基づいて求めること、を特
徴とする。 〔発明の実施例〕 本発明を臨床用自動分析装置に適用する場合
は、1つのチヤンネルで多波長光度計を用いるこ
とが最適である。この自動分析装置としては血液
試料を収容した試料容器を移送するサンプラ、反
応容器の列を移送する反応ライン、試料容器から
反応容器へ試料を分配する分注器、試料と反応さ
せるための特定分析項目用の試薬を反応容器に添
加する装置、反応液に光を照射し、反応液の吸収
特性を測光する多波長光度計などを備えた周知の
臨床用自動分析装置を用いることができる。 以下に説明する本発明の実施例では、そのよう
な分析装置を用いている。実施例の説明に先立つ
てクロモゲン測定の考え方について説明する。乳
び、溶血、黄たん等の妨害クロモゲンの吸収スペ
クトルは、液性によつて異なり、多くの場合重な
り合つているため、そのスペクトルの解析は困難
である。とりわけ、これらの吸収に更に一般の検
査項目物質の吸収が重なつた場合、その解析は一
段と困難であり、仮に解析できたとしてもその精
密度は著しく低下している。従つて、多項目自動
分析装置のように、同一検体に対して多くの項目
を同時に測定する場合であつても、各測定項目毎
にそのスペクトルを解析するよりは、最も解析し
やすい分析項目についてのみそのスペクトルを解
析し、その分析項目を測定するとともに同じ反応
液について3種の妨害物質の量を測定する。 前記妨害クロモゲンを最も解析しやすい反応液
を生ずる分析項目としては、例えば、グルタミン
酸オキザロ酢酸トランスアミナーゼ(以下GOT
と称する)、グルタミン酸ピルビン酸トランスア
ミナーゼ(以下GPTと称する)、乳酸脱水素酵素
(以下LDHと称する)、ヒドロキシ酪酸脱水素酵
素(以下HBDHと称する)のように、紫外部吸収
によつて目的物質を測定する分析項目があげられ
る。試料(血清)に特定の試薬を加えて反応液を
得、これらの分析項目を測定する場合おいては、
その目的物質である還元型ニコチンアミドアデニ
ンジヌクレオチド(以下NADHと称する)の吸収
が紫外部(340nm)にあり可視域にないので、
可視波長域において前述の妨害物質の内、黄たん
と溶血による吸収スペクトルと重ならない。しか
も、その試薬中にはヘモグロビンや黄たんあるい
はリポ蛋白(濁りの原因の1つ)等と反応する物
質が含まれておらず、液性も中性の緩衝液(PH
7.4)であるため、前述の妨害物質のスペクトル
が比較的単純な形状をしており、その解析が容易
である。 第2図に、GOTを測定する反応液の紫外部を
含む吸収スペクトルを示す。図において、14は
前述のクロモゲンを全く含まない理想的な正常血
清の反応液のスペクトルを水対象で示したもの、
16は、高乳び血清の反応液のスペクトルを試薬
ブランク対象で示したもの、18は、高黄たん血
清の反応液のスペクトルを同じく試薬ブランク対
象で示したものである。ここで、水対象スペクト
ル14は、試料セルに収容した妨害クロモゲンを
含まない血清の反応液の吸収スペクトルと、対照
セルに収容した水の吸収スペクトルとを測定し、
各波長点における両者の吸光度差を表示したもの
である。また、試薬ブランク対象スペクトル16
は、試料セルに収容した高乳び血清の反応液の吸
収スペクトルと、対照セルに収容した測定用試薬
(血清試料を含まない)の吸収スペクトルとを測
定し、各波長における両者の吸光度差を表示した
ものである。試薬ブランク対象スペクトル18
は、試料セルに収容した高黄疸血清の反応液の吸
収スペクトルと、対照セルに収容した測定用試薬
(血試試料を含まない)の吸収スペクトルとを測
定し、各波長における両者の吸光度差を表示した
ものである。又第2図において、波長λ11は340n
m、λ12は376nm、λ13は415nm、λ14は450n
m、λ15は480nm、λ16は505nm、λ17は546n
m、λ18は570nm、λ19は600nm、λ20は660n
m、λ21は700nm、λ22は850nmである。図のよ
うなGOT測定時にその反応液の可視波長域のス
ペクトルを解析すれば、前記妨害クロモゲンの量
を求めることができる。 以下、測定波長として12波長を備えた多波長自
動分析装置を用いた場合の、本発明の実施例を詳
細に説明する。第3図に、そのような自動分析装
置を使用して分析した場合に得られる吸収スペク
トル例を示す。図において、20は、GOT測定
液で希釈した乳び基準液のスペクトル、22は、
同じくGOT測定液で希釈した溶血基準液のスペ
クトル、24は、同じくGOT測定液で希釈した
黄たん基準液のスペクトルである。乳び基準数
は、20クンケル単位相当の微細ポリスチレン粉末
を、GOT試薬で希釈乳濁させたもの、溶血基準
液は、1000mg/dlのヘモグロビン基準液を、検体
血清と同一条件でGOT測定液が希釈溶解したも
の、黄たん基準液は、10mg/dlのビリルビンコン
トロール血清を検体血清と同一条件でGOT測定
液で希釈溶解したものである。前記スペクトル2
0,22,24は、いずれも試薬ブランク対象の
スペクトルである。この場合、各試薬対象スペク
トルは、各試料セルに収容した各クロモゲンの基
準液の吸収スペクトルと、対照セルに収容した測
定用試薬(血清試料を含まない)の吸収スペクト
ルとを測定し、各波長における各基準液と試薬ブ
ランク液との吸光度差を表示したものである。又
各波長は、第2図と同様の可視光波長である。 第3図のごとく、GOT試薬で可視波長域に表
われる検体ブランク吸収のうち、λ20以降の長波
長域は乳びのみによるものであり、λ17〜λ19
中間波長域は乳びと溶血によるものであり、λ16
以前の短波長域は、乳び、溶血、黄たんの3成分
によるものである。従つて、以下に述べる方法に
よつて、これら3成分を弁別測定することが可能
である。 即ち、GOT測定の検体反応液の吸収スペクト
ルを多波長光度計によつて全波長域にわたつて測
定し、その紫外部吸収により目的物質のGOTを
測定すると同時に、可視波長域のスペクトルより
次の方法によつて、その検体血清中の乳び度、溶
血度、黄たん度を求める。 まずλ20以降の適当な2波長(例えばλ20とλ
21)の吸光度差より、次式を用いて乳び度Xを求
める。 X=A20−21/T20−21 ……(1) ここで、A20-21は、検体における波長λ20とλ
21の吸光度差、T20-21は、スペクトル20より予
め求めた、単位濁度当たりの吸光度差を表わす定
数である。 次に、中波長域の適当な2波長(例えばλ18
λ19)における吸光度差A18-19より次式を用いて
溶血度Yを求める。 Y=A18−19−X・T18−19/H18−19
……(2) ここで、T18-19は、スペクトル20より予め求
めた、単位濁度当たりの吸光度差を示す定数、
H18-19は、同じくスペクトル22より予め求め
た、単位溶血度当たりの吸光度差を示す定数であ
る。 次に、更に短波長域の適当な2波長(例えば、
λ15とλ16)における吸光度差A15-16より、次式を
用いて、黄たん度Zを求める。 Z=A15−16−X・T15−16−Y・H15−1
/B15−16……(3) ここで、T15-16は、スペクトル20より予め求
めた単位濁度当たりの吸光度差を示す定数、
H15-16は、同じくスペクトル22より予め求めた
単位溶血度当たりの吸光度差を示す定数、B15-16
は、同じくスペクトル24より予め求めた単位黄
たん度当たりの吸光度差を示す定数である。 前記各式で用いられる定数、T20-21、T18-19
T15-16、H18-19、H15-16、B15-16は、自動分析装置
と試薬が同一であれば一定であるため、一度測定
すれば、必ずしも毎回求める必要はない。
[Field of Application of the Invention] The present invention is applicable to the detection of chyle, hemolysis,
The present invention relates to an analytical method suitable for optically measuring chromogen such as yellow sputum. [Background of the Invention] The recent trend toward automation in the field of biochemical testing is extremely remarkable. Automatic analyzers also
A wide variety of models have been developed, from the early flow type to the more recent discrete types. These various automatic analyzers have shown remarkable effects in both expanding the overall number of tests and improving the accuracy of measurement results. However, when considering the accuracy of measurement results, the various automatic analyzers currently in use still have many problems and are far from meeting the needs of users. In particular, chromogens such as hemolysis (hemoglobin), yellow sputum (bilirubin), and chyle (turbidity) are causing a loss of accuracy in the measurement of general test items by automatic biochemical analyzers. In biochemical testing, a common analytical method is to collect a biological sample in a reaction container, react it with a reagent, and optically measure the reaction solution. Among these, a device using a multi-wavelength photometer as a photometer that can disperse light transmitted through a reaction liquid into multiple wavelengths and detect them has the potential to expand the range of application. FIG. 1 schematically shows the relationship between each interfering substance and the absorption spectrum. In the figure, spectrum 10
is the absorption spectrum of the ideal serum reaction solution that does not contain any interfering substances as mentioned above, spectrum 1
2 is an absorption spectrum of an actual serum reaction solution containing interfering substances such as chyle, jaundice, and hemolysis. 1st
In the example shown in the figure, if one-wavelength colorimetry is performed using the wavelength λ 2 , the spectrum 12 will be spectrum 10
gives an analytical value approximately twice that of On the other hand, although consideration has been given to the influence of chromogen on the measured values of general test items, the test results are based on the inspector's visual observation and indicate the amount of chromogen that is likely to be contained in a symbol (for example, 〓, 〓, +, -
It was displayed in 4 stages). Therefore, test results vary widely among examiners, and it has not been possible to quantitatively determine the amount of interfering chromogen. [Object of the Invention] An object of the present invention is to provide a biochemical analysis method that can measure each chromogen while causing a reaction between a sample and a reagent for the analysis item to be measured. It's about doing. [Summary of the Invention] In the present invention, a blood sample is reacted with a reagent for an analysis item to be measured to obtain a reaction liquid having an absorption in the ultraviolet region in relation to the concentration of the analysis item, and the reaction liquid is exposed to light. to determine the concentration of the above analysis item by irradiating the sample with ultraviolet light and measuring the absorption in the ultraviolet region, to measure chyle, hemolysis, and jaundice in the visible light wavelength range with respect to the reaction solution; The degree of hemolysis should be determined by measuring the long wavelength range in the visible light wavelength range where there is virtually no effect of hemolysis and jaundice. The above-mentioned degree of jaundice is calculated based on the measured value in the medium wavelength range, which is not suitable for the human body, and the measured value in the long wavelength range mentioned above. It is characterized in that it is determined based on the measured value in the wavelength range and the measured value in the medium wavelength range. [Embodiments of the Invention] When the present invention is applied to a clinical automatic analyzer, it is optimal to use a multi-wavelength photometer with one channel. This automatic analyzer includes a sampler that transfers sample containers containing blood samples, a reaction line that transfers a row of reaction containers, a dispenser that distributes the sample from the sample containers to the reaction containers, and a specific analysis for reacting with the sample. A well-known automatic clinical analyzer can be used, which is equipped with a device for adding a reagent for each item into a reaction container, a multi-wavelength photometer that irradiates the reaction solution with light, and measures the absorption characteristics of the reaction solution. In the embodiments of the present invention described below, such an analysis device is used. Before explaining the examples, the concept of chromogen measurement will be explained. The absorption spectra of interfering chromogens such as chyle, hemolysis, and jaundice vary depending on the fluid, and in many cases they overlap, making analysis of their spectra difficult. In particular, when these absorptions are further overlapped with the absorption of general test item substances, the analysis becomes even more difficult, and even if analysis is possible, the precision is significantly reduced. Therefore, even when measuring many items on the same sample at the same time, such as with a multi-item automatic analyzer, rather than analyzing the spectrum for each measurement item, it is better to analyze the analysis item that is easiest to analyze, rather than analyzing the spectrum for each measurement item. In addition to analyzing the spectrum and measuring the analytical items, the amounts of three types of interfering substances in the same reaction solution are also measured. An example of an analysis item that produces a reaction solution in which the interfering chromogen is most easily analyzed is glutamate oxaloacetate transaminase (hereinafter GOT).
), glutamate pyruvate transaminase (hereinafter referred to as GPT), lactate dehydrogenase (hereinafter referred to as LDH), and hydroxybutyrate dehydrogenase (hereinafter referred to as HBDH), which target substances by ultraviolet absorption. The analysis items to be measured are listed. When adding specific reagents to a sample (serum) to obtain a reaction solution and measuring these analytical items,
The absorption of the target substance, reduced nicotinamide adenine dinucleotide (hereinafter referred to as NADH), is in the ultraviolet region (340 nm) and not in the visible region.
Among the above-mentioned interfering substances, the absorption spectra of jaundice and hemolysis do not overlap in the visible wavelength range. Moreover, the reagent does not contain substances that react with hemoglobin, yellow sputum, or lipoproteins (one of the causes of cloudiness), and the liquid is a neutral buffer solution (PH
7.4), the spectrum of the above-mentioned interfering substance has a relatively simple shape and is easy to analyze. FIG. 2 shows the absorption spectrum including ultraviolet light of the reaction solution used to measure GOT. In the figure, 14 shows the spectrum of the ideal normal serum reaction solution that does not contain any chromogen as described above, with water as a target;
Reference numeral 16 shows the spectrum of the reaction solution of high chyle serum using a reagent blank target, and 18 shows the spectrum of the reaction solution of high yellow protein serum using the same reagent blank target. Here, the water target spectrum 14 measures the absorption spectrum of a serum reaction solution containing no interfering chromogen contained in a sample cell and the absorption spectrum of water contained in a control cell,
The difference in absorbance between the two at each wavelength point is displayed. In addition, reagent blank target spectrum 16
Measures the absorption spectrum of the high chyle serum reaction solution stored in the sample cell and the absorption spectrum of the measurement reagent (not containing the serum sample) stored in the control cell, and calculates the difference in absorbance between the two at each wavelength. This is what is displayed. Reagent blank target spectrum 18
The method measures the absorption spectrum of the highly icteric serum reaction solution stored in the sample cell and the absorption spectrum of the measurement reagent (not including the blood sample) stored in the control cell, and calculates the difference in absorbance between the two at each wavelength. This is what is displayed. Also, in Figure 2, the wavelength λ 11 is 340n
m, λ 12 is 376nm, λ 13 is 415nm, λ 14 is 450n
m, λ 15 is 480nm, λ 16 is 505nm, λ 17 is 546n
m, λ 18 is 570nm, λ 19 is 600nm, λ 20 is 660n
m, λ 21 is 700 nm, and λ 22 is 850 nm. By analyzing the visible wavelength spectrum of the reaction solution during GOT measurement as shown in the figure, the amount of the interfering chromogen can be determined. Hereinafter, an embodiment of the present invention will be described in detail in the case where a multi-wavelength automatic analyzer equipped with 12 wavelengths is used as the measurement wavelength. FIG. 3 shows an example of an absorption spectrum obtained when analyzed using such an automatic analyzer. In the figure, 20 is the spectrum of the chyle standard solution diluted with the GOT measurement solution, and 22 is
24 is the spectrum of the hemolytic standard solution also diluted with the GOT measurement solution, and 24 is the spectrum of the jaundice standard solution also diluted with the GOT measurement solution. The chyle reference number is obtained by diluting and emulsifying fine polystyrene powder equivalent to 20 Kunkel units with GOT reagent.The hemolysis reference solution is a 1000 mg/dl hemoglobin reference solution, and the GOT measurement solution is prepared under the same conditions as the sample serum. The diluted and dissolved product, yellow sputum standard solution, is obtained by diluting and dissolving 10 mg/dl bilirubin control serum with GOT measurement solution under the same conditions as the sample serum. Said spectrum 2
0, 22, and 24 are all spectra for reagent blanks. In this case, each reagent target spectrum is obtained by measuring the absorption spectrum of each chromogen standard solution stored in each sample cell and the absorption spectrum of the measurement reagent (not including serum sample) stored in a control cell, and The difference in absorbance between each standard solution and the reagent blank solution is displayed. Further, each wavelength is a visible light wavelength similar to that in FIG. As shown in Figure 3, of the specimen blank absorption that appears in the visible wavelength range with the GOT reagent, the long wavelength range after λ 20 is due only to chyle, and the intermediate wavelength range from λ 17 to λ 19 is due to chyle and hemolysis. and λ 16
The former short wavelength range is due to the three components of chyle, hemolysis, and yellow sputum. Therefore, it is possible to differentially measure these three components by the method described below. That is, the absorption spectrum of the sample reaction solution for GOT measurement is measured over the entire wavelength range using a multi-wavelength photometer, and the GOT of the target substance is measured based on the ultraviolet absorption. Depending on the method, determine the degree of chylity, degree of hemolysis, and degree of yellowness in the sample serum. First, select two suitable wavelengths after λ 20 (for example, λ 20 and λ
21 ) Calculate the chyle X using the following formula from the absorbance difference. X=A 20-21 /T 20-21 ...(1) Here, A 20-21 is the wavelength λ 20 and λ
The absorbance difference T 20-21 of 21 is a constant representing the absorbance difference per unit turbidity, which was determined in advance from spectrum 20. Next, the degree of hemolysis Y is determined from the absorbance difference A 18-19 at two appropriate wavelengths in the medium wavelength range (for example, λ 18 and λ 19 ) using the following equation. Y=A 18-19 -X・T 18-19 /H 18-19
...(2) Here, T 18-19 is a constant indicating the absorbance difference per unit turbidity, which was determined in advance from spectrum 20,
H 18-19 is a constant indicating the absorbance difference per unit degree of hemolysis, which was also determined in advance from the spectrum 22. Next, select two appropriate wavelengths in the shorter wavelength range (for example,
Based on the absorbance difference A 15-16 between λ 15 and λ 16 ), yellowness Z is determined using the following formula. Z=A 15-16 -X・T 15-16 -Y・H 15-1
6
/B 15-16 ... (3) Here, T 15-16 is a constant indicating the absorbance difference per unit turbidity determined in advance from spectrum 20,
H 15-16 is a constant indicating the absorbance difference per unit degree of hemolysis, which was also determined in advance from spectrum 22, and B 15-16
is a constant indicating the absorbance difference per unit yellowness, which was also determined in advance from the spectrum 24. Constants used in each of the above formulas, T 20-21 , T 18-19 ,
T 15-16 , H 18-19 , H 15-16 , and B 15-16 are constant if the automatic analyzer and reagents are the same, so once they are measured, they do not necessarily need to be determined every time.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、測定しようとする分析項目の
ための試料と試薬の反応を生じさせてその分析項
目を測定する一方で、乳び、溶血、黄たんの3種
のクロモゲンをも測定することができ、しかも、
測定しようとする分析項目の反応液をクロモゲン
測定にそのまま利用できるから、生化学分析装置
にクロモゲン測定用の特別の容器や分析用チヤン
ネルを設けなくても済むという効果が得られる。
According to the present invention, it is possible to measure the analytical item by causing a reaction between the sample and the reagent for the analytical item to be measured, and also to measure three types of chromogens: chyle, hemolysis, and yellow sputum. can be done, and
Since the reaction solution for the analysis item to be measured can be used as is for chromogen measurement, there is an advantage that there is no need to provide a special container or analysis channel for chromogen measurement in the biochemical analyzer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、比色分析法における誤差要因を模型
的に示した線図、第2図は、GOT反応液として
代表的な検体血清の吸収スペクトルの例を示す線
図、第3図は、同GOT反応液中における、乳
び、溶血、黄たんの各基準スペクトルを示す線図
である。
Figure 1 is a diagram schematically showing error factors in the colorimetric analysis method, Figure 2 is a diagram showing an example of the absorption spectrum of a typical sample serum as a GOT reaction solution, and Figure 3 is a diagram showing an example of the absorption spectrum of a typical sample serum as a GOT reaction solution. It is a diagram showing each reference spectrum of chyle, hemolysis, and yellow sputum in the same GOT reaction solution.

Claims (1)

【特許請求の範囲】[Claims] 1 血液試料と測定すべき分析項目用の試薬を反
応させて上記分析項目の濃度と関連して紫外域に
吸収を持つ反応液を得ること、上記反応液に光を
照射し、紫外域の吸収を測定することによつて上
記分析項目濃度を求めること、上記反応液に関
し、可視光波長域で、乳び、溶血および黄たんを
測定すること、上記乳びの程度は、可視光波長域
のうちの溶血および黄たんの影響が実質的にない
長波長域を測定して求めること、上記溶血の程度
は、可視光波長域のうちの黄たんの影響が実質的
にない中波長域での測定値と上記長波長域での測
定値に基づいて求めること、および上記黄たんの
程度は、可視光波長域のうちの短波長域での測定
値と上記長波長域での測定値および上記中波長域
での測定値に基づいて求めること、を特徴とする
生化学分析方法。
1 Reacting a blood sample with a reagent for the analysis item to be measured to obtain a reaction solution that has an absorption in the ultraviolet region in relation to the concentration of the analysis item, and irradiating the reaction solution with light to detect absorption in the ultraviolet region. The concentration of the above analysis item is determined by measuring the concentration of the above analysis item.The above reaction solution is measured for chyle, hemolysis and yellow sputum in the visible light wavelength range.The degree of the above chyle is determined by The degree of hemolysis mentioned above should be determined by measuring the long wavelength range, which is substantially free from the effects of hemolysis and jaundice. It is determined based on the measured value and the measured value in the long wavelength range above, and the degree of jaundice is calculated based on the measured value in the short wavelength range of the visible light wavelength range, the measured value in the long wavelength range above, and the above. A biochemical analysis method characterized by calculation based on measured values in the medium wavelength range.
JP32179A 1979-01-08 1979-01-08 Analytical method of chromogen Granted JPS54116283A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32179A JPS54116283A (en) 1979-01-08 1979-01-08 Analytical method of chromogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32179A JPS54116283A (en) 1979-01-08 1979-01-08 Analytical method of chromogen

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12960277A Division JPS5463785A (en) 1977-10-31 1977-10-31 Colorimetric analysis method

Publications (2)

Publication Number Publication Date
JPS54116283A JPS54116283A (en) 1979-09-10
JPS6118982B2 true JPS6118982B2 (en) 1986-05-15

Family

ID=11470636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32179A Granted JPS54116283A (en) 1979-01-08 1979-01-08 Analytical method of chromogen

Country Status (1)

Country Link
JP (1) JPS54116283A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004753A (en) * 2001-06-18 2003-01-08 Aloka Co Ltd Dispensing conformity-determining apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754490U (en) * 1980-09-18 1982-03-30
JP4740036B2 (en) * 2006-05-26 2011-08-03 積水化学工業株式会社 Method for measuring hemoglobins
JP2011149831A (en) * 2010-01-22 2011-08-04 Hitachi High-Technologies Corp Autoanalyzer
CN109563535B (en) 2016-08-10 2023-02-07 积水医疗株式会社 Method for measuring HbA1c
CA3044226C (en) * 2016-11-18 2022-07-12 Siemens Healthcare Diagnostics Inc. Multiple sequential wavelength measurement of a liquid assay

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004753A (en) * 2001-06-18 2003-01-08 Aloka Co Ltd Dispensing conformity-determining apparatus

Also Published As

Publication number Publication date
JPS54116283A (en) 1979-09-10

Similar Documents

Publication Publication Date Title
US7323315B2 (en) Method for reducing effect of hematocrit on measurement of an analyte in whole blood
US4263512A (en) Colorimetric method for liquid sampler including disturbing chromogens
US7663738B2 (en) Method for automatically detecting factors that disturb analysis by a photometer
JP2009109196A (en) Dilution ratio deriving method, quantity determination method and analyzer
Ladenson Evaluation of an instrument (Nova-1) for direct potentiometric analysis of sodium and potassium in blood and their indirect potentiometric determination in urine.
Lo et al. Assessment of the fundamental accuracy of the Jendrassik-Gróf total and direct bilirubin assays.
US3795484A (en) Automated direct method for the determination of inorganic phosphate in serum
EP0097472B1 (en) Method of determining calcium in a fluid sample
JP3203798B2 (en) How to measure chromogen
JPS6118693B2 (en)
Ng et al. The Technicon RA-1000 evaluated for measuring sodium, potassium, chloride, and carbon dioxide.
CN101477059B (en) Method for rapidly detecting inorganic phosphorus in water solution
JPS6118982B2 (en)
JPS6332132B2 (en)
US4329149A (en) Method for spectrophotometric compensation for colorimetric reagent variation
Liedtke et al. Centrifugal analysis with automated sequential reagent addition: measurement of serum calcium.
JPS6252434A (en) Absorption photometric analytic method
Radin et al. Differential spectrophotometric determination of calcium
JPH0514855B2 (en)
US3923459A (en) Process for the determination of bilirubin in fluids
CN112129949A (en) Retinol binding protein detection kit, preparation method and use method thereof
Wong et al. Colorimetric determination of potassium in whole blood, serum, and plasma.
IE910070A1 (en) Circular dichroism and spectrophotometric absorption¹detection methods and apparatus
CN117191728B (en) Method for measuring multi-component concentration based on ultraviolet-visible absorption spectrum and application
Koupparis et al. Total calcium and magnesium determined in serum with an automated stopped-flow analyzer.