JP2009109196A - Dilution ratio deriving method, quantity determination method and analyzer - Google Patents

Dilution ratio deriving method, quantity determination method and analyzer Download PDF

Info

Publication number
JP2009109196A
JP2009109196A JP2007278384A JP2007278384A JP2009109196A JP 2009109196 A JP2009109196 A JP 2009109196A JP 2007278384 A JP2007278384 A JP 2007278384A JP 2007278384 A JP2007278384 A JP 2007278384A JP 2009109196 A JP2009109196 A JP 2009109196A
Authority
JP
Japan
Prior art keywords
light
absorbance
dilution
light source
biological sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007278384A
Other languages
Japanese (ja)
Inventor
Genta Fukami
弦太 深見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007278384A priority Critical patent/JP2009109196A/en
Publication of JP2009109196A publication Critical patent/JP2009109196A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of deriving an accurate dilution ratio, even when diluting a biological sample containing chyle. <P>SOLUTION: This dilution ratio deriving method includes processes for; measuring an absorbance C1 of an indication material in aqueous solution for dilution to light from a light source A; preparing sample liquid for determination by mixing a biological sample containing an optional component to be determined with the aqueous solution for dilution; measuring an absorbance C2 of the indication material in the sample liquid for determination to the light from the light source A; measuring an absorbance C4 of the indication material in the sample liquid for determination to light from a light source B having a wavelength different from the light from the light source A; and determining a blank absorbance C5 of plasma from the absorbance C4 and a wavelength depending characteristic of each light from the light source A and the light source B of the plasma containing chyle in the biological sample, and determining the dilution ratio D<SB>2</SB>of the biological sample from the absorbance C1 and a value determined by subtracting the absorbance C5 from the absorbance C2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、生物学的試料の希釈倍率を精度よく導出するための希釈倍率導出方法、及び該方法を利用した前記生物学的試料中の任意成分の定量方法、及び前記希釈倍率導出方法を利用する分析装置に関する。   The present invention utilizes a dilution factor deriving method for accurately deriving the dilution factor of a biological sample, a method for quantifying an arbitrary component in the biological sample using the method, and the dilution factor deriving method The present invention relates to an analyzing apparatus.

従来、1台で、血液等の生物学的試料と分析試薬とを反応させ、生物学的試料中の様々な成分を定量可能な大型の自動分析装置が実用化されており、医療分野においては不可欠な存在となっている。しかし、すべての病院においてそのような装置が導入されているわけではなく、特に診療所等の小規模な医療機関の中には、運用コスト等の様々な理由によって、試料の分析を外部委託するという形態をとるものも少なくない。分析を外部委託する場合、分析結果を得るまでに時間を要するので、患者は検査結果に基づく適切な治療を受けるために、必然的に再来院を余儀なくされる。さらに、急患等の緊急を要する場合の迅速対応が難しいといった問題も生じる。そのような背景の中、近年市場において、より小型で、より低コストで、より短時間で、より高精度で、より少量の試料液で生物試料の測定が可能な、運用の自由度が高い分析装置が望まれている。   Conventionally, a large-scale automatic analyzer capable of quantifying various components in a biological sample by reacting a biological sample such as blood with an analytical reagent has been put to practical use in the medical field. It has become indispensable. However, not all hospitals have introduced such devices, and outsource analysis of samples for various reasons such as operating costs, especially among small medical institutions such as clinics. There are many things that take this form. When analysis is outsourced, it takes time to obtain an analysis result, and thus the patient is inevitably returned to receive appropriate treatment based on the test result. Furthermore, there arises a problem that it is difficult to quickly respond to emergency cases such as emergency cases. Against this backdrop, in recent years the market is more compact, less costly, shorter in time, more accurate, can measure biological samples with a smaller amount of sample solution, and has a high degree of operational freedom. An analyzer is desired.

運用の自由度の高い分析装置として、例えば、指先採血等で採取される少量の検体から複数種の成分濃度を短時間で高精度に測定できるという条件を満たすものが一つの例として挙げられる。しかし、指先採血等で被験者にストレスを与えることなく採取できる検体量は、多くとも十数マイクロリットル程度であり、そのような少量の検体をそのまま分析するのでは、上述の条件、特に複数種の成分分析を高精度に行うことは、技術的に難しい。このような課題に対する解決策の一つとして、分析システムを高感度化し、少量の検体を希釈することでその容量を増加させ、複数種の成分を高感度な分析システムで分析するという方法がある。   An example of an analyzer having a high degree of freedom in operation is an apparatus that satisfies the condition that a plurality of types of component concentrations can be measured in a short time with high accuracy from a small amount of sample collected by fingertip blood collection or the like. However, the amount of specimen that can be collected without applying stress to the subject by blood collection at the fingertips or the like is at most about a dozen microliters. It is technically difficult to perform component analysis with high accuracy. One solution to this problem is to increase the sensitivity of the analysis system, increase the volume by diluting a small amount of sample, and analyze multiple types of components using a highly sensitive analysis system. .

一般に、生物学的試料中の任意成分を定量するとき、以下のような理由、すなわち、該生物学的試料中の任意成分の濃度が高い、該生物学的試料の容量が少ない、または分析装置の都合等により、生物学的試料を適当な水溶液によって希釈することがある。検体である生物学的試料を希釈して分析する場合、生物学的試料を所定の希釈倍率に希釈後、前記試料中の任意成分を定量し、そして試料の希釈倍率を基に希釈前の濃度に換算し、希釈前の生物学的試料中に含まれる任意成分の濃度を決定する。このため、生物学的試料中の任意成分を精度良く定量する場合、希釈倍率を正確に知ることは、生物学的試料を高精度に分析するという点で非常に重要な要素となる。   In general, when quantifying an arbitrary component in a biological sample, the following reasons, that is, the concentration of the arbitrary component in the biological sample is high, the volume of the biological sample is small, or the analyzer In some cases, the biological sample is diluted with an appropriate aqueous solution. When diluting and analyzing a biological sample as a specimen, the biological sample is diluted to a predetermined dilution factor, then any component in the sample is quantified, and the concentration before dilution is determined based on the dilution factor of the sample. And the concentration of an arbitrary component contained in the biological sample before dilution is determined. For this reason, when accurately quantifying an arbitrary component in a biological sample, accurately knowing the dilution factor is a very important factor in terms of analyzing the biological sample with high accuracy.

一般的な希釈倍率を正確に知る方法のうちの、例えば、主に大型の自動分析装置等に採用されている方式として、生物学的試料と希釈用水溶液とを定量装置等によって定量し、所定の希釈倍率に正確に合わせこむ方法がある。この方法は、試料の希釈倍率をあらかじめ任意に決定できるという利点があるが、定量のための機構が必要になる。また、他の方法として、予め希釈用水溶液中に色素等に代表される指示物質を添加し、希釈前と希釈後の前記指示物質の光学的性質(例えば吸光度)を測定し比較することで試料の希釈倍率を正確に検出する方法がある。この方法は、定量のための機構が必要ではないことから比較的単純な構成にできるという利点があり、装置の小型化に有利である。しかし、試料の希釈倍率が一定でないため、それに対応できる仕組みが必要になる。   Of the general methods for accurately knowing the dilution ratio, for example, as a method mainly used in large automatic analyzers, a biological sample and an aqueous solution for dilution are quantified with a quantifier and the like. There is a method of accurately adjusting to the dilution ratio. This method has the advantage that the dilution ratio of the sample can be arbitrarily determined in advance, but a mechanism for quantification is required. In addition, as another method, an indicator substance typified by a dye or the like is added in advance to an aqueous solution for dilution, and the optical properties (for example, absorbance) of the indicator substance before and after dilution are measured and compared. There is a method for accurately detecting the dilution ratio. This method has an advantage that a relatively simple configuration can be achieved since a mechanism for quantification is not required, and is advantageous for downsizing of the apparatus. However, since the dilution ratio of the sample is not constant, a mechanism that can cope with it is necessary.

従来、例えば、生物学的試料である血液を希釈する血液分離器具が提案されている(例えば、特許文献1)。この血液分離器具は、指示物質が含まれた希釈用水溶液と血液(生物学的試料)とを混合するための専用の器具である。   Conventionally, for example, a blood separation device for diluting blood as a biological sample has been proposed (for example, Patent Document 1). This blood separation device is a dedicated device for mixing an aqueous solution for dilution containing an indicator substance and blood (biological sample).

図10は、従来の血液分離器具の構成例を示す図である。血液分離器具100は、本体容器101と、本体容器101に接続された濾過体102と、それぞれ本体容器101に接続された血漿採取容器103および血球採取容器104と、本体容器101に嵌挿可能な蓋105と、血漿採取容器着脱部106と、血漿採取容器着脱部106上に形成される円筒状の血液採取容器部107から構成される。血液分離器具100では、血液採取容器部107内の採取された血液のうち血漿が濾過体102を通過して、血漿採取容器103内の血漿希釈用水溶液108と混合される。混合後、血液分離器具100は、検査場所まで搬送され、そこで、医師や看護婦、臨床検査技師等の一定の有資格者または専門の技術者によって、希釈倍率が検出される。血漿希釈用水溶液108中には指示物質(色素)が混入されているので、指示物質を光学的手法等によって測定することで、溶液の希釈倍率(溶解率)を算出して、希釈前の血液(生物学的試料)中に含まれる任意成分の濃度を決定することができる。   FIG. 10 is a diagram illustrating a configuration example of a conventional blood separation instrument. The blood separation device 100 can be inserted into the main body container 101, the filter body 102 connected to the main body container 101, the plasma collection container 103 and the blood cell collection container 104 connected to the main body container 101, and the main body container 101, respectively. It comprises a lid 105, a plasma collection container attaching / detaching portion 106, and a cylindrical blood collection container portion 107 formed on the plasma collection container attaching / detaching portion 106. In blood separation instrument 100, plasma out of blood collected in blood collection container 107 passes through filter body 102 and is mixed with plasma dilution aqueous solution 108 in plasma collection container 103. After mixing, the blood separation device 100 is transported to the examination place, where the dilution factor is detected by a certain qualified person such as a doctor, nurse, clinical laboratory technician, or a specialized engineer. Since the indicator substance (pigment) is mixed in the plasma dilution aqueous solution 108, the indicator substance is measured by an optical method or the like to calculate the dilution rate (dissolution rate) of the solution, and the blood before dilution. The concentration of any component contained in the (biological sample) can be determined.

次に、従来の、生物学的試料の希釈倍率導出方法と、生物学的試料中の定量すべき任意成分の濃度を定量する方法について、図11を用いて説明する。図11は、生物学的試料の希釈倍率導出方法と、生物学的試料中の定量すべき任意成分の濃度を定量する方法を説明するためのステップ図である。   Next, a conventional method for deriving a dilution rate of a biological sample and a method for quantifying the concentration of an arbitrary component to be quantified in the biological sample will be described with reference to FIG. FIG. 11 is a step diagram for explaining a method for deriving a dilution rate of a biological sample and a method for quantifying the concentration of an arbitrary component to be quantified in the biological sample.

まず、光源(A)の光に対する希釈用水溶液中の指示物質の吸光度(C1)を測定する(ステップS111)。吸光度(C1)は希釈用水溶液中の指示物質の濃度を示す。次に、定量すべき任意成分を含む生物学的試料と指示物質を含む希釈用水溶液とを混合して定量用試料液を調製する(ステップS112)。すなわち、生物学的試料を希釈用水溶液で希釈する。次に、光源(A)の光に対する、定量用試料液中の指示物質の吸光度(C2)を測定する(ステップS113)。吸光度(C2)は、定量用試料液中の指示物質の濃度を示す。次に、生物学的試料の希釈倍率(D1)を導出する(ステップS114)。希釈倍率(D1)は、
希釈倍率(D1)=C1/(C1−C2) (式1)
の式で表される。次に、ステップS112で調整された定量用試料液中の定量すべき任意成分の濃度(Y)を定量する(ステップS115)。例えば、任意成分を定量用試薬と反応させて、反応状態を光学的に検出、例えば、所定波長の光に対する吸光度や濁度を検出することで、定量試料液中の定量すべき任意成分の濃度(Y)を求める。次に、濃度(Y)とステップS114で求めた希釈倍率とから、希釈前の生物学的試料の定量すべき任意成分の濃度(X)を導出する(ステップS116)。濃度(X)は、
X=D1Y (式2)
の式で表される。
特開2003―161729号公報
First, the absorbance (C1) of the indicator substance in the aqueous solution for dilution with respect to the light from the light source (A) is measured (step S111). Absorbance (C1) indicates the concentration of the indicator substance in the aqueous solution for dilution. Next, a biological sample containing an optional component to be quantified is mixed with a dilute aqueous solution containing an indicator substance to prepare a quantification sample solution (step S112). That is, the biological sample is diluted with an aqueous solution for dilution. Next, the absorbance (C2) of the indicator substance in the sample liquid for quantification with respect to the light from the light source (A) is measured (step S113). Absorbance (C2) indicates the concentration of the indicator substance in the sample solution for quantification. Next, the dilution rate (D 1 ) of the biological sample is derived (step S114). The dilution factor (D 1 ) is
Dilution factor (D 1 ) = C1 / (C1-C2) (Formula 1)
It is expressed by the following formula. Next, the concentration (Y) of the arbitrary component to be quantified in the quantification sample solution adjusted in step S112 is quantified (step S115). For example, the concentration of an arbitrary component to be quantified in a quantitative sample solution by optically detecting the reaction state by reacting an arbitrary component with a quantification reagent, for example, detecting the absorbance or turbidity with respect to light of a predetermined wavelength. (Y) is obtained. Next, the concentration (X) of an arbitrary component to be quantified in the biological sample before dilution is derived from the concentration (Y) and the dilution factor obtained in step S114 (step S116). Concentration (X) is
X = D 1 Y (Formula 2)
It is expressed by the following formula.
Japanese Patent Laid-Open No. 2003-161729

しかし、従来の、前記指示物質を使用して生物学的試料の希釈倍率を導出する方法では、生物学的試料自体の中に一般的に存在する物質、クロモゲンの影響により正確に希釈倍率が導出できない場合がある。クロモゲンという物質はそれ自体が光吸収特性をもっているため、前記指示物質が含まれた希釈用水溶液と生物学的試料とを混合した後の、前記指示物質の吸光度を測定するときに、クロモゲンの作用を受けて、混合後の前記指示物質の正確な吸光度が得られないという現象が発生する。その結果、希釈前の希釈用水溶液中の前記指示物質の吸光度と、希釈用水溶液と生物学的試料との混合溶液中の前記指示物質の吸光度とを単純に比較するというだけでは、正確な希釈倍率を算出することが困難である。   However, in the conventional method for deriving the dilution rate of a biological sample using the indicator substance, the dilution rate is accurately derived due to the influence of a substance or chromogen generally present in the biological sample itself. There are cases where it is not possible. Since the substance called chromogen itself has light absorption properties, the action of chromogen is measured when measuring the absorbance of the indicator substance after mixing the aqueous solution for dilution containing the indicator substance and the biological sample. As a result, a phenomenon occurs in which an accurate absorbance of the indicator substance after mixing cannot be obtained. As a result, simply comparing the absorbance of the indicator in the diluting aqueous solution before dilution with the absorbance of the indicator in the mixed solution of the diluting aqueous solution and the biological sample is not an exact dilution. It is difficult to calculate the magnification.

上記従来の方法では、希釈前と希釈後の指示物質の濃度を比較して希釈倍率を導出する場合、指示物質の濃度を求めるときに、同一波長における指示物質の吸光度を利用している。しかし、一般的に生物学的試料中には、例えば、溶血(ヘモグロビン)、黄疸(ビリルビン)、カイロミクロン、リポタンパク等の含有量が著しく高いために溶液が濁る、いわゆる乳び(血清の濁り)などの混濁物質が存在し、この混濁物質に含まれるクロモゲンの光吸収作用の影響によって、生物学的試料の吸光度を測定する場合の見かけの吸光度が増加し、分析結果に悪影響を与えることが明らかになっている。したがって、このクロモゲンの光吸収作用の影響を抑制しない限り、生物学的試料の希釈倍率を正確に導出できないという問題が存在していた。   In the conventional method described above, when the dilution ratio is derived by comparing the concentrations of the indicator substance before and after dilution, the absorbance of the indicator substance at the same wavelength is used when obtaining the indicator substance concentration. However, in general, in biological samples, for example, hemolysis (hemoglobin), jaundice (bilirubin), chylomicron, lipoprotein, etc. are so high that the solution becomes cloudy, so-called chyle (serum turbidity) )), And the apparent absorbance when measuring the absorbance of biological samples is increased due to the light absorption effect of chromogen contained in this turbid material, which may adversely affect the analysis results. It has become clear. Therefore, there is a problem that the dilution factor of the biological sample cannot be accurately derived unless the influence of the light absorption action of chromogen is suppressed.

また、理論上、これら生物学的試料中のクロモゲンの光吸収作用を受けないように、前記指示物質を含む希釈用水溶液と生物学的試料との混合前に、これらクロモゲンの成分を除去できれば正確な希釈倍率が導出できるが、この場合、別途大掛かりな設備が必要である。さらに、クロモゲンの光吸収作用の影響を完全に抑制することは技術的に難しく現実的ではない。   Theoretically, if these chromogen components can be removed before mixing the dilute aqueous solution containing the indicator substance and the biological sample so that they do not receive light absorption of chromogen in these biological samples, However, in this case, a large-scale equipment is required. Furthermore, it is technically difficult and impractical to completely suppress the effect of chromogen light absorption.

また、クロモゲンの光吸収作用の影響を無視して測定した希釈倍率は、誤差が含まれることになり、該誤差はそのまま測定結果の決定に影響を与える。このため、上記従来の方法では、より高い精度の希釈倍率の導出が求められる分野での使用は難しいという問題が生じる。   In addition, the dilution factor measured ignoring the light absorption effect of chromogen contains an error, and the error directly affects the determination of the measurement result. For this reason, the conventional method has a problem that it is difficult to use in a field where derivation of the dilution rate with higher accuracy is required.

また、生物学的試料が微量化すればするほど、それに見合った希釈用水溶液の定量精度を保つことがより困難になり、より定量精度に悪影響を及ぼす傾向になる。よって、分析に用いる生物学的試料の検体量が微量の場合、特に、希釈倍率を正確に知ることは、高精度に生物学的試料を分析するという点で、非常に重要な要素となる。   In addition, as the biological sample becomes smaller, it becomes more difficult to maintain the quantitative accuracy of the dilute aqueous solution corresponding to the biological sample, and the quantitative accuracy tends to be adversely affected. Therefore, when the amount of specimen of a biological sample used for analysis is very small, particularly knowing the dilution factor accurately is a very important factor in terms of analyzing the biological sample with high accuracy.

また、従来の方法で、生物学的試料中の任意成分の濃度を定量する場合、溶血(ヘモグロビン)および黄疸(ビリルビン)の光吸収波長は、600nm以下に存在するため、600nm以上の波長で光吸収作用を持つ前記指示物質を用いることによって、溶血および黄疸の光吸収作用による影響を回避することができる。しかし、カイロミクロンやリポタンパクによる濁りいわゆる乳びについては、その混濁物質が可視光領域の全てに光吸収作用を有するので、乳びの濁りにより光の散乱が生じて見かけの吸光度が増加し、分析結果に悪影響を与えるという不都合が生じる。   In addition, when the concentration of an arbitrary component in a biological sample is quantified by a conventional method, the light absorption wavelength of hemolysis (hemoglobin) and jaundice (bilirubin) exists at 600 nm or less, so light is emitted at a wavelength of 600 nm or more. By using the indicator having an absorption action, it is possible to avoid the influence of the light absorption action of hemolysis and jaundice. However, turbidity caused by chylomicron or lipoprotein, so-called chyle, has a light-absorbing action in the visible light region, so the turbidity of the chyle causes light scattering and increases the apparent absorbance. Inconvenience occurs that adversely affects

以上のことから、本発明では、乳びを含む生物学的試料を希釈する場合でもより正確な希釈倍率を導出することができる希釈倍率導出方法、該方法を利用した前記生物学的試料中の任意成分を定量する定量方法、及び前記希釈倍率導出方法を利用する分析装置を提供することを目的とする。   From the above, in the present invention, a dilution ratio deriving method capable of deriving a more accurate dilution ratio even when a biological sample containing chyle is diluted, and in the biological sample using the method It is an object of the present invention to provide a quantification method for quantifying an arbitrary component and an analyzer using the dilution factor deriving method.

本発明に係る希釈倍率導出方法は、第1の光源の光に対する、希釈用水溶液に含まれる光学的に検出可能な指示物質の吸光度を測定する工程と、定量すべき成分を含む生物学的試料と前記希釈用水溶液とを混合して、前記生物学的試料を希釈し、定量用試料液を調製する工程と、前記第1の光源の光に対する前記定量用試料液中の指示物質の吸光度を測定する工程と、前記第1の光源の光とは波長が異なる第2の光源の光に対する前記定量用試料液中の指示物質の吸光度を測定する工程と、前記第2の光源の光に対する前記定量用試料液中の指示物質の吸光度と、前記生物学的試料中の乳びを含む特定成分における前記第1の光源の光及び前記第2の光源の光の波長依存特性とから、前記特定成分の吸光度を求める工程と、前記第1の光源の光に対する前記希釈用水溶液中の指示物質の吸光度と、前記第1の光源の光に対する前記定量用試料液中の指示物質の吸光度から前記特定成分の吸光度を減算した値とに基づいて、前記希釈用水溶液による前記生物学的試料の希釈倍率を求める工程とを含むことを特徴とする。   The method for deriving a dilution ratio according to the present invention includes a step of measuring the absorbance of an optically detectable indicator contained in an aqueous solution for dilution with respect to light from a first light source, and a biological sample containing components to be quantified And diluting the biological sample to prepare a sample solution for quantification, and the absorbance of the indicator in the sample solution for quantification with respect to the light from the first light source. A step of measuring, a step of measuring the absorbance of the indicator substance in the sample liquid for quantification with respect to the light of the second light source having a wavelength different from that of the light of the first light source, and the light of the light of the second light source From the absorbance of the indicator substance in the sample liquid for quantification and the wavelength-dependent characteristics of the light of the first light source and the light of the second light source in the specific component including chyle in the biological sample, the identification Determining the absorbance of the component; and Based on the absorbance of the indicator in the aqueous solution for dilution and the value obtained by subtracting the absorbance of the specific component from the absorbance of the indicator in the sample liquid for quantification with respect to the light from the first light source. And a step of determining a dilution ratio of the biological sample with an aqueous solution.

また、本発明に係る希釈倍率導出方法は、前記第2の光源の光が、前記指示物質の光吸収特性の吸光度が0になる波長よりも大きい波長を有することを特徴とする。   The dilution factor deriving method according to the present invention is characterized in that the light of the second light source has a wavelength larger than a wavelength at which the absorbance of the light absorption characteristic of the indicator substance becomes zero.

また、本発明に係る希釈倍率導出方法は、前記特定成分が血漿であり、前記第1の光源の光及び前記2の光源の光の波長が585〜900nmであることを特徴とする。   The dilution factor deriving method according to the present invention is characterized in that the specific component is plasma, and the wavelengths of light of the first light source and light of the second light source are 585 to 900 nm.

また、本発明に係る希釈倍率導出方法は、前記指示物質が、色素、色原体、蛍光物質、及び発光物質からなるグループの少なくとも1つから選択されることを特徴とする。   The dilution factor deriving method according to the present invention is characterized in that the indicator substance is selected from at least one of the group consisting of a dye, a chromogen, a fluorescent substance, and a luminescent substance.

また、本発明に係る定量方法は、第1の光源の光に対する、希釈用水溶液に含まれる光学的に検出可能な指示物質の吸光度を測定する工程と、定量すべき成分を含む生物学的試料と前記希釈用水溶液とを混合して、前記生物学的試料を希釈し、定量用試料液を調製する工程と、前記第1の光源の光に対する前記定量用試料液中の指示物質の吸光度を測定する工程と、前記第1の光源の光とは波長が異なる第2の光源の光に対する前記定量用試料液中の指示物質の吸光度を測定する工程と、前記第2の光源の光に対する前記定量用試料液中の指示物質の吸光度と、前記生物学的試料中の乳びを含む特定成分における前記第1の光源の光及び前記第2の光源の光の波長依存特性とから、前記特定成分の吸光度を求める工程と、前記第1の光源の光に対する前記希釈用水溶液中の指示物質の吸光度と、前記第1の光源の光に対する前記定量用試料液中の指示物質の吸光度から前記特定成分の吸光度を減算した値とに基づいて、前記希釈用水溶液による前記生物学的試料の希釈倍率を求める工程と、前記定量用試料液中の定量すべき成分を反応試薬と反応させて、前記定量すべき成分の濃度を求める工程と、前記求めた希釈倍率と、前記定量用試料液中の定量すべき成分の濃度とから、前記生物学的試料中に含まれる定量すべき成分の濃度を求める工程とを含むことを特徴とする。   In addition, the quantification method according to the present invention includes a step of measuring the absorbance of an optically detectable indicator contained in an aqueous solution for dilution with respect to light from a first light source, and a biological sample containing components to be quantified. And diluting the biological sample to prepare a sample solution for quantification, and the absorbance of the indicator in the sample solution for quantification with respect to the light from the first light source. A step of measuring, a step of measuring the absorbance of the indicator substance in the sample liquid for quantification with respect to the light of the second light source having a wavelength different from that of the light of the first light source, and the light of the light of the second light source From the absorbance of the indicator substance in the sample liquid for quantification and the wavelength-dependent characteristics of the light of the first light source and the light of the second light source in the specific component including chyle in the biological sample, the identification Determining the absorbance of the component, and the light from the first light source On the basis of the absorbance of the indicator in the aqueous solution for dilution and the value obtained by subtracting the absorbance of the specific component from the absorbance of the indicator in the sample liquid for quantification with respect to the light of the first light source A step of obtaining a dilution ratio of the biological sample with an aqueous solution, a step of reacting a component to be quantified in the sample liquid for quantification with a reaction reagent to obtain a concentration of the component to be quantified, and the obtained dilution A step of determining the concentration of the component to be quantified contained in the biological sample from the magnification and the concentration of the component to be quantified in the sample solution for quantification.

また、本発明に係る定量方法は、前記第2の光源の光が、前記指示物質の光吸収特性の吸光度が0になる波長よりも大きい波長であることを特徴とする。   The quantitative method according to the present invention is characterized in that the light of the second light source has a wavelength larger than the wavelength at which the absorbance of the light absorption property of the indicator substance becomes zero.

また、本発明に係る定量方法は、前記特定成分が血漿であり、前記第1の光源の光及び前記第2の光源の光の波長は585〜900nmであることを特徴とする。   The quantitative method according to the present invention is characterized in that the specific component is plasma, and the wavelengths of the light from the first light source and the light from the second light source are 585 to 900 nm.

また、本発明に係る定量方法は、前記指示物質が、色素、色原体、蛍光物質、及び発光物質からなるグループのうちの少なくとも1つから選択されることを特徴とする。   In the quantification method according to the present invention, the indicator substance is selected from at least one of the group consisting of a dye, a chromogen, a fluorescent substance, and a luminescent substance.

また、本発明に係る定量方法は、前記生物学的試料が血液成分であり、前記定量すべき成分が脂質成分であることを特徴とする。   The quantification method according to the present invention is characterized in that the biological sample is a blood component and the component to be quantified is a lipid component.

また、本発明に係る、生物学的試料中の定量すべき成分を定量する分析装置は、前記生物学的試料が注入される分析用デバイスと、前記分析用デバイスに光を照射する光発生部と、前記分析用デバイスを軸心周りに回転させる回転駆動部と、前記分析用デバイスの透過光を検出する光検出部と、前記光検出部による検出結果を処理して、前記生物学的試料中の定量すべき成分を定量する処理部とを有し、前記分析用デバイスは、前記生物学的試料を収容する第1の収容部と、前記生物学的試料の希釈に用いられる希釈用水溶液を収容する第2の収容部と、前記生物学的試料と前記希釈用水溶液とを移送するための流路と、前記生物学的試料と前記希釈用水溶液とを混合する混合部と、前記混合部で希釈された生物学的試料を一定量保持する保持部と、前記混合部で希釈された生物学的試料を反応試薬と反応させる分析部とを有し、前記回転駆動部によって回転させられると、遠心力及び前記流路の毛細管力によって、前記生物学的試料と前記希釈用水溶液とをそれぞれ移送して、混合し、前記光発生部は、前記希釈用水溶液に対して第1の光源の光を照射し、前記生物学的試料と前記希釈用水溶液との混合溶液に対して、前記第1の光源の光と、前記第1の光源の光とは波長が異なる第2の光源の光とを照射し、前記光検出部は、前記分析用デバイスを透過する光から、前記第1の光源の光に対する前記希釈用水溶液中の指示物質の吸光度と、前記第1の光源の光及び前記第2の光源の光に対する前記混合溶液中の指示物質の吸光度とを検出し、前記処理部は、前記第2の光源の光に対する前記混合溶液中の指示物質の吸光度と、前記生物学的試料中の乳びを含む特定成分における前記第1の光源の光及び前記第2の光源の光の波長依存特性とから前記特定成分の吸光度を求めて、前記第1の光源の光に対する前記希釈用水溶液中の指示物質の吸光度と、前記第1の光源の光に対する前記混合溶液中の指示物質の吸光度から前記特定成分の吸光度を減算した値とに基づいて、前記希釈用水溶液による前記生物学的試料の希釈倍率を求める希釈倍率導出手段を備えることを特徴とする。   Further, according to the present invention, an analyzer for quantifying a component to be quantified in a biological sample includes an analysis device into which the biological sample is injected, and a light generation unit that irradiates the analysis device with light. A rotation drive unit that rotates the analysis device around an axis, a light detection unit that detects the transmitted light of the analysis device, and a detection result by the light detection unit to process the biological sample A processing unit that quantifies the components to be quantified, wherein the analysis device includes a first storage unit that stores the biological sample, and an aqueous solution for dilution used for diluting the biological sample. A second storage unit for storing the biological sample and the aqueous solution for dilution, a mixing unit for mixing the biological sample and the aqueous solution for dilution, and the mixing Keep a certain amount of biological sample diluted in And an analysis unit for reacting the biological sample diluted in the mixing unit with a reaction reagent, and when rotated by the rotation driving unit, the biological force is generated by centrifugal force and capillary force of the channel. The biological sample and the diluting aqueous solution are respectively transferred and mixed, and the light generating unit irradiates the diluting aqueous solution with light from a first light source, and the biological sample and the diluting aqueous solution are irradiated. The mixed solution with the aqueous solution is irradiated with light from the first light source and light from a second light source having a wavelength different from that of the light from the first light source, and the light detection unit From the light transmitted through the device, the absorbance of the indicator substance in the aqueous solution for dilution with respect to the light of the first light source, and the indicator substance in the mixed solution with respect to the light of the first light source and the light of the second light source And the processing unit detects the light from the second light source. The specific component based on the absorbance of the indicator in the mixed solution and the wavelength-dependent characteristics of the light from the first light source and the light from the second light source in the specific component including chyle in the biological sample The absorbance of the specific component is calculated from the absorbance of the indicator in the aqueous solution for dilution with respect to the light from the first light source and the absorbance of the indicator in the mixed solution with respect to the light from the first light source. A dilution factor deriving unit for obtaining a dilution factor of the biological sample with the dilution aqueous solution based on the subtracted value is provided.

本発明の希釈倍率導出方法によれば、第1の光源の光に対する、希釈用水溶液に含まれる光学的に検出可能な指示物質の吸光度を測定する工程と、定量すべき成分を含む生物学的試料と前記希釈用水溶液とを混合して、定量用試料液を調製する工程と、前記第1の光源の光に対する前記定量用試料液中の指示物質の吸光度を測定する工程と、前記第1の光源の光とは波長が異なる第2の光源の光に対する前記定量用試料液中の指示物質の吸光度を測定する工程と、前記第2の光源の光に対する前記定量用試料液中の指示物質の吸光度と、前記生物学的試料中の乳びを含む特定成分に対する前記第1の光源の光及び前記第2の光源の光の波長依存特性とから、前記特定成分の吸光度を求める工程と、前記第1の光源の光に対する前記希釈用水溶液中の指示物質の吸光度と、前記第1の光源の光に対する前記定量用試料液中の指示物質の吸光度から前記特定成分の吸光度を減算した値とに基づいて、前記希釈用水溶液による前記生物学的試料の希釈倍率を求める工程とを含むことから、希釈前と希釈後の指示物質の吸光度から、生物学的試料の希釈倍率を求める際に、前記乳びの光吸収作用の影響を回避することができる。その結果、より高い精度で生物学的試料の希釈倍率を導出することができる。   According to the dilution ratio deriving method of the present invention, the step of measuring the absorbance of the optically detectable indicator contained in the dilution aqueous solution with respect to the light of the first light source, and the biological including the component to be quantified Mixing the sample with the diluting aqueous solution to prepare a quantifying sample solution, measuring the absorbance of the indicator in the quantifying sample solution with respect to the light from the first light source, and the first Measuring the absorbance of the indicator in the quantification sample solution with respect to the light of the second light source having a wavelength different from that of the light of the light source; and the indicator in the sample solution for quantification with respect to the light of the second light source And determining the absorbance of the specific component from the wavelength-dependent characteristics of the light of the first light source and the light of the second light source for the specific component including chyle in the biological sample; The dilution water for the light of the first light source Based on the absorbance of the indicator substance in the sample solution and the value obtained by subtracting the absorbance of the specific component from the absorbance of the indicator substance in the sample liquid for quantification with respect to the light of the first light source. The step of determining the dilution rate of the biological sample, so that the influence of the light absorption of the chyle is avoided when determining the dilution rate of the biological sample from the absorbance of the indicator before and after dilution. be able to. As a result, the dilution factor of the biological sample can be derived with higher accuracy.

また、本発明の定量方法によれば、第1の光源の光に対する、希釈用水溶液に含まれる光学的に検出可能な指示物質の吸光度を測定する工程と、定量すべき成分を含む生物学的試料と前記希釈用水溶液とを混合して、定量用試料液を調製する工程と、前記第1の光源の光に対する前記定量用試料液中の指示物質の吸光度を測定する工程と、前記第1の光源の光とは波長が異なる第2の光源の光に対する前記定量用試料液中の指示物質の吸光度を測定する工程と、前記第2の光源の光に対する前記定量用試料液中の指示物質の吸光度と、前記生物学的試料中の乳びを含む特定成分に対する前記第1の光源の光及び前記第2の光源の光の波長依存特性とから、前記特定成分の吸光度を求める工程と、前記第1の光源の光に対する前記希釈用水溶液中の指示物質の吸光度と、前記第1の光源の光に対する前記定量用試料液中の指示物質の吸光度から前記特定成分の吸光度を減算した値とに基づいて、前記希釈用水溶液による前記生物学的試料の希釈倍率を求める工程と、前記定量用試料液中の定量すべき成分を反応試薬と反応させて前記定量すべき成分の濃度を求める工程と、前記求めた希釈倍率と、前記定量用試料液中の定量すべき成分の濃度とから、前記生物学的試料中に含まれる定量すべき成分の濃度を求める工程とを含むことから、希釈前と希釈後の指示物質の吸光度から、生物学的試料の希釈倍率を求める際に、前記乳びの光吸収作用の影響を回避して、より正確な生物学的試料の希釈倍率を求めることができる。さらに、該希釈倍率に基づいて、生物学的試料中の任意成分の濃度をより正確に定量することができる。   Further, according to the quantification method of the present invention, the step of measuring the absorbance of the optically detectable indicator contained in the aqueous solution for dilution with respect to the light of the first light source, and the biological including the component to be quantified Mixing the sample with the diluting aqueous solution to prepare a quantifying sample solution, measuring the absorbance of the indicator in the quantifying sample solution with respect to the light from the first light source, and the first Measuring the absorbance of the indicator in the quantification sample solution with respect to the light of the second light source having a wavelength different from that of the light of the light source; and the indicator in the sample solution for quantification with respect to the light of the second light source And determining the absorbance of the specific component from the wavelength-dependent characteristics of the light of the first light source and the light of the second light source for the specific component including chyle in the biological sample; The aqueous solution for dilution with respect to the light of the first light source Based on the absorbance of the indicator and the value obtained by subtracting the absorbance of the specific component from the absorbance of the indicator in the sample liquid for quantification with respect to the light of the first light source. A step of obtaining a dilution factor of the sample, a step of reacting a component to be quantified in the sample solution for quantification with a reaction reagent to obtain a concentration of the component to be quantified, the obtained dilution factor, and the sample for quantification And determining the concentration of the component to be quantified contained in the biological sample from the concentration of the component to be quantified in the liquid. From the absorbance of the indicator before and after dilution, the biological When determining the dilution rate of a biological sample, it is possible to avoid the influence of the light absorption effect of the chyle and to obtain a more accurate biological sample dilution rate. Furthermore, based on the dilution factor, the concentration of an arbitrary component in the biological sample can be quantified more accurately.

本発明の分析装置は、生物学的試料が注入される分析用デバイスと、前記分析用デバイスに光を照射する光発生部と、前記分析用デバイスを軸心周りに回転させる回転駆動部と、前記分析用デバイスの透過光を検出する光検出部と、前記光検出部による検出結果を処理して、前記生物学的試料中の定量すべき成分を定量する処理部とを有し、前記分析用デバイスは、前記生物学的試料を収容する第1の収容部と、前記生物学的試料の希釈に用いられる希釈用水溶液を収容する第2の収容部と、前記生物学的試料と前記希釈用水溶液とを移送するための流路と、前記生物学的試料と前記希釈用水溶液とを混合する混合部と、前記混合部で希釈された生物学的試料を一定量保持する保持部と、前記混合部で希釈された生物学的試料を反応試薬と反応させる分析部とを有し、前記回転駆動部によって回転させられると、遠心力及び前記流路の毛細管力によって、前記生物学的試料と前記希釈用水溶液とをそれぞれ移送して、混合し、前記光発生部は、前記希釈用水溶液に対して第1の光源の光を照射し、前記生物学的試料と前記希釈用水溶液との混合溶液に対して、前記第1の光源の光と、前記第1の光源の光とは波長が異なる第2の光源の光とを照射し、前記光検出部は、前記分析用デバイスを透過する光から、前記第1の光源の光に対する前記希釈用水溶液中の指示物質の吸光度と、前記第1の光源の光及び前記第2の光源の光に対する前記混合溶液中の指示物質の吸光度とを検出し、前記処理部は、前記第2の光源の光に対する前記混合溶液中の指示物質の吸光度と、前記生物学的試料中の乳びを含む特定成分における前記第1の光源の光及び前記第2の光源の光の波長依存特性とから前記特定成分の吸光度を求めて、前記第1の光源の光に対する前記希釈用水溶液中の指示物質の吸光度と、前記第1の光源の光に対する前記混合溶液中の指示物質の吸光度から前記特定成分の吸光度を減算した値とに基づいて、前記希釈用水溶液による前記生物学的試料の希釈倍率を求める希釈倍率導出手段を備えることから、希釈前と希釈後の指示物質の吸光度から、生物学的試料の希釈倍率を求める際に、異なる2つの波長の光を用いるだけで、大型で複雑な装置を用いることなく、前記乳びの光吸収作用の影響を回避して、より正確な生物学的試料の希釈倍率を求めることができる。さらに、該希釈倍率に基づいて、生物学的試料中の任意成分の濃度をより正確に定量することができる。   The analysis apparatus of the present invention includes an analysis device into which a biological sample is injected, a light generation unit that irradiates light to the analysis device, a rotation drive unit that rotates the analysis device around an axis, A light detection unit for detecting the transmitted light of the analytical device; and a processing unit for processing a detection result by the light detection unit to quantify a component to be quantified in the biological sample. The device for use includes a first storage unit that stores the biological sample, a second storage unit that stores an aqueous solution for dilution used for diluting the biological sample, the biological sample, and the dilution. A flow path for transferring the aqueous solution, a mixing unit for mixing the biological sample and the diluting aqueous solution, a holding unit for holding a certain amount of the biological sample diluted in the mixing unit, The biological sample diluted in the mixing section is reacted with the reaction reagent. The biological sample and the dilute aqueous solution are each transferred and mixed by centrifugal force and capillary force of the flow path when rotated by the rotation drive unit, The light generation unit irradiates the dilution aqueous solution with the light of the first light source, and applies the light of the first light source to the mixed solution of the biological sample and the dilution aqueous solution, The light of the second light source having a wavelength different from that of the light of the first light source is irradiated, and the light detection unit uses the dilution aqueous solution for the light of the first light source from the light transmitted through the analysis device. And detecting the absorbance of the indicator substance in the mixed solution with respect to the light of the first light source and the light of the second light source, and the processing unit detects the light of the second light source. The absorbance of the indicator substance in the mixed solution with respect to The absorbance of the specific component is obtained from the wavelength-dependent characteristics of the light of the first light source and the light of the second light source in the specific component including chyle in the material, and the dilution with respect to the light of the first light source Based on the absorbance of the indicator substance in the aqueous solution and the value obtained by subtracting the absorbance of the specific component from the absorbance of the indicator substance in the mixed solution with respect to the light of the first light source, the biology by the aqueous solution for dilution In order to determine the dilution rate of a biological sample from the absorbance of the indicator before and after dilution, only two different wavelengths of light are used. Without using a large and complicated apparatus, it is possible to avoid the influence of the light absorption action of the chyle and to obtain a more accurate dilution ratio of the biological sample. Furthermore, based on the dilution factor, the concentration of an arbitrary component in the biological sample can be quantified more accurately.

(実施の形態1)
本発明の実施の形態1に係る希釈倍率導出方法及び定量方法について図1〜図5を用いて説明する。
(Embodiment 1)
A dilution factor deriving method and a quantifying method according to Embodiment 1 of the present invention will be described with reference to FIGS.

図1は、乳びが含まれた血漿成分における光吸収特性の変化を表したものであり、吸光スペクトルを例示したグラフである。この血漿成分は、全血を遠心分離することにより、血球成分を除いた後、血漿成分だけを抽出した生物学的試料である。図1では、乳びの含有率がそれぞれ異なる4種類の血漿成分1〜4の吸収スペクトルを示す。一般に、乳びの含有率は、個人ごとに採血される検体で異なるので、それらの吸収スペクトルも異なり、その結果、吸光度が異なる。   FIG. 1 shows a change in light absorption characteristics of a plasma component containing chyle, and is a graph illustrating an absorption spectrum. This plasma component is a biological sample obtained by extracting only the plasma component after removing the blood cell component by centrifuging whole blood. In FIG. 1, the absorption spectrum of four types of plasma components 1-4 from which the content rate of a chyle differs each is shown. In general, since the content of chyle varies depending on the sample collected from each individual, the absorption spectrum thereof is also different, and as a result, the absorbance is different.

希釈倍率を導出するときには、検体由来の吸光度のブランク値が“0”であれば、希釈倍率の導出誤差が生じず、乳びによる光吸収特性の影響を考慮する必要もないので望ましい。しかし、現実的には、乳びをもつ生物学的試料は、図1に示すように、波長が600nm以上の可視光領域の全てに光吸収作用を持ち、長波長になる程、吸収強度は減少していくという性質を持つ。このため、長波長側に向かって吸光度が右肩下がりになることが示される。なお、この場合の、溶血(ヘモグロビン)および黄疸(ビリルビン)の混濁物質の影響については、光吸収波長が600nm以下の領域に存在するので、600nm以上の領域では無視できる(図示せず)。   When deriving the dilution factor, it is desirable that the blank value of the absorbance derived from the specimen is “0”, because an error in deriving the dilution factor does not occur and it is not necessary to consider the influence of light absorption characteristics due to chyle. However, in reality, as shown in FIG. 1, a biological sample having chyle has a light-absorbing action in the entire visible light region having a wavelength of 600 nm or more, and the longer the wavelength is, the stronger the absorption intensity is. It has the property of decreasing. For this reason, it is shown that the absorbance decreases toward the long wavelength side. In this case, the influence of the hazy substance of hemolysis (hemoglobin) and jaundice (bilirubin) exists in the region where the light absorption wavelength is 600 nm or less and can be ignored in the region of 600 nm or more (not shown).

図2は、乳びを含む血漿成分における、波長の異なる2種類の光の光吸収特性の吸光度の関係をグラフで表したもので、620nmと770nmの吸光度の関係を例示したものである。図2は、図1で用いた乳びの含有量が異なる4つの生物学的試料についてプロットしたグラフを示し、図2に示すように、良好な直線関係が得られた(R2=0.9999)。なお、Rは、回帰直線の相関係数を表す。また、前記乳びの含有量が異なる4つの生物学的試料のそれぞれの試料を、指示物質が含まれていない希釈用水溶液であるPBS(緩衝液)と混合し、2倍、3倍、4倍と希釈したものを作製して、それらの希釈液に対する、波長の異なる2種類の光の光吸収特性の吸光度の関係を表した場合においても、同様に直線関係が得られた(図示せず)。つまり、生物学的試料と希釈用水溶液との混合の前後における、波長の異なる2種類の光の光吸収特性の吸光度の関係は、図2のグラフと比較すると、傾きやy切片は多少異なるので同じ回帰直線にはならないが、同じような直線関係が得られることを示す。ここでは直線に制限されるものではなく、精度をさらに向上させるために多項式を用いても良い。波長の選択としては585nm〜900nmの範囲であればいずれも直線の関係式が成立し、用いる指示物質の光吸収特性にとって適したところが選択される。 FIG. 2 is a graph showing the relationship between the absorbance of light absorption characteristics of two types of light having different wavelengths in plasma components including chyle, and illustrates the relationship between the absorbance at 620 nm and 770 nm. FIG. 2 shows a graph plotted with respect to four biological samples having different chyle contents used in FIG. 1. As shown in FIG. 2, a good linear relationship was obtained (R 2 = 0. 9999). R represents the correlation coefficient of the regression line. In addition, each of the four biological samples having different chyle contents is mixed with PBS (buffer solution) which is an aqueous solution for dilution that does not contain an indicator substance, and is doubled, tripled, four times, A linear relationship was also obtained in the case where double-diluted products were prepared and the relationship between the absorbances of the light absorption characteristics of two types of light with different wavelengths was expressed with respect to those diluted solutions (not shown). ). In other words, the relationship between the absorbance of the light absorption characteristics of two types of light having different wavelengths before and after mixing the biological sample and the aqueous solution for dilution is somewhat different from the slope and y-intercept in comparison with the graph of FIG. Although it does not become the same regression line, it shows that the same linear relationship is obtained. Here, it is not limited to a straight line, and a polynomial may be used to further improve accuracy. As for the selection of the wavelength, any linear relationship is established in the range of 585 nm to 900 nm, and a place suitable for the light absorption characteristics of the indicator used is selected.

本実施の形態1に係る希釈倍率導出方法では、乳びを含む血漿における一定の波長領域(585nm〜900nm)で、希釈用水溶液に含まれた指示物質の光吸収特性に依存しない波長依存特性をもつことに着目し、2波長の光を利用するとともに、図2の関係式を利用して、乳びの光吸収作用による吸光度の上昇分を抑制する高精度の希釈倍率の導出を実現した。   In the dilution factor deriving method according to the first embodiment, a wavelength-dependent characteristic that does not depend on the light absorption characteristic of the indicator substance contained in the aqueous solution for dilution in a certain wavelength region (585 nm to 900 nm) in plasma including chyle. In addition to using light of two wavelengths, the derivation of a highly accurate dilution factor that suppresses an increase in absorbance due to the light absorption effect of chyle was realized using light of two wavelengths.

図3は、生物学的試料と希釈用水溶液との混合前後の指示物質の光吸収特性の変化を例示したグラフである。図3において、吸収スペクトル5は、希釈前の指示物質であるブリリアントブルーFCFを含む希釈用水溶液の光吸収特性(吸光スペクトル)を示し、吸収スペクトル6、7は、指示物質であるブリリアントブルーFCFを含む希釈用水溶液と乳びを含む血漿成分とを1:1の割合で混合した希釈後の混合溶液(定量用試料液)中の指示物質の光吸収特性(吸光スペクトル)を示す。特に、吸収スペクトル6は、混合溶液の吸光度を実際に測定した場合のグラフであり、指示物質由来の吸光度のほかに、乳びの光吸収作用による吸光度も上乗せされており、吸収スペクトル7は、乳びの光吸収作用による吸光度の前記上乗せ分を差し引いた、指示物質由来の吸光度を示すグラフである。   FIG. 3 is a graph illustrating the change in the light absorption characteristics of the indicator substance before and after mixing the biological sample and the aqueous solution for dilution. In FIG. 3, an absorption spectrum 5 shows the light absorption characteristics (absorption spectrum) of an aqueous solution for dilution containing brilliant blue FCF, which is an indicator before dilution, and absorption spectra 6 and 7 show brilliant blue FCF, which is an indicator. The light absorption characteristic (absorption spectrum) of the indicator substance in the mixed solution (sample liquid for fixed_quantity | division) after the dilution which mixed the aqueous solution for dilution and the plasma component containing chyle in the ratio of 1: 1 is shown. In particular, the absorption spectrum 6 is a graph when the absorbance of the mixed solution is actually measured. In addition to the absorbance derived from the indicator substance, the absorbance due to the light absorption action of chyle is also added. It is a graph which shows the light absorbency derived from the indicator substance which subtracted the said extra part of the light absorbency by the light absorption effect | action of a chyle.

また、図3において、「C1」は指示物質の光吸収特性のピーク波長を表し、希釈倍率導出のための吸光度でもある。「C2」は希釈後の指示物質の光吸収特性のピーク波長を表し、実際に測定される吸光度でもある。「C3」は、指示物質由来の吸光度を表し、「C5」は検体ブランク由来の吸光度、いわゆる乳び自体の光吸収作用による吸光度を表す。生物学的試料の希釈倍率を正確に導出するためには、吸光度C1と吸光度C3とを比較する必要がある。しかし、希釈後、実際に測定される吸光度C2には、指示物質由来の吸光度C3のほかに、乳び自体の光吸収作用による吸光度C5が上乗せされているので、正確な希釈倍率の導出ができない。   In FIG. 3, “C1” represents the peak wavelength of the light absorption characteristic of the indicator substance, and is also the absorbance for deriving the dilution factor. “C2” represents the peak wavelength of the light absorption characteristics of the indicator substance after dilution, and is also the absorbance actually measured. “C3” represents the absorbance derived from the indicator substance, and “C5” represents the absorbance derived from the specimen blank, that is, the absorbance due to the light absorption action of the so-called chyle itself. In order to accurately derive the dilution factor of the biological sample, it is necessary to compare the absorbance C1 and the absorbance C3. However, since the absorbance C2 actually measured after the dilution is added with the absorbance C5 due to the light absorption action of the chyle itself in addition to the absorbance C3 derived from the indicator substance, an accurate dilution ratio cannot be derived. .

よって、本実施の形態1に係る希釈倍率導出方法では、吸光度(C1)と、吸光度(C2)から吸光度C5を差し引いた値とから、希釈用水溶液による生物学的試料の希釈倍率を導出する。   Therefore, in the dilution factor deriving method according to the first embodiment, the dilution factor of the biological sample by the aqueous solution for dilution is derived from the absorbance (C1) and the value obtained by subtracting the absorbance C5 from the absorbance (C2).

図5は、本実施の形態1に係る希釈倍率導出方法、及び該希釈倍率導出方法を用いた生物学的試料中の任意成分の定量方法を説明するためのステップ図である。ここでは、生物学的試料として血液を用い、該血液を、指示物質を含む希釈用水溶液と混合して定量用試料液を調整する場合を例として、説明する。   FIG. 5 is a step diagram for explaining the dilution factor deriving method and the method for quantifying an arbitrary component in a biological sample using the dilution factor deriving method according to the first embodiment. Here, a case where blood is used as a biological sample, and the blood is mixed with a dilute aqueous solution containing an indicator substance to prepare a quantitative sample solution will be described as an example.

まず、光源(A)の光に対する希釈用水溶液中の指示物質の吸光度(C1)を測定する(ステップS511)。次に、生物学的試料を希釈用水溶液と混合して、定量用試料液(混合溶液)を調整する(ステップS512)。次に、光源(A)の光に対する定量用試料液中の指示物質の吸光度(C2)を測定し(ステップS513)、光源(B)の光に対する定量用試料液中の指示物質の吸光度(C4)を測定する。ここで、従来の希釈倍率導出方法から明らかなように、定量用試料液中の生物学的試料の希釈倍率(D1)は、上記式(1)で表される。しかし、図3に示すように、実際に測定される吸光度C2には、上述のように、指示物質由来の吸光度C3のほかに、検体ブランク由来の吸光度C5も、乳び自体の光吸収作用による吸光度として上乗せされているので、実際に測定されるC2は、以下の関係式となる。 First, the absorbance (C1) of the indicator substance in the aqueous solution for dilution with respect to the light from the light source (A) is measured (step S511). Next, the biological sample is mixed with the diluting aqueous solution to prepare a quantitative sample solution (mixed solution) (step S512). Next, the absorbance (C2) of the indicator substance in the quantitative sample solution with respect to the light of the light source (A) is measured (step S513), and the absorbance of the indicator substance in the quantitative sample solution with respect to the light of the light source (B) (C4). ). Here, as is clear from the conventional method for deriving the dilution rate, the dilution rate (D 1 ) of the biological sample in the sample solution for quantification is expressed by the above formula (1). However, as shown in FIG. 3, the absorbance C2 actually measured includes the absorbance C3 derived from the sample blank in addition to the absorbance C3 derived from the indicator substance, as described above. Since it is added as the absorbance, C2 actually measured is represented by the following relational expression.

C2=C3+C5 (式3)   C2 = C3 + C5 (Formula 3)

ここで、より精度の高い希釈倍率を導出するために、検体ブランク由来の吸光度の影響を取り除いた希釈倍率(D2)は以下の関係式で表される。 Here, in order to derive a more accurate dilution factor, the dilution factor (D 2 ) excluding the influence of the absorbance derived from the specimen blank is expressed by the following relational expression.

希釈倍率(D2)=C1/(C1−C3) (式4) Dilution factor (D 2 ) = C1 / (C1-C3) (Formula 4)

さらに、希釈倍率(D2)は、(式3)及び(式4)から以下の関係式で表される。 Furthermore, the dilution rate (D 2 ) is expressed by the following relational expression from (Expression 3) and (Expression 4).

希釈倍率(D2)=C1/(C1−C3)=C1/{C1−(C2−C5)} (式5) Dilution (D 2) = C1 / ( C1-C3) = C1 / {C1- (C2-C5)} ( Equation 5)

実際に測定される吸光度C2から検体ブランク由来の吸光度C5を引くことができれば、乳び自体の光吸収作用による吸光度として上乗せされる分の影響を取り除くことになり、正確な指示物質由来の吸光度C3を導出することができる。ここで、乳びを含む血漿成分における検体ブランク由来の吸光度C5は、それぞれ波長の異なる2つの光の波長光吸収特性の吸光度の関係を示した図2のグラフを使って、ある波長の吸光度が決まれば、もう一方の波長の吸光度が導出されるという特性を利用して求める。一例として、図2の関係式を以下におく。   If the absorbance C5 derived from the specimen blank can be subtracted from the actually measured absorbance C2, the influence of the amount added as the absorbance due to the light absorption action of the chyle itself is removed, and the accurate absorbance C3 derived from the indicator substance is removed. Can be derived. Here, the absorbance C5 derived from the sample blank in the plasma component including chyle is obtained by using the graph of FIG. 2 showing the relationship between the absorbances of the light absorption characteristics of two light beams having different wavelengths. If it is determined, it is obtained using the characteristic that the absorbance at the other wavelength is derived. As an example, the relational expression of FIG.

C5=a×(C4)+b (式6)   C5 = a × (C4) + b (Formula 6)

吸光度C5は、前記定量用試料液中の指示物質の吸光度を定量するときに用いる光源(A)光の測定波長に吸収をもつ検体ブランクの吸光度を表し、図1に示される乳び自体の光吸収作用による吸光度がこれにあたる。吸光度C4は、光源(A)の光の測定波長とは別の波長であり、前記指示物質による吸光度の値が「0」である光源(B)の光の測定波長の吸光度である。なお、実際の吸光度の測定においては、指示物質の特性や測定環境等によって、前記吸光度の「0」という値については、若干の誤差が生じるが、一般的には、この誤差は無視できる範囲であると考えられる。式6において、「a」は、図2のグラフの直線の傾きを表し、「b」はy切片を表す。この関係式から、前記定量用試料液において、光源(A)の光の波長の吸光度C5は、光源(A)とは波長が異なる光源(B)の光の波長の吸光度によって導出される。これらのことから、(式5)及び(式6)より、本実施の形態1に係る希釈倍率導出方法の希釈倍率を表す式は、以下の関係式となる。   Absorbance C5 represents the absorbance of the sample blank having absorption at the measurement wavelength of the light source (A) used for quantifying the absorbance of the indicator substance in the sample liquid for quantification, and the light of the chyle itself shown in FIG. This is the absorbance due to absorption. The absorbance C4 is a wavelength different from the measurement wavelength of the light of the light source (A), and is the absorbance of the measurement wavelength of the light of the light source (B) whose absorbance value by the indicator is “0”. In actual measurement of absorbance, there is a slight error in the absorbance value of “0” due to the characteristics of the indicator substance, the measurement environment, etc., but generally this error is within a negligible range. It is believed that there is. In Equation 6, “a” represents the slope of the straight line in the graph of FIG. 2, and “b” represents the y-intercept. From this relational expression, the absorbance C5 of the light wavelength of the light source (A) in the sample liquid for quantification is derived from the absorbance of the light wavelength of the light source (B) having a wavelength different from that of the light source (A). From these, from (Equation 5) and (Equation 6), the equation representing the dilution factor of the dilution factor deriving method according to the first embodiment is the following relational equation.

希釈倍率(D2)=(C1)/[(C1)−{(C2)−( a×(C4)+b)}](式7) Dilution factor (D 2 ) = (C1) / [(C1) − {(C2) − (a × (C4) + b)}] (Formula 7)

この(式7)を用いて、吸光度(C2)と吸光度(C4)から、生物学的試料の希釈倍率を求める(ステップS515)。これにより、検体ブランク由来の乳びによる光吸収作用による影響が除去され、誤差の無い正確な希釈倍率が導出される。また、必要に応じ、導出された希釈倍率と、理論希釈倍率との間に別途換算式を設けてもよい。   Using this (Equation 7), the dilution factor of the biological sample is determined from the absorbance (C2) and absorbance (C4) (step S515). Thereby, the influence by the light absorption action by the chyle derived from the specimen blank is removed, and an accurate dilution factor without error is derived. Further, if necessary, a separate conversion formula may be provided between the derived dilution factor and the theoretical dilution factor.

次に、以上のようにして導出された希釈倍率から希釈前の生物学的試料中の定量すべき任意成分の濃度(X)を定量する。定量すべき任意成分として、グルコース、総コレステロール、HDLコレステロール、トリグリセリド、ALT、ASTなどが挙げられる。希釈された生物学的試料中、すなわち、定量用試料液中のグルコース、総コレステロール、HDLコレステロール、トリグリセリド、ALT、ASTなどを、それらの物質を定量するための公知の各反応試薬と反応させ、その反応状態を検出することで任意成分の濃度(Y)を求める(ステップS516)。例えば、特定波長の光によって、反応液の吸光度や濁度を測定することで、任意成分の濃度(Y)を求める。次に、(式7)によって導かれた生物学的試料の希釈倍率(D2)から、(式8)により、希釈前の生物学的試料中の任意成分の濃度(X)を求める(ステップS517)。 Next, the concentration (X) of the arbitrary component to be quantified in the biological sample before dilution is quantified from the dilution factor derived as described above. Examples of optional components to be quantified include glucose, total cholesterol, HDL cholesterol, triglyceride, ALT, and AST. In a diluted biological sample, that is, glucose, total cholesterol, HDL cholesterol, triglyceride, ALT, AST, etc. in a sample solution for quantification are reacted with each known reaction reagent for quantifying those substances, The concentration (Y) of an arbitrary component is obtained by detecting the reaction state (step S516). For example, the concentration (Y) of an arbitrary component is obtained by measuring the absorbance and turbidity of the reaction solution with light of a specific wavelength. Next, the concentration (X) of an arbitrary component in the biological sample before dilution is determined from the biological sample dilution rate (D 2 ) derived from (Equation 7) according to (Equation 8) (step) S517).

X=D2Y (式8) X = D 2 Y (Formula 8)

以上のような、本実施の形態1に係る希釈倍率導出方法、及び定量方法を実現するための分析装置について図6〜図9を用いて説明する。ここでは、生物学的試料として血液を用い、該血液を、指示物質を含む希釈用水溶液と混合して定量用試料液を調整する場合を例として、説明する。   An analysis apparatus for realizing the dilution factor deriving method and the quantifying method according to the first embodiment as described above will be described with reference to FIGS. Here, a case where blood is used as a biological sample, and the blood is mixed with a dilute aqueous solution containing an indicator substance to prepare a quantitative sample solution will be described as an example.

図6は、分析装置の構成例を示す図である。分析装置60は、分析用デバイス61と、分析用デバイス61を回転させる回転駆動部62と、光発生部63と、光検出部64と、光検出部64の検出結果を処理する処理部65とを備える。処理部65は、上記希釈倍率導出処理を行う希釈倍率導出手段と、上記定量処理を行う定量手段とを有する。   FIG. 6 is a diagram illustrating a configuration example of the analysis apparatus. The analysis apparatus 60 includes an analysis device 61, a rotation drive unit 62 that rotates the analysis device 61, a light generation unit 63, a light detection unit 64, and a processing unit 65 that processes the detection result of the light detection unit 64. Is provided. The processing unit 65 includes a dilution factor deriving unit that performs the dilution factor deriving process and a quantifying unit that performs the quantifying process.

分析用デバイス61は回転駆動部62に装着される。回転駆動部62により分析用デバイス61を矢印の方向に軸心周りに回転させることにより、分析用デバイス61に遠心力をかけ、該遠心力と分析用デバイス61内に配置された連絡流路に働く毛細管力とを合わせることで、分析用デバイス61内に収容される流体の移動を制御することができる。分析デバイス61内の流体の流れの状態、または化学的な状態は、光発生部63から照射される光66に対する流体の光吸収特性を光検出部64で測定することによって検出することができる。   The analysis device 61 is attached to the rotation drive unit 62. By rotating the analysis device 61 about the axis in the direction of the arrow by the rotation drive unit 62, a centrifugal force is applied to the analysis device 61, and the centrifugal force and the communication channel disposed in the analysis device 61 are applied. By combining the working capillary force, the movement of the fluid stored in the analysis device 61 can be controlled. The flow state or chemical state of the fluid in the analysis device 61 can be detected by measuring the light absorption characteristics of the fluid with respect to the light 66 emitted from the light generation unit 63 by the light detection unit 64.

図7は、分析用デバイス61が回転駆動部62に装着した状態を示す図であり、図8は分析用デバイス61の内部構造を示す図である。分析用デバイス61は、定量すべき任意成分を含む生物学的試料(液体試料)を収容する液体試料収容室81と、前記液体試料を希釈しその希釈倍率を正確に導出するための指示物質を含む希釈用水溶液を収容する希釈用水溶液収容室82と、希釈用水溶液収容室82に連結され、希釈用水溶液収容室82から流入した希釈用水溶液の一定量を計量し保持する希釈用水溶液計量室83と、液体試料収容室81と希釈用水溶液計量室83とに連結され、希釈用水溶液計量室83から流入した希釈用水溶液と、液体試料収容室81から流入した液体試料とを混合する混合室84と、混合室84と連結され、混合室84で混合(希釈)された液体試料の一定量を保持する計量流路85と、混合室84と連結され、混合室84から移送される混合(希釈)された液体試料内の任意成分を定量するために、該液体試料の吸光度または濁度を測定するための分析室86とを備えている。   FIG. 7 is a view showing a state in which the analysis device 61 is attached to the rotation drive unit 62, and FIG. 8 is a view showing the internal structure of the analysis device 61. The analysis device 61 includes a liquid sample storage chamber 81 for storing a biological sample (liquid sample) containing an arbitrary component to be quantified, and an indicator for diluting the liquid sample and accurately deriving the dilution rate. A diluting aqueous solution storage chamber 82 for storing the diluting aqueous solution containing, and a diluting aqueous solution measuring chamber connected to the diluting aqueous solution storing chamber 82 and measuring and holding a fixed amount of the diluting aqueous solution flowing from the diluting aqueous solution storing chamber 82 83, a mixing chamber that is connected to the liquid sample storage chamber 81 and the diluting aqueous solution measuring chamber 83 and mixes the diluting aqueous solution flowing in from the diluting aqueous solution measuring chamber 83 and the liquid sample flowing in from the liquid sample storing chamber 81. 84, a mixing channel 84 connected to the mixing chamber 84 and holding a certain amount of the liquid sample mixed (diluted) in the mixing chamber 84, and the mixing channel 84 connected to the mixing chamber 84 and transferred from the mixing chamber 84 ( Nozomi The) are arbitrary components in a liquid sample to quantify, and an analysis chamber 86 for measuring absorbance or turbidity of the liquid sample.

希釈用水溶液収容室82に収容される希釈用水溶液には、指示物質が含まれており、正確な希釈倍率を導出するために、生物学的試料中の血漿成分の検体ブランク吸光度(C5)を除去する方法は、上述した通りである。また、連結流路に働く毛細管力と回転によって生じる遠心力による流体の制御を可能にするために、希釈用水溶液計量室83は希釈用水溶液収容室82に対して軸心より遠い位置に配置されており、混合室84は希釈用水溶液計量室83に対して軸心より遠い位置に配置され、分析室86は混合室84に対して軸心より遠い位置に配置されている。希釈用水溶液に含まれる指示物質の吸光度は、希釈用水溶液計量室83と混合室84とで測定し、測定結果に基づいて、希釈倍率を導出する。また希釈用水溶液計量室83と混合室84は一体に形成して、同一の測定領域で混合前と混合後の希釈用水溶液の指示物質の吸光度を測定してもよい。必要に応じ、液体試料収容室81と混合室84の間に、液体試料収容室81から流入されてきた液体試料を、遠心力を用いて低比重成分と高比重成分とに分離する分離室を設けてもよく、さらに、前記分離室と混合室84との間に、液体試料を一定量保持する液体試料計量流路を設け、一定量の液体試料を混合室84へ移送できるようにしてもよい。分析室86には液体試料中に含まれる定量すべき任意成分と反応する反応試薬が保持されており、必要に応じ分析項目別に複数個配置してもよい。また、計量流路85は、分析室86に一定量の液体試料を移送させるために配置されている。また、希釈用水溶液計量室83に連結される溢流室20には、希釈用水溶液計量室83で液体試料が計量されるときに余剰分の液量が流入される。   The dilute aqueous solution accommodated in the dilute aqueous solution storage chamber 82 contains an indicator substance. In order to derive an accurate dilution factor, the specimen blank absorbance (C5) of the plasma component in the biological sample is determined. The method of removing is as described above. In addition, in order to enable control of the fluid by the capillary force acting on the connection flow path and the centrifugal force generated by the rotation, the dilution aqueous solution measuring chamber 83 is disposed at a position farther from the axial center than the dilution aqueous solution storage chamber 82. The mixing chamber 84 is disposed farther from the axial center than the dilution aqueous solution measuring chamber 83, and the analysis chamber 86 is disposed farther from the axial center than the mixing chamber 84. The absorbance of the indicator contained in the diluting aqueous solution is measured in the diluting aqueous solution measuring chamber 83 and the mixing chamber 84, and the dilution factor is derived based on the measurement result. Alternatively, the dilution aqueous solution measuring chamber 83 and the mixing chamber 84 may be formed integrally, and the absorbance of the indicator in the dilution aqueous solution before and after mixing may be measured in the same measurement region. If necessary, a separation chamber for separating the liquid sample flowing from the liquid sample storage chamber 81 into a low specific gravity component and a high specific gravity component using centrifugal force is provided between the liquid sample storage chamber 81 and the mixing chamber 84. Further, a liquid sample measuring channel for holding a certain amount of liquid sample may be provided between the separation chamber and the mixing chamber 84 so that a certain amount of liquid sample can be transferred to the mixing chamber 84. Good. The analysis chamber 86 holds reaction reagents that react with arbitrary components to be quantified contained in the liquid sample, and a plurality of them may be arranged for each analysis item as required. In addition, the metering channel 85 is arranged to transfer a certain amount of liquid sample to the analysis chamber 86. Further, when the liquid sample is weighed in the dilute aqueous solution metering chamber 83, the excess liquid amount flows into the overflow chamber 20 connected to the dilute aqueous solution metering chamber 83.

以上のように構成される分析装置60による希釈倍率導出動作と定量動作について説明する。   The operation for deriving the dilution factor and the quantitative operation by the analyzer 60 configured as described above will be described.

まず、分析用デバイス61を回転駆動部62に装着し、分析用デバイス61を軸心周りに回転させることにより、希釈用水溶液を希釈用水溶液計量室83に移送し、この回転を停止することで、定量すべき任意成分を含む生物学的試料(液体試料)と希釈用水溶液計量室83の希釈用水溶液とを、混合室84の直前の連結通路までそれぞれ移送する。再び分析用デバイス61を回転させることで、液体試料と希釈用水溶液とを混合室84に移送して混合する。この回転を停止することで、混合溶液(定量用試料液)を、分析室86の直前の連結通路までそれぞれ移送する。その後、分析用デバイス61を再び回転させることで、定量用試料液を、分析室86へ移送する。この一連の流れの中で光検出部64によって、液体試料と希釈用水溶液との混合前後の指示物質の光吸収特性を測定し、該測定結果に基づいて、処理部65の希釈倍率導出手段が、上述した方法により、式7を用いて、液体試料の希釈倍率(D2)を導出する。なお、希釈倍率(D2)の導出過程において、希釈後に実際に測定された吸光度(C2)から、乳び自体の光吸収作用による吸光度(C5)を差し引くために、吸光度(C5)を算出するのに用いる、乳びを含む血漿成分における2波長の光の波長依存特性の関係式は、分析装置60のメモリ等の記録部(図示せず)に予め保存されており、必要時に、処理部65の希釈倍率導出手段が読み出して利用する。このように、定量すべき任意成分の濃度を高精度に定量するための分析装置では、高精度に希釈倍率を導出することが必要不可欠であり、そのためには、従来技術の希釈倍率導出方法に加えて、本発明の、希釈後に実際に測定された吸光度(C2)から乳び自体の光吸収作用による吸光度(C5)を差し引くというブランク吸光度の影響を回避する処理が非常に重要な要素となる。 First, the analysis device 61 is mounted on the rotation drive unit 62, and the analysis device 61 is rotated about the axis, thereby transferring the dilution aqueous solution to the dilution aqueous solution measuring chamber 83 and stopping the rotation. The biological sample (liquid sample) containing the optional component to be quantified and the diluting aqueous solution in the diluting aqueous solution measuring chamber 83 are respectively transferred to the connecting passage just before the mixing chamber 84. By rotating the analysis device 61 again, the liquid sample and the aqueous solution for dilution are transferred to the mixing chamber 84 and mixed. By stopping the rotation, the mixed solution (quantitative sample solution) is transferred to the connecting passage just before the analysis chamber 86. Thereafter, the analytical device 61 is rotated again to transfer the quantitative sample solution to the analysis chamber 86. In this series of flows, the light detection unit 64 measures the light absorption characteristics of the indicator substance before and after mixing the liquid sample and the aqueous solution for dilution, and based on the measurement result, the dilution factor deriving means of the processing unit 65 The dilution rate (D 2 ) of the liquid sample is derived using Equation 7 by the method described above. In the process of deriving the dilution factor (D 2 ), the absorbance (C5) is calculated in order to subtract the absorbance (C5) due to the light absorption action of the chyle itself from the absorbance (C2) actually measured after dilution. The relational expression of the wavelength-dependent characteristics of the two wavelengths of light in plasma components including chyle used in the above is stored in advance in a recording unit (not shown) such as a memory of the analyzer 60, and when necessary, the processing unit 65 dilution rate deriving means reads and uses. In this way, in an analyzer for quantifying the concentration of an arbitrary component to be quantified with high accuracy, it is indispensable to derive the dilution factor with high accuracy. In addition, the process of avoiding the influence of the blank absorbance by subtracting the absorbance (C5) due to the light absorption action of the chyle itself from the absorbance actually measured after dilution (C2) of the present invention is a very important factor. .

次に、光検出部64によって、定量用試料液中の定量すべき任意成分の濃度(Y)を定量する。例えば、定量すべき任意成分と分析室86内の反応試薬とを反応させ、反応液に光発生部63から特定波長の光を照射して、吸光度または濁度を光検出部64で測定することで濃度(Y)を定量する。この測定された定量すべき任意成分の濃度(Y)と前記希釈倍率導出手段により求められた希釈倍率(D2)とから、処理部65の定量手段が、上記式(8)を用いて、混合(希釈)前の液体試料中の定量すべき任意成分の濃度(X)を決定する。 Next, the concentration (Y) of the arbitrary component to be quantified in the sample liquid for quantification is quantified by the light detection unit 64. For example, an arbitrary component to be quantified is reacted with a reaction reagent in the analysis chamber 86, the reaction solution is irradiated with light of a specific wavelength from the light generation unit 63, and the absorbance or turbidity is measured by the light detection unit 64. Quantify the concentration (Y). From the measured concentration (Y) of the arbitrary component to be quantified and the dilution rate (D 2 ) obtained by the dilution rate deriving unit, the quantification unit of the processing unit 65 uses the above formula (8), Determine the concentration (X) of the optional component to be quantified in the liquid sample before mixing (dilution).

以上のように、本実施の形態1に係る希釈倍率導出方法、定量方法、及び分析装置によれば、指示物質を含む希釈用水溶液で生物学的試料を希釈するときに、光源(A)の光と、光源(A)の光とは波長の異なる光源(B)の光によって、希釈前と希釈後の指示物質の吸光度を測定し、測定した吸光度と、光源(A)の光の波長と光源(B)の光の波長との関係式で示される乳びを含む成分の波長依存特性を利用して、生物学的試料中の乳びを含む成分のブランク吸光度(C5)を求め、希釈前の希釈用水溶液中の指示物質の吸光度(C1)と、希釈後の定量用試料液中の指示物質の吸光度(C2)から前記ブランク吸光度(C5)を減算した値とから、生物学的試料の希釈倍率を求めることから、前記乳びの光吸収作用の影響を回避して、より正確な生物学的試料の希釈倍率を求めることができ、さらに、該希釈倍率に基づいて、生物学的試料中の定量すべき任意成分の濃度をより正確に定量することができる。   As described above, according to the dilution factor deriving method, the quantifying method, and the analyzer according to the first embodiment, when the biological sample is diluted with the dilute aqueous solution containing the indicator substance, the light source (A) The absorbance of the indicator substance before and after dilution is measured by the light of the light source (B) having a wavelength different from that of the light and the light of the light source (A), and the measured absorbance and the wavelength of the light of the light source (A) Using the wavelength dependent property of the component containing chyle represented by the relational expression with the light wavelength of the light source (B), the blank absorbance (C5) of the component containing chyle in the biological sample is obtained and diluted. The biological sample from the absorbance (C1) of the indicator substance in the previous dilution aqueous solution and the value obtained by subtracting the blank absorbance (C5) from the absorbance (C2) of the indicator substance in the diluted sample solution From the determination of the dilution factor, avoid the effect of light absorption of the chyle, Ri can be determined the dilution factor of precise biological sample, further based on the dilution ratio, it is possible to more accurately quantify the concentration of any component to be quantified in a biological sample.

また、本実施の形態1に係る希釈倍率導出方法によれば、乳びを含む生物学的試料であれば、どのような試料においても測定精度を向上させることができるという効果がある。   Moreover, according to the dilution factor deriving method according to the first embodiment, there is an effect that the measurement accuracy can be improved in any sample as long as it is a biological sample including chyle.

(実施例1)
本実施例1では、生物学的試料である血清を、指示物質としてブリリアントブルーFCFを含む希釈用水溶液で希釈し、希釈前と希釈後のブリリアントブルーFCFの吸光度から、血清の希釈倍率を導出する。
Example 1
In this Example 1, serum as a biological sample is diluted with an aqueous solution for dilution containing brilliant blue FCF as an indicator substance, and the dilution ratio of the serum is derived from the absorbance of brilliant blue FCF before and after dilution. .

まず、粉末状のブリリアントブルーFCFを、PBS(緩衝液)と10mg/mlBSAとの混合液に溶解させ、光路長1cmでピーク波長633nm(光源(A)の光の波長)の場合の吸光度が0.5となるように濃度調整した。これは、指示物質であるブリリアントブルーFCFの濃度は、光路長等の測定条件により最適な範囲が変動するため、指示物質が測定される条件で、想定される試料の希釈倍率の範囲において、指示物質の吸光度を測定可能な範囲内に収めることが望ましいからである。具体的には希釈倍率導出に用いる測定波長における吸光度は0.1〜1.5が望ましく、さらには0.4〜0.6がより望ましい。次に、生物学的試料としての血清を添加する前のブリリアントブルーFCF溶液の633nm(光源(A)の光の波長)での吸光度(C1)を測定した。次に、ブリリアントブルーFCFに血清を添加して、混合溶液の633nmでの吸光度(C2)と、ブリリアントブルーFCFの吸光度の値が“0”である751nm(光源(B)の光の波長)での吸光度(C4)とを測定した。ここで、乳びを含む特定成分(血漿成分)における633nmと751nmの波長依存特性の関係式(y=2.0143x+0.0002)を予め図4のように求めており、その式と、吸光度(C1)、吸光度(C2)、及び吸光度(C4)とから、式7を用いて、希釈倍率を求めた。生物学的試料としての血清と希釈用水溶液との混合溶液である定量用試料液に関して、試験管番号1〜3の測定結果を表1に示す。   First, powdery brilliant blue FCF is dissolved in a mixed solution of PBS (buffer solution) and 10 mg / ml BSA, and the absorbance is 0 when the optical path length is 1 cm and the peak wavelength is 633 nm (the light wavelength of the light source (A)). The density was adjusted to be .5. This is because the optimum range of the concentration of the brilliant blue FCF, which is the indicator substance, varies depending on the measurement conditions such as the optical path length. This is because it is desirable to keep the absorbance of the substance within a measurable range. Specifically, the absorbance at the measurement wavelength used for deriving the dilution factor is preferably 0.1 to 1.5, and more preferably 0.4 to 0.6. Next, the absorbance (C1) at 633 nm (light wavelength of the light source (A)) of the brilliant blue FCF solution before addition of serum as a biological sample was measured. Next, serum is added to the brilliant blue FCF, and the absorbance (C2) of the mixed solution at 633 nm and the absorbance value of the brilliant blue FCF is “0” at 751 nm (light wavelength of the light source (B)). The absorbance (C4) of was measured. Here, a relational expression (y = 2.143x + 0.0002) of wavelength-dependent characteristics of 633 nm and 751 nm in a specific component (plasma component) including chyle is obtained in advance as shown in FIG. From the C1), the absorbance (C2), and the absorbance (C4), the dilution rate was determined using Equation 7. Table 1 shows the measurement results of test tube numbers 1 to 3 for the sample solution for quantification, which is a mixed solution of serum as a biological sample and an aqueous solution for dilution.

Figure 2009109196
Figure 2009109196

試験管番号1に関しては、理論希釈倍率2.0倍であるが、従来の方法で導出した場合、希釈倍率は2.7倍となった。この理想希釈倍率からの大きな乖離は乳びの影響である。これが従来技術では大きな問題となっていた。一方、本発明の方法で導出した場合、希釈倍率は2.0倍となった。詳細に理想希釈倍率からの乖離を計算すると、0.6%であり、従来技術では37%乖離していることを鑑みると、非常に良好な結果が得られた。試験管番号2、3についても同様な結果が得られた。このように希釈倍率2.0〜6.0倍のような低希釈倍率においては、従来の技術では乳びの影響により希釈倍率の導出に大きな誤差が生じた。特に、本実験では光路長が1cmという長い光路長だったこともあり、理想希釈倍率からの乖離が25〜46%とその影響が顕著に表れた結果になった。一方、本発明の方法を用いると、乖離が−0.9〜0.6%と高精度な希釈倍率の導出が実現でき、本発明の有効性が実証された。   For test tube number 1, the theoretical dilution factor was 2.0, but when derived by the conventional method, the dilution factor was 2.7. The large deviation from this ideal dilution factor is the effect of chyle. This has been a big problem in the prior art. On the other hand, when derived by the method of the present invention, the dilution factor was 2.0 times. When the deviation from the ideal dilution ratio was calculated in detail, it was 0.6%, and very good results were obtained in view of the 37% deviation in the prior art. Similar results were obtained for test tube numbers 2 and 3. Thus, at a low dilution factor such as a dilution factor of 2.0 to 6.0, a large error has occurred in the derivation of the dilution factor due to the influence of chyle in the conventional technique. In particular, in this experiment, the optical path length was as long as 1 cm, and the deviation from the ideal dilution factor was 25 to 46%, and the effect was remarkable. On the other hand, when the method of the present invention is used, it is possible to derive a highly accurate dilution factor with a deviation of -0.9 to 0.6%, thus demonstrating the effectiveness of the present invention.

(実施例2)
本実施例2では、生物学的試料である血液を、指示物質としてアミドブラック401号を含む希釈用水溶液で希釈して、希釈前と希釈後のアミドブラック401号の吸光度から、血液中の定量すべき任意成分であるトリグリセリド(TG)の希釈倍率を導出し、微量(10μl)の血液中に含まれるトリグリセリド(TG)の含有濃度を測定する。
(Example 2)
In Example 2, blood as a biological sample is diluted with an aqueous solution for dilution containing amide black 401 as an indicator, and the amount of amide black 401 before and after dilution is quantified in blood. The dilution ratio of triglyceride (TG), which is an optional component to be derived, is derived, and the concentration of triglyceride (TG) contained in a very small amount (10 μl) of blood is measured.

まず、アミドブラック401号、PBS(緩衝液)、安定化剤とを含む希釈用水溶液について、光路長1mm、ピーク波長620nm(光源(A)の光の波長)の吸光度を測定した(C1=0.429)。次に、全血10μlを前記希釈用水溶液と混合させ、混合溶液を遠心分離して血球を除去した後、その上清について光路長1mm、波長620nmでの吸光度(C2)と、波長730nm(光源(B)の光の波長)での吸光度(C4)を測定した。吸光度(C1)、吸光度(C2)及び吸光度(C4)の測定は、光路長のばらつきによる測定精度への影響を除去するため同一スポットで測定することが望ましい。予め、図9に示すように、血漿における620nmと730nmの関係式(y=1.745x+0.00010)を求めておき、その式と、吸光度(C1)、吸光度(C2)、及び吸光度(C4)とから、(式7)を用いて、希釈倍率を求めた。次に、前記上清のTG濃度を、定量用試薬等と反応させて導くことができる公知の方法によって求め、その測定値と前記求めた希釈倍率を(式8)に代入することで、希釈用水溶液と混合する前の前記微量血液中に含まれるTG濃度を算出した。生物学的試料としての血液中の血漿と希釈用水溶液との混合溶液である定量用試料液に関して、試験管番号4〜8の測定結果を表2に示す。なお、全血10μlと混合させる希釈用水溶液の量は表2の試験管番号4〜8のように条件を変えて実施した。なお、本実験で用いた血液中のTG濃度は、高精度の大型装置(日立7020)によって測定したが、実測希釈倍率は164mg/dlであった。   First, for an aqueous solution for dilution containing Amido Black 401, PBS (buffer solution), and a stabilizer, the absorbance at an optical path length of 1 mm and a peak wavelength of 620 nm (light wavelength of the light source (A)) was measured (C1 = 0). .429). Next, 10 μl of whole blood is mixed with the aqueous solution for dilution, and the mixed solution is centrifuged to remove blood cells. Then, the supernatant has an optical path length of 1 mm, an absorbance (C2) at a wavelength of 620 nm, and a wavelength of 730 nm (light source). Absorbance (C4) at the wavelength of light (B) was measured. The absorbance (C1), absorbance (C2), and absorbance (C4) are preferably measured at the same spot in order to eliminate the influence on measurement accuracy due to variations in optical path length. As shown in FIG. 9, a relational expression (y = 1.745x + 0.00010) of 620 nm and 730 nm in plasma is obtained in advance, and the expression, absorbance (C1), absorbance (C2), and absorbance (C4) From these, the dilution ratio was determined using (Equation 7). Next, the TG concentration of the supernatant is obtained by a known method that can be derived by reacting with a reagent for quantification, etc., and the measured value and the obtained dilution rate are substituted into (Equation 8), thereby diluting. The TG concentration contained in the micro blood before mixing with the aqueous solution was calculated. Table 2 shows the measurement results of test tube numbers 4 to 8 for the sample solution for quantification, which is a mixed solution of plasma in blood as a biological sample and an aqueous solution for dilution. In addition, the amount of the aqueous solution for dilution to be mixed with 10 μl of whole blood was changed under conditions as shown in test tube numbers 4 to 8 in Table 2. The TG concentration in blood used in this experiment was measured with a high-precision large apparatus (Hitachi 7020), and the actual dilution ratio was 164 mg / dl.

Figure 2009109196
Figure 2009109196

表2は、上記組成で調製された希釈用水溶液により希釈された血漿において、実績濃度から導出した2.0倍希釈から10.9倍希釈までの範囲における希釈倍率(D)を、従来技術の方法と本発明の方法とでそれぞれ算出し、その算出した希釈倍率(D)から血液中に含まれるトリグリセリド(TG)の含有濃度を測定し、その結果を比較したものである。実測希釈倍率は、試験管番号4では2.0倍、試験管番号5では4.0倍、試験管番号6では6.3倍、試験管番号7では8.2倍、試験管番号8では10.9倍となっているが、全ての試験管(4〜8)において、本発明の方法による算出希釈倍率は、試験管番号4では2.0倍、試験管番号5では4.0倍、試験管番号6では6.1倍、試験管番号7では8.3倍、試験管番号8では11.0倍となっており、従来の方法による算出希釈倍率より、実測希釈倍率に近い値になった。その結果、本発明の方法により定量された算出濃度は、試験管(4〜8)において、161mg/dl、162mg/dl、158mg/dl、166mg/dl、166mg/dlと算出されており、従来技術による算出濃度より、本発明の方法による算出濃度の方が、実測希釈倍率164mg/dlに対してより近い値になっているのがわかる。さらに、算出された2.0倍希釈から10.9倍の範囲における算出濃度について、従来の方法では最大で9.9%の乖離誤差が生じているが、本発明の方法では3.8%以内に乖離誤差を抑えることがわかる。従来の方法と比較して、本発明の方法がばらつきなく希釈倍率を導出できることがわかる。このように、本発明の方法によって試験管番号4〜8のいずれの場合も従来に方法よりも正確なTG濃度の算出ができた。   Table 2 shows the dilution ratio (D) in the range from the 2.0-fold dilution to the 10.9-fold dilution derived from the actual concentration in the plasma diluted with the dilution aqueous solution prepared with the above composition. It is calculated by each of the method and the method of the present invention, the concentration of triglyceride (TG) contained in blood is measured from the calculated dilution rate (D), and the results are compared. The actual dilution ratio is 2.0 times for test tube number 4; 4.0 times for test tube number 5; 6.3 times for test tube number 6; 8.2 times for test tube number 7; Although it is 10.9 times, in all the test tubes (4 to 8), the calculated dilution ratio by the method of the present invention is 2.0 times for test tube number 4 and 4.0 times for test tube number 5 The test tube number 6 is 6.1 times, the test tube number 7 is 8.3 times, and the test tube number 8 is 11.0 times. Became. As a result, the calculated concentration quantified by the method of the present invention was calculated as 161 mg / dl, 162 mg / dl, 158 mg / dl, 166 mg / dl, 166 mg / dl in the test tubes (4 to 8). It can be seen that the calculated concentration by the method of the present invention is closer to the measured dilution factor of 164 mg / dl than the calculated concentration by the technique. Further, with respect to the calculated concentration in the range of the calculated 2.0-fold dilution to 10.9-fold, a divergence error of 9.9% at maximum occurs in the conventional method, but 3.8% in the method of the present invention. It can be seen that the deviation error is suppressed within. Compared with the conventional method, it can be seen that the method of the present invention can derive the dilution rate without variation. Thus, the method of the present invention was able to calculate the TG concentration more accurately than the conventional method in any of the test tube numbers 4 to 8.

本発明に係る希釈倍率導出方法及び定量方法は、乳びを含む生物学的試料を希釈して、生物学的試料に含まれる任意の物質を定量する方法及び装置に好適である。   The dilution ratio deriving method and quantifying method according to the present invention are suitable for a method and an apparatus for diluting a biological sample containing chyle and quantifying an arbitrary substance contained in the biological sample.

本発明の実施の形態1における希釈倍率導出方法を説明するための、ヒト血漿の吸光スペクトル(光吸収特性の変化)の例を表したグラフである。It is a graph showing the example of the absorption spectrum (change of a light absorption characteristic) of human plasma for demonstrating the dilution factor deriving method in Embodiment 1 of this invention. 本発明の実施の形態1における希釈倍率導出方法を説明するための、血漿の波長依存特性を表したグラフ及び関係式を示す図である。It is a figure showing the wavelength dependence characteristic of plasma for explaining the dilution factor deriving method in Embodiment 1 of the present invention, and a figure showing a relational expression. 本発明の実施の形態1における希釈倍率導出方法を説明するための、ブリリアントブルーFCF溶液と血漿との混合前と混合後の吸光スペクトルの例を表したグラフである。It is a graph showing the example of the absorption spectrum before and after mixing of a brilliant blue FCF solution and plasma for demonstrating the dilution factor deriving method in Embodiment 1 of this invention. 本発明の実施の形態1における希釈倍率導出方法を説明するための、血漿の波長依存特性を表したグラフ及び関係式を示す図である。It is a figure showing the wavelength dependence characteristic of plasma for explaining the dilution factor deriving method in Embodiment 1 of the present invention, and a figure showing a relational expression. 本発明の実施の形態1における希釈倍率導出方法及び生物学的試料中の定量すべき任意成分の定量方法を説明するためのステップ図である。FIG. 2 is a step diagram for explaining a dilution factor deriving method and a method for quantifying an arbitrary component to be quantified in a biological sample in Embodiment 1 of the present invention. 本発明の実施の形態1における希釈倍率導出方法及び定量方法を実現するための分析装置の構成例を示す図である。It is a figure which shows the structural example of the analyzer for implement | achieving the dilution rate derivation | leading-out method and quantification method in Embodiment 1 of this invention. 本発明の実施の形態1における希釈倍率導出方法及び定量方法を実現するための分析装置が有する分析用デバイスの上面図である。It is a top view of the device for analysis which an analyzer for realizing the dilution rate deriving method and quantification method in Embodiment 1 of the present invention has. 本発明の実施の形態1に係る希釈倍率導出方法及び定量方法を実現するための分析装置が有する分析用デバイスの内部構造を示す図である。It is a figure which shows the internal structure of the device for analysis which the analyzer for implement | achieving the dilution factor derivation | leading-out method and quantification method concerning Embodiment 1 of this invention has. 本発明の実施例2における血漿の波長依存特性を表したグラフ及び関係式を示す図である。It is a figure showing the wavelength dependence characteristic of plasma in Example 2 of the present invention, and a figure showing a relational expression. 従来の血液分離器具の構成図である。It is a block diagram of the conventional blood separation instrument. 従来の、希釈倍率導出方法及び生物学的試料中の定量すべき任意成分の定量方法を説明するためのステップ図である。FIG. 10 is a step diagram for explaining a conventional method for deriving a dilution rate and a method for quantifying an arbitrary component to be quantified in a biological sample.

符号の説明Explanation of symbols

1 検体1の吸光スペクトル
2 検体2の吸光スペクトル
3 検体3の吸光スペクトル
4 検体4の吸光スペクトル
5 ブリリアントブルーFCF溶液の吸光スペクトル
6 ブリリアントブルーFCF溶液と血漿を1:1の割合で混合した混合溶液の吸光スペクトル
7 ブリリアントブルーFCF溶液と指示物質を含まない希釈用水溶液を1:1の割合とで混合した混合溶液の吸光スペクトル
a グラフの傾き
b グラフのy切片
C1 混合前の指示物質由来の吸光度
C2 混合後の指示物質由来の吸光度と検体ブランク由来の吸光度との和(実測吸光度)
C3 混合後の指示物質由来の吸光度
C4 指示物質の吸光度が0である、別波長による吸光度(混合後)
C5 検体ブランク由来の吸光度(乳び成分の吸光度)
D1 従来方法により導出される希釈倍率
D2 本発明の方法により導出される希釈倍率
X 希釈後の定量すべき成分の濃度
Y 希釈前の定量すべき成分の濃度
60 分析装置
61 分析用デバイス
62 回転駆動部
63 光発生部
64 光検出部
65 処理部
66 光
81 液体試料収容室
82 希釈用水溶液収容室
83 希釈用水溶液計量室
84 混合室
85 計量流路
86 分析室
87 溢流室
100 血液分離器具
101 本体容器
102 濾過体
103 血漿採取容器
104 血球採取容器
105 蓋
106 血漿採取容器着脱部
107 血液採取容器部
108 血漿希釈用水溶液
1 Absorption spectrum of specimen 1 Absorption spectrum of specimen 2 3 Absorption spectrum of specimen 3 Absorption spectrum of specimen 4 5 Absorption spectrum of brilliant blue FCF solution 6 Mixed solution in which brilliant blue FCF solution and plasma are mixed at a ratio of 1: 1 Absorption spectrum 7 Absorption spectrum of a mixed solution prepared by mixing a brilliant blue FCF solution and a dilute aqueous solution not containing an indicator substance at a ratio of 1: 1 a slope of graph b y-intercept C1 absorbance of indicator material before mixing Sum of absorbance derived from indicator substance and sample blank after C2 mixing (actual absorbance)
C3 Absorbance derived from the indicator substance after mixing C4 Absorbance of the indicator substance at 0, absorbance at another wavelength (after mixing)
Absorbance from C5 specimen blank (absorbance of chyle component)
D1 Dilution factor D2 derived by the conventional method D2 Dilution factor derived by the method of the present invention X Concentration of the component to be quantified after dilution Y Concentration of the component to be quantified before dilution 60 Analyzer 61 Analytical device 62 Rotation drive Unit 63 light generation unit 64 light detection unit 65 processing unit 66 light 81 liquid sample storage chamber 82 dilution aqueous solution storage chamber 83 dilution aqueous solution measurement chamber 84 mixing chamber 85 measurement channel 86 analysis chamber 87 overflow chamber 100 blood separation instrument 101 Main body container 102 Filter body 103 Plasma collection container 104 Blood cell collection container 105 Lid 106 Plasma collection container attaching / detaching section 107 Blood collection container section 108 Aqueous solution for plasma dilution

Claims (10)

第1の光源の光に対する、希釈用水溶液に含まれる光学的に検出可能な指示物質の吸光度を測定する工程と、
定量すべき成分を含む生物学的試料と前記希釈用水溶液とを混合して、前記生物学的試料を希釈し、定量用試料液を調製する工程と、
前記第1の光源の光に対する前記定量用試料液中の指示物質の吸光度を測定する工程と、
前記第1の光源の光とは波長が異なる第2の光源の光に対する前記定量用試料液中の指示物質の吸光度を測定する工程と、
前記第2の光源の光に対する前記定量用試料液中の指示物質の吸光度と、前記生物学的試料中の乳びを含む特定成分における前記第1の光源の光及び前記第2の光源の光の波長依存特性とから、前記特定成分の吸光度を求める工程と、
前記第1の光源の光に対する前記希釈用水溶液中の指示物質の吸光度と、前記第1の光源の光に対する前記定量用試料液中の指示物質の吸光度から前記特定成分の吸光度を減算した値とに基づいて、前記希釈用水溶液による前記生物学的試料の希釈倍率を求める工程とを含む、
ことを特徴とする希釈倍率導出方法。
Measuring the absorbance of the optically detectable indicator contained in the aqueous solution for dilution with respect to the light of the first light source;
Mixing a biological sample containing a component to be quantified and the aqueous solution for dilution, diluting the biological sample, and preparing a sample solution for quantification;
Measuring the absorbance of the indicator substance in the sample liquid for quantification with respect to the light of the first light source;
Measuring the absorbance of the indicator substance in the sample liquid for quantification with respect to the light of the second light source having a wavelength different from that of the light of the first light source;
The absorbance of the indicator substance in the sample liquid for quantification with respect to the light of the second light source, the light of the first light source and the light of the second light source in specific components including chyle in the biological sample Obtaining the absorbance of the specific component from the wavelength-dependent characteristics of
The absorbance of the indicator in the aqueous solution for dilution with respect to the light of the first light source, and the value obtained by subtracting the absorbance of the specific component from the absorbance of the indicator in the sample liquid for quantification with respect to the light of the first light source; Determining the dilution factor of the biological sample with the diluting aqueous solution based on
A method for deriving a dilution ratio.
請求項1に記載の希釈倍率導出方法において、
前記第2の光源の光は、前記指示物質の光吸収特性の吸光度が0になる波長よりも大きい波長を有する、
ことを特徴とする希釈倍率導出方法。
In the dilution factor deriving method according to claim 1,
The light of the second light source has a wavelength that is greater than the wavelength at which the absorbance of the light absorption characteristic of the indicator substance becomes zero.
A method for deriving a dilution ratio.
請求項2に記載の希釈倍率導出方法において、
前記特定成分は血漿であり、前記第1の光源の光及び前記2の光源の光の波長は585〜900nmである、
ことを特徴とする希釈倍率導出方法。
In the dilution factor deriving method according to claim 2,
The specific component is plasma, and the wavelengths of the light of the first light source and the light of the second light source are 585 to 900 nm.
A method for deriving a dilution ratio.
請求項1に記載の希釈倍率導出方法において、
前記指示物質は、色素、色原体、蛍光物質、及び発光物質からなるグループの少なくとも1つから選択される、
ことを特徴とする希釈倍率導出方法。
In the dilution factor deriving method according to claim 1,
The indicator is selected from at least one of the group consisting of a dye, a chromogen, a fluorescent substance, and a luminescent substance.
A method for deriving a dilution ratio.
第1の光源の光に対する、希釈用水溶液に含まれる光学的に検出可能な指示物質の吸光度を測定する工程と、
定量すべき成分を含む生物学的試料と前記希釈用水溶液とを混合して、前記生物学的試料を希釈し、定量用試料液を調製する工程と、
前記第1の光源の光に対する前記定量用試料液中の指示物質の吸光度を測定する工程と、
前記第1の光源の光とは波長が異なる第2の光源の光に対する前記定量用試料液中の指示物質の吸光度を測定する工程と、
前記第2の光源の光に対する前記定量用試料液中の指示物質の吸光度と、前記生物学的試料中の乳びを含む特定成分における前記第1の光源の光及び前記第2の光源の光の波長依存特性とから、前記特定成分の吸光度を求める工程と、
前記第1の光源の光に対する前記希釈用水溶液中の指示物質の吸光度と、前記第1の光源の光に対する前記定量用試料液中の指示物質の吸光度から前記特定成分の吸光度を減算した値とに基づいて、前記希釈用水溶液による前記生物学的試料の希釈倍率を求める工程と、
前記定量用試料液中の定量すべき成分を反応試薬と反応させて、前記定量すべき成分の濃度を求める工程と、
前記求めた希釈倍率と、前記定量用試料液中の定量すべき成分の濃度とから、前記生物学的試料中に含まれる定量すべき成分の濃度を求める工程とを含む、
ことを特徴とする定量方法。
Measuring the absorbance of the optically detectable indicator contained in the aqueous solution for dilution with respect to the light of the first light source;
Mixing a biological sample containing a component to be quantified and the aqueous solution for dilution, diluting the biological sample, and preparing a sample solution for quantification;
Measuring the absorbance of the indicator substance in the sample liquid for quantification with respect to the light of the first light source;
Measuring the absorbance of the indicator substance in the sample liquid for quantification with respect to the light of the second light source having a wavelength different from that of the light of the first light source;
The absorbance of the indicator substance in the sample liquid for quantification with respect to the light of the second light source, the light of the first light source and the light of the second light source in specific components including chyle in the biological sample Obtaining the absorbance of the specific component from the wavelength-dependent characteristics of
The absorbance of the indicator in the aqueous solution for dilution with respect to the light of the first light source, and the value obtained by subtracting the absorbance of the specific component from the absorbance of the indicator in the sample liquid for quantification with respect to the light of the first light source; Determining the dilution factor of the biological sample with the aqueous solution for dilution, based on
Reacting a component to be quantified in the sample solution for quantification with a reaction reagent to obtain a concentration of the component to be quantified;
Determining the concentration of the component to be quantified contained in the biological sample from the determined dilution factor and the concentration of the component to be quantified in the sample liquid for quantification,
A quantitative method characterized by that.
請求項5に記載の定量方法において、
前記第2の光源の光は、前記指示物質の光吸収特性の吸光度が0になる波長よりも大きい波長である、
ことを特徴とする定量方法。
The quantification method according to claim 5, wherein
The light of the second light source has a wavelength larger than the wavelength at which the absorbance of the light absorption characteristic of the indicator substance becomes 0.
A quantitative method characterized by that.
請求項6に記載の定量方法において、
前記特定成分は血漿であり、前記第1の光源の光及び前記第2の光源の光の波長は585〜900nmである、
ことを特徴とする定量方法。
The quantification method according to claim 6, wherein
The specific component is plasma, and the wavelengths of the light of the first light source and the light of the second light source are 585 to 900 nm.
A quantitative method characterized by that.
請求項5に記載の定量方法において、
前記指示物質は、色素、色原体、蛍光物質、及び発光物質からなるグループのうちの少なくとも1つから選択される、
ことを特徴とする定量方法。
The quantification method according to claim 5, wherein
The indicator is selected from at least one of the group consisting of a dye, a chromogen, a fluorescent substance, and a luminescent substance.
A quantitative method characterized by that.
請求項5に記載の定量方法において、
前記生物学的試料は血液成分であり、前記定量すべき成分は脂質成分である、
ことを特徴とする。
The quantification method according to claim 5, wherein
The biological sample is a blood component and the component to be quantified is a lipid component;
It is characterized by that.
生物学的試料中の定量すべき成分を定量する分析装置において、
前記生物学的試料が注入される分析用デバイスと、
前記分析用デバイスに光を照射する光発生部と、
前記分析用デバイスを軸心周りに回転させる回転駆動部と、
前記分析用デバイスの透過光を検出する光検出部と、
前記光検出部による検出結果を処理して、前記生物学的試料中の定量すべき成分を定量する処理部とを有し、
前記分析用デバイスは、前記生物学的試料を収容する第1の収容部と、前記生物学的試料の希釈に用いられる希釈用水溶液を収容する第2の収容部と、前記生物学的試料と前記希釈用水溶液とを移送するための流路と、前記生物学的試料と前記希釈用水溶液とを混合する混合部と、前記混合部で希釈された生物学的試料を一定量保持する保持部と、前記混合部で希釈された生物学的試料を反応試薬と反応させる分析部とを有し、前記回転駆動部によって回転させられると、遠心力及び前記流路の毛細管力によって、前記生物学的試料と前記希釈用水溶液とをそれぞれ移送して、混合し、
前記光発生部は、前記希釈用水溶液に対して第1の光源の光を照射し、前記生物学的試料と前記希釈用水溶液との混合溶液に対して、前記第1の光源の光と、前記第1の光源の光とは波長が異なる第2の光源の光とを照射し、
前記光検出部は、前記分析用デバイスを透過する光から、前記第1の光源の光に対する前記希釈用水溶液中の指示物質の吸光度と、前記第1の光源の光及び前記第2の光源の光に対する前記混合溶液中の指示物質の吸光度とを検出し、
前記処理部は、前記第2の光源の光に対する前記混合溶液中の指示物質の吸光度と、前記生物学的試料中の乳びを含む特定成分における前記第1の光源の光及び前記第2の光源の光の波長依存特性とから前記特定成分の吸光度を求めて、前記第1の光源の光に対する前記希釈用水溶液中の指示物質の吸光度と、前記第1の光源の光に対する前記混合溶液中の指示物質の吸光度から前記特定成分の吸光度を減算した値とに基づいて、前記希釈用水溶液による前記生物学的試料の希釈倍率を求める希釈倍率導出手段を備える、
ことを特徴とする分析装置。
In an analyzer for quantifying components to be quantified in a biological sample,
An analytical device into which the biological sample is injected;
A light generation unit for irradiating the analysis device with light;
A rotational drive unit for rotating the analytical device about an axis;
A light detection unit for detecting the transmitted light of the analysis device;
A processing unit that processes the detection result by the light detection unit and quantifies the component to be quantified in the biological sample;
The analysis device includes a first storage unit that stores the biological sample, a second storage unit that stores an aqueous solution for dilution used for diluting the biological sample, and the biological sample. A flow path for transferring the aqueous solution for dilution, a mixing unit for mixing the biological sample and the aqueous solution for dilution, and a holding unit for holding a certain amount of the biological sample diluted in the mixing unit And an analysis unit that reacts the biological sample diluted in the mixing unit with a reaction reagent. When rotated by the rotation driving unit, the biological sample is caused by centrifugal force and capillary force of the flow path. Transport and mix the target sample and the aqueous solution for dilution,
The light generation unit irradiates light of the first light source to the aqueous solution for dilution, and the light of the first light source to the mixed solution of the biological sample and the aqueous solution for dilution; Irradiating with light from a second light source having a wavelength different from that of the light from the first light source;
The light detection unit is configured to detect the absorbance of the indicator in the aqueous solution for dilution with respect to the light of the first light source, the light of the first light source, and the light of the second light source from the light transmitted through the analysis device. Detecting the absorbance of the indicator in the mixed solution with respect to light;
The processing unit is configured to absorb the light of the indicator in the mixed solution with respect to the light of the second light source, the light of the first light source in the specific component including chyle in the biological sample, and the second The absorbance of the specific component is obtained from the wavelength-dependent characteristics of the light from the light source, the absorbance of the indicator in the aqueous solution for dilution with respect to the light from the first light source, and the mixed solution with respect to the light from the first light source. A dilution ratio deriving means for determining a dilution ratio of the biological sample with the dilution aqueous solution based on a value obtained by subtracting the absorbance of the specific component from the absorbance of the indicator
An analyzer characterized by that.
JP2007278384A 2007-10-26 2007-10-26 Dilution ratio deriving method, quantity determination method and analyzer Pending JP2009109196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007278384A JP2009109196A (en) 2007-10-26 2007-10-26 Dilution ratio deriving method, quantity determination method and analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007278384A JP2009109196A (en) 2007-10-26 2007-10-26 Dilution ratio deriving method, quantity determination method and analyzer

Publications (1)

Publication Number Publication Date
JP2009109196A true JP2009109196A (en) 2009-05-21

Family

ID=40777844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007278384A Pending JP2009109196A (en) 2007-10-26 2007-10-26 Dilution ratio deriving method, quantity determination method and analyzer

Country Status (1)

Country Link
JP (1) JP2009109196A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065212A1 (en) * 2009-11-25 2011-06-03 株式会社フィジカルスクリーニング Method for analyzing biological sample component
JP2016017941A (en) * 2014-07-11 2016-02-01 株式会社島津製作所 Data processing device and data processing method for chromatograph, and chromatographic analysis system
KR20180016510A (en) 2015-07-06 2018-02-14 후지필름 가부시키가이샤 Blood analysis method and blood testing kit
KR20180016509A (en) 2015-07-06 2018-02-14 후지필름 가부시키가이샤 Blood test kit, part thereof, and method for manufacturing the same
KR20180016511A (en) 2015-07-06 2018-02-14 후지필름 가부시키가이샤 Blood analysis method and blood test kit
KR20180016512A (en) 2015-07-06 2018-02-14 후지필름 가부시키가이샤 Blood test kit and blood analysis method
WO2018124275A1 (en) 2016-12-28 2018-07-05 富士フイルム株式会社 Blood test kit and blood analysis method
WO2018124274A1 (en) 2016-12-28 2018-07-05 富士フイルム株式会社 Blood analysis method and blood test kit
WO2018124272A1 (en) 2016-12-28 2018-07-05 富士フイルム株式会社 Blood analysis method and blood test kit
WO2018124273A1 (en) 2016-12-28 2018-07-05 富士フイルム株式会社 Blood analysis method and blood test kit
US10416133B2 (en) 2016-11-16 2019-09-17 Shimadzu Corporation Chromatographic data processing device, data processing method, and chromatographic analysis system
US10697870B2 (en) 2015-07-06 2020-06-30 Fujifilm Corporation Blood test kit and analyzing method using the same
US10746723B2 (en) 2015-07-06 2020-08-18 Fujifilm Corporation Blood test kit and blood analysis method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065212A1 (en) * 2009-11-25 2011-06-03 株式会社フィジカルスクリーニング Method for analyzing biological sample component
JP2016017941A (en) * 2014-07-11 2016-02-01 株式会社島津製作所 Data processing device and data processing method for chromatograph, and chromatographic analysis system
US10746723B2 (en) 2015-07-06 2020-08-18 Fujifilm Corporation Blood test kit and blood analysis method
US10634661B2 (en) 2015-07-06 2020-04-28 Fujifilm Corporation Blood analysis method and blood test kit
KR20180016512A (en) 2015-07-06 2018-02-14 후지필름 가부시키가이샤 Blood test kit and blood analysis method
CN108027359A (en) * 2015-07-06 2018-05-11 富士胶片株式会社 Blood test kit, its component and their manufacture method
US10823745B2 (en) 2015-07-06 2020-11-03 Fujifilm Corporation Blood test kit and blood analysis method
KR20180016509A (en) 2015-07-06 2018-02-14 후지필름 가부시키가이샤 Blood test kit, part thereof, and method for manufacturing the same
US10788478B2 (en) 2015-07-06 2020-09-29 Fujifilm Corporation Blood test kit, member thereof, and method for manufacturing the same
KR20180016510A (en) 2015-07-06 2018-02-14 후지필름 가부시키가이샤 Blood analysis method and blood testing kit
KR20200023535A (en) 2015-07-06 2020-03-04 후지필름 가부시키가이샤 Blood analysis method and blood testing kit
KR20180016511A (en) 2015-07-06 2018-02-14 후지필름 가부시키가이샤 Blood analysis method and blood test kit
US10739361B2 (en) 2015-07-06 2020-08-11 Fujifilm Corporation Blood analysis method and blood test kit
US10697870B2 (en) 2015-07-06 2020-06-30 Fujifilm Corporation Blood test kit and analyzing method using the same
US10416133B2 (en) 2016-11-16 2019-09-17 Shimadzu Corporation Chromatographic data processing device, data processing method, and chromatographic analysis system
WO2018124274A1 (en) 2016-12-28 2018-07-05 富士フイルム株式会社 Blood analysis method and blood test kit
WO2018124273A1 (en) 2016-12-28 2018-07-05 富士フイルム株式会社 Blood analysis method and blood test kit
US11661622B2 (en) 2016-12-28 2023-05-30 Fujifilm Corporation Blood analysis method and blood test kit
WO2018124272A1 (en) 2016-12-28 2018-07-05 富士フイルム株式会社 Blood analysis method and blood test kit
JP2018105830A (en) * 2016-12-28 2018-07-05 富士フイルム株式会社 Blood analysis method and blood test kit
WO2018124275A1 (en) 2016-12-28 2018-07-05 富士フイルム株式会社 Blood test kit and blood analysis method
US11166659B2 (en) 2016-12-28 2021-11-09 Fujifilm Corporation Blood test kit and blood analysis method
US11179081B2 (en) 2016-12-28 2021-11-23 Fujifilm Corporation Blood analysis method and blood test kit
US11442070B2 (en) 2016-12-28 2022-09-13 Fujifilm Corporation Blood analysis method and blood test kit
CN110114670A (en) * 2016-12-28 2019-08-09 富士胶片株式会社 Blood analysis method and blood test kit

Similar Documents

Publication Publication Date Title
JP2009109196A (en) Dilution ratio deriving method, quantity determination method and analyzer
JP4532905B2 (en) Analytical method and apparatus therefor
US7303922B2 (en) Reagentless analysis of biological samples by applying mathematical algorithms to smoothed spectra
EP2016390B1 (en) A method and a system for quantitative hemoglobin determination
US7323315B2 (en) Method for reducing effect of hematocrit on measurement of an analyte in whole blood
US5827746A (en) Method to determine the sedimentation of blood and relative device
US7663738B2 (en) Method for automatically detecting factors that disturb analysis by a photometer
EP2434289B1 (en) Whole blood component measuring device and method
US11898961B2 (en) System and method for detecting a periprosthetic infection
JP2008542753A (en) A method for identifying interfering factors in small liquid samples on an automated clinical analyzer.
WO2017006962A1 (en) Blood test kit and blood analysis method
Gupta et al. Refractometric total protein concentrations in icteric serum from dogs
DK180348B1 (en) Method and device for analysis of liquid samples
JPS6252434A (en) Absorption photometric analytic method
JP2010117290A (en) Apparatus and method for analyzing liquid sample constituent
JPS6118982B2 (en)
RU2300771C2 (en) Method for determination of hemoglobin in biological fluids
JP2006322829A (en) Quantitative analysis method for non-quantified physiological specimen
JP2009109428A (en) Aqueous solution for dilution, reagent, rate-of-dilution calculation method, quantitation method, device for analysis, measurement kit, and analyzer
US6212418B1 (en) Methods, kits, electrodes and compositions for assessing the level of an analyte of interest in fluid samples
EP2077446A1 (en) Method of determining abnormality and analyzer
JP2005337960A (en) Immunoreaction measuring method, immunoreaction measuring kit, and immunoreaction measuring apparatus
Azari Yam et al. Analytical performance and quality control of a glucose monitor system
JP2023512407A (en) Method and apparatus for analysis of liquid samples
JP2013253934A (en) Autoanalyzer and carry-over test method