JPS61181074A - Manufacture of alkaline battery positive electrode - Google Patents

Manufacture of alkaline battery positive electrode

Info

Publication number
JPS61181074A
JPS61181074A JP60022341A JP2234185A JPS61181074A JP S61181074 A JPS61181074 A JP S61181074A JP 60022341 A JP60022341 A JP 60022341A JP 2234185 A JP2234185 A JP 2234185A JP S61181074 A JPS61181074 A JP S61181074A
Authority
JP
Japan
Prior art keywords
ammonia
nickel
hydroxide
nickel hydroxide
nickel salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60022341A
Other languages
Japanese (ja)
Inventor
Makoto Kanbayashi
誠 神林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60022341A priority Critical patent/JPS61181074A/en
Publication of JPS61181074A publication Critical patent/JPS61181074A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve the availability by functioning ammonia onto the nickel salt then functioning caustic alkali to produce nickel hydroxide to be employed as the active substance. CONSTITUTION:Ammonia is functioned onto nickel salt to convert into ammonia complex then caustic alkaline is functioned to precipitate nickel hydroxide which is collected to be employed as the active substance. The crystal particles of nickel hydroxide have countless projections on the surface to increase the surface area. Said crystal is spherical and not gelatinized but easily filtered and will be the nucleus for producing second stage hydroxide through caustic alkaline solution. Ammonia is added by 0.4-6mol to 1mol of nickel salt. Conse quently, high availability is achieved to facilitate removal of liquid through filtering resulting in shortening of manufacturing time.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はアルカリ蓄電池用の酸化ニッケル陽極の製造方
法に関し、特に水酸化ニッケル陽極活物質の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing a nickel oxide anode for an alkaline storage battery, and more particularly to a method for producing a nickel hydroxide anode active material.

(ロ)従来の技術 水酸化ニッケルなどの酸化ニッケルを活物質とするアル
カリ蓄電池に用いられる酸化ニッケル陽極(以下陽極と
称する)は、主に焼結式が使われていた。これはその高
率放電性能、サイクル寿命、活物質利用率が優れている
ためであるが、一方コストが高い%製造所要時間が長い
などの問題点がある。近年、活物質粉末を導電材、バイ
ンダー及び水と混合してなるペースト全集電板に塗着乾
燥した陽極、及びスポンジ状あるいはフェルト状の金属
多孔体に粉末状活物質を充填した陽極など、活物質粉末
をそのまま使用して作製する非焼結式陽極に対する関心
が高まっている。
(b) Conventional technology Nickel oxide anodes (hereinafter referred to as anodes) used in alkaline storage batteries that use nickel oxide such as nickel hydroxide as an active material have mainly been of the sintered type. This is because it has excellent high rate discharge performance, cycle life, and active material utilization rate, but on the other hand, it has problems such as high cost and long manufacturing time. In recent years, active material powder has been mixed with a conductive material, a binder, and water, and anodes have been developed by coating and drying a paste on a current collector plate, and anodes are anodes made by filling a sponge-like or felt-like porous metal body with powdered active materials. There is increasing interest in non-sintered anodes that are fabricated using raw material powders.

特に非焼結式陽極においては、活物質である水酸化ニッ
ケルの特性の良否が極板性能を決定づける大きな要因と
なるが、この活物質の基本的製造方法は、硝酸ニッケル
や硫酸ニッケルなどのニッケル塩水溶液を水酸化ナトリ
ウムや水酸化カリウムなどの苛性アルカリ水溶液に作用
させて沈澱物として得るもの(中和法)で、この後説液
、乾燥。
Particularly in non-sintered anodes, the quality of the properties of the active material, nickel hydroxide, is a major factor in determining the performance of the electrode plate, but the basic manufacturing method for this active material is A precipitate obtained by reacting an aqueous salt solution with an aqueous caustic alkali solution such as sodium hydroxide or potassium hydroxide (neutralization method); this solution is dried.

粗粉砕、水洗、乾燥、粉砕の工程を経て完成活物質とな
る( Alkaline  8trage  Batt
eries。
After going through the steps of coarse pulverization, water washing, drying, and pulverization, it becomes a completed active material (Alkaline 8trage Batt
eries.

Folks著)。この活物質の製造方法はニッケル塩と
苛性アルカリとを作用させて得られる沈澱物がゲル状で
あるため濾過・脱液に長時間を要すると共に渥過後直ち
に水洗すると再びゲル状となるため一旦乾燥及び粗粉砕
を行ない粒子状にする必要がある。また、上記活物質は
利用率が十分に高くないという欠点かある。
Folks). This active material manufacturing method requires a long time to filter and remove liquid because the precipitate obtained by reacting nickel salt and caustic alkali is gel-like, and if washed with water immediately after filtering, it becomes gel-like again, so it is first dried. It is also necessary to perform coarse grinding to form particles. In addition, the above-mentioned active materials have a drawback that the utilization rate is not sufficiently high.

これに対し、特開昭53−44844号公報。In contrast, Japanese Patent Application Laid-Open No. 53-44844.

特開昭56−134471号公報及び特開昭57−51
)31号公報に於いて新しい製造方法が提案されている
が1%開昭55−44844号公報では活物質としての
Nip、の形成Vc>いてニッケル塩、酸化剤、苛性ア
ルカリを用いており、上述した水酸化ニッケルの製造方
法と同様の問題がある。また特開昭56−134471
号公報及び特開昭57−51)31号公報は何れも出来
上がった活物質の利用率の向上が計れないという問題が
ある。
JP-A-56-134471 and JP-A-57-51
) A new manufacturing method is proposed in Publication No. 31, but 1% Publication No. 55-44844 uses a nickel salt, an oxidizing agent, and a caustic alkali to form Nip as an active material. This method has the same problems as the method for producing nickel hydroxide described above. Also, JP-A-56-134471
No. 57-51) and JP-A-57-51) 31 both have the problem that the utilization rate of the finished active material cannot be improved.

(ハ)発明が解決しようとする問題点 本発明は製造所要時間を短縮すると共に、電極活物質と
しての利用率の高い水酸化ニッケルの製造方法を提供し
ようとするものである。
(c) Problems to be Solved by the Invention The present invention aims to provide a method for producing nickel hydroxide that shortens the time required for production and has a high utilization rate as an electrode active material.

に)問題点を解決するための手段 本発明のアルカリ蓄電池用陽極の製造方法は。) measures to resolve the problem; A method for manufacturing an anode for an alkaline storage battery according to the present invention.

ニッケル塩にアンモニアを作用させてニッケル塩をアン
モニア錯体とした後、苛性アルカリを作用させて水酸化
ニッケルを沈澱させ、該沈澱物を採取して活物質として
使用するものである。
After the nickel salt is made to react with ammonia to form an ammonia complex, nickel hydroxide is precipitated by the action of caustic alkali, and the precipitate is collected and used as an active material.

(ホ)作 用 発明者は中和法による水酸化ニッケルの製造条件を種々
検討したが、その中で■ニッケル塩水溶液に第1段階と
してアンモニアを加えニッケルをアンモニア錯体とし、
次いで■第2段階としてこれに苛性アルカリを作用させ
ることによって生成しfc水酸化ニッケルが後工程での
濾過が容易で。
(e) Effect The inventor investigated various conditions for producing nickel hydroxide by the neutralization method, and among them: 1) Adding ammonia to a nickel salt aqueous solution as a first step to form nickel into an ammonia complex;
Then (2) in the second step, this is treated with caustic alkali to produce fc nickel hydroxide, which can be easily filtered in the subsequent process.

また活物質として高い利用率を有するものであることを
見り出した。上述の水酸化ニッケル生成のプロセスは以
下の反応式で表わされる。にッケル塩、苛性アルカリが
夫々硝酸ニッケル、水酸化ナトリウムの場合) ■N1(Noりz+4NH5+2H20→(NiCNH
s)4CH20)2〕CN05)2■(Ni(NH5)
a(HB))2〕(NOx)z+2NaOH−Ni(O
H)2+2NaNOx+2H20+4NHs上記方法に
よって生成した水酸化ニッケルを熟成、濾過、水洗、乾
燥、粉砕して得た本発明に於ける活物質としての水酸化
ニッケルの電子顕微鏡写真(X5QOO)を第1図に、
また、ニッケル塩水溶液に直接苛性アルカリ水溶液を作
用させ熟成し1次いで濾過、乾燥、粉砕、水洗、乾燥、
粉砕して得た従来の水酸化ニッケルの電子顕微鏡写真(
X 5000)を第2図に示す。本発明に於ける水酸化
ニッケルの結晶粒子は表面にひだ状突起が無数に存在し
、従来のものに比べて表面積が大きくなっているのがわ
かる。
It has also been found that it has a high utilization rate as an active material. The process of producing nickel hydroxide described above is represented by the following reaction formula. When nickel salt and caustic alkali are nickel nitrate and sodium hydroxide, respectively) ■N1 (No z + 4NH5 + 2H20 → (NiCNH
s)4CH20)2]CN05)2■(Ni(NH5)
a(HB))2](NOx)z+2NaOH-Ni(O
H) 2+2NaNOx+2H20+4NHs Figure 1 shows an electron micrograph (X5QOO) of nickel hydroxide as the active material in the present invention obtained by aging, filtering, washing with water, drying, and pulverizing the nickel hydroxide produced by the above method.
In addition, the nickel salt aqueous solution is directly treated with a caustic alkaline aqueous solution to age it, then filtered, dried, pulverized, washed with water, dried,
Electron micrograph of conventional nickel hydroxide obtained by crushing (
X 5000) is shown in FIG. It can be seen that the crystal particles of nickel hydroxide in the present invention have numerous pleat-like protrusions on the surface and have a larger surface area than the conventional ones.

この表面積の大きさが高い利用率を生む原因であろうと
考えるが、大表面積結晶が得られる理由は判明していな
い。ただ以下のことが推測される。
It is thought that this large surface area is the reason for the high utilization rate, but the reason why such large surface area crystals are obtained is not clear. However, the following is inferred.

水酸化ニッケルの中和法による製造方法において、生成
物の物性を左右する要因は温度、熟成の有無、アルカリ
濃度、生成速度などであろうと考えるが、従来のニッケ
ル塩を苛性アルカリに直接作用させる製造方法では反応
が非常に速く、生成速度を遅くしようとも実質的に制御
することができなかった。しかし、本発明ではアルカリ
塩をアンモニアによってアンモニア錯体((Ni(NH
s)4(Hzo)z〕 )  に変換して、その後、苛
性アルカリにより水酸化物(Ni(OH)z)とするわ
けで、このアンモニア錯体が水酸化物へ変わる反応速度
が従来法のものより遅く1第1図のように結晶生長し易
い。また、ニッケル塩溶液にアンモニアを作用させた除
液がアルカリ性となり、それにょって少量の水酸化ニッ
ケルが生成するが、この結晶は球状で全くゲル状体とな
らず極めて炉部しやすい性状であり、この結晶が苛性ア
ルカリ溶液による第2段階の水酸化物生成の核となる。
In the production method using the neutralization method of nickel hydroxide, the factors that affect the physical properties of the product are considered to be temperature, presence or absence of aging, alkali concentration, production rate, etc., but conventional nickel salts are used to directly act on caustic alkali. In the production method, the reaction was so rapid that even attempts to slow the production rate could not be substantially controlled. However, in the present invention, the alkali salt is converted into an ammonia complex ((Ni(NH
s)4(Hzo)z] ) and then converted to hydroxide (Ni(OH)z) with caustic alkali, and the reaction rate at which this ammonia complex is converted to hydroxide is faster than that of the conventional method. As shown in Figure 1, crystal growth is more likely to occur. In addition, when ammonia is applied to a nickel salt solution to remove the solution, it becomes alkaline and a small amount of nickel hydroxide is produced, but the crystals are spherical and do not form a gel-like substance at all, and are extremely easy to form in the furnace. This crystal becomes the core of the second stage of hydroxide production using a caustic alkaline solution.

次にアンモニアの添加量についてはニッケル塩1モルに
対して0.4〜6モルまで変化させ本発明法により水酸
化ニッケルを生成させその効果を確認した。その添加量
と生成した水酸化ニッケルの利用率の関係を第3図に示
す。第3図から明らかなようにアンモニアの添カロ僅は
ニッケル41モルに対して2モル以上で効果が顕著に現
われる。
Next, the amount of ammonia added was varied from 0.4 to 6 moles per mole of nickel salt, and nickel hydroxide was produced by the method of the present invention to confirm its effect. The relationship between the amount added and the utilization rate of the produced nickel hydroxide is shown in FIG. As is clear from FIG. 3, the effect of ammonia becomes significant when the amount of ammonia added is 2 mol or more per 41 mol of nickel.

(へ)実施例 〔実施例1〕 硝酸ニッケル1七ル/l水溶液1)!に、アンモニアを
4モル含有するアンモニア水を加え、次いでこの液(少
産の水酸化ニッケルの沈aを含む)を攪拌している水酸
化ナトリウム4七ル/e水溶液1)!に加え攪拌を継続
しながら1時間熟成した後、−過、水洗、乾燥する。乾
燥後粉砕し200メツシユ録を通し完成活物質とする。
(f) Example [Example 1] Nickel nitrate 17 l/l aqueous solution 1)! To this, aqueous ammonia containing 4 moles of ammonia was added, and this solution (containing a small amount of nickel hydroxide precipitate) was then stirred into a 47 l/e aqueous solution of sodium hydroxide (1)! After aging for 1 hour while continuing to stir, the mixture is filtered, washed with water, and dried. After drying, it is crushed and passed through 200 meshes to obtain a finished active material.

尚、上記操作の内水性工程までは全て室温下で行なった
Incidentally, all of the above operations up to the internal aqueous step were performed at room temperature.

こうして得た水酸化ニッケル92部と水酸化コバルト8
部及びヒドロキシプロピルセルロースを含む糊料液を混
合しペースト状とし、スポンジ状ニッケル多孔体内部に
充填し次いで乾燥、加圧圧縮し陽極とする。
92 parts of nickel hydroxide and 8 parts of cobalt hydroxide thus obtained
A paste containing a paste and hydroxypropylcellulose is mixed to form a paste, which is filled into a sponge-like porous nickel material, dried, and compressed under pressure to form an anode.

〔実施例2〕 実施例1に於いてアンモニア水の代りにアンモニアガス
を用い、該アンモニアガスが硝酸ニッケル溶液に4モル
溶解するようバブリングし。
[Example 2] In Example 1, ammonia gas was used instead of ammonia water, and bubbling was carried out so that 4 moles of the ammonia gas was dissolved in the nickel nitrate solution.

その他は同様の操作で陽極を得た。Otherwise, the anode was obtained by the same operation.

〔比較例〕[Comparative example]

硝Mニッケル1モル/e溶液1)!を、攪拌している水
酸化ナトリウム4七ル/l溶液1)!に加え、攪拌を続
けながら1時間熟成し、次いで炉部、乾燥、粗粉砕、水
洗、乾燥、粉砕し、200メツシユ鋒を通して完成活物
質とする。
Nitrogen M nickel 1 mol/e solution 1)! A stirring solution of 47 l/l of sodium hydroxide 1)! In addition, the mixture is aged for 1 hour while stirring, then dried in a furnace, dried, coarsely crushed, washed with water, dried, crushed, and passed through a 200-mesh mesh to obtain a finished active material.

こうして得た水酸化ニッケルを用い実施例1と同様の操
作で陽極を得た。
Using the nickel hydroxide thus obtained, an anode was obtained in the same manner as in Example 1.

上記実施例及び比較例によって得られた陽極を焼結式カ
ドミウム陰極と組み合わせニッケルーカドミタム電池t
−構成し活物質利用率を測定した。
A nickel-cadmium battery combining the anode obtained in the above examples and comparative examples with a sintered cadmium cathode
- constructed and measured the active material utilization rate.

その結果を下表に示す。また同時に活物質製造に要した
時間を比較例t−100として示す。
The results are shown in the table below. At the same time, the time required for producing the active material is shown as Comparative Example t-100.

表 比較例に比べ実施例の製造所要時間が短縮したのは、F
55部間の短縮及びそれに続く含アルカリ状態での乾燥
、粗粉砕工程が省略できたためである。
The manufacturing time required for the example was shorter than that of the comparative example in the table.
This is because the reduction to 55 parts and the subsequent drying and coarse grinding steps in an alkali-containing state could be omitted.

(トl  発明の効果 本発明のアルカリ蓄電池用陽極の製造方法は。(l) Effects of the invention A method for manufacturing an anode for an alkaline storage battery according to the present invention.

ニッケル塩にアンモニアを作用させてニッケル塩をアン
モニア錯体とし1次いで苛性アルカリを作用させて水酸
化ニッケルを生成し、該水酸化ニッケルを活物質として
使用するものであり、生成する活物質としての水酸化ニ
ッケルは表面積が大きいため高い利用率を得ることがで
きる。また、前記苛性アルカリと作用して生成する水酸
化ニッケルは濾過による脱液が容易であり、製造所要時
間を短縮することができるため工業的価値大なるもので
ある。
The nickel salt is reacted with ammonia to form an ammonia complex, the nickel salt is then reacted with caustic alkali to form nickel hydroxide, and the nickel hydroxide is used as an active material. Since nickel oxide has a large surface area, a high utilization rate can be obtained. Further, the nickel hydroxide produced by the interaction with the caustic alkali can be easily removed by filtration, and the time required for production can be shortened, so it has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法により作製した水酸化ニッケルの粒子
構造を示す写真、第2図は従来法により作製した水酸化
ニッケルの粒子構造を示す写真、第3図はアンモニア錯
体形成時に添加するアンモニア量と生成した活物質の利
用率との関係を示す図面である。
Figure 1 is a photograph showing the particle structure of nickel hydroxide produced by the method of the present invention, Figure 2 is a photograph showing the particle structure of nickel hydroxide produced by the conventional method, and Figure 3 is a photograph showing the particle structure of nickel hydroxide produced by the conventional method. It is a drawing showing the relationship between the amount and the utilization rate of the generated active material.

Claims (4)

【特許請求の範囲】[Claims] (1)ニッケル塩にアンモニアを作用させてニッケル塩
をアンモニア錯体とし、次いで苛性アルカリを作用させ
ることにより水酸化ニッケルを生成し、該水酸化ニッケ
ルを活物質として使用することを特徴とするアルカリ蓄
電池用陽極の製造方法。
(1) An alkaline storage battery characterized in that nickel salt is reacted with ammonia to form an ammonia complex, and then nickel hydroxide is produced by reacting with caustic alkali, and the nickel hydroxide is used as an active material. Manufacturing method of anode for use.
(2)前記アンモニア錯体形成のために作用させるアン
モニア量が、ニッケル塩1モルに対し2モル以上である
特許請求の範囲第(1)項記載のアルカリ蓄電池用陽極
の製造方法。
(2) The method for producing an anode for an alkaline storage battery according to claim (1), wherein the amount of ammonia acting to form the ammonia complex is 2 mol or more per 1 mol of the nickel salt.
(3)前記アンモニア錯体の形成を、ニッケル塩溶液に
アンモニア水を加えることにより行なう特許請求の範囲
第(1)項記載のアルカリ蓄電池用陽極の製造方法。
(3) The method for producing an anode for an alkaline storage battery according to claim (1), wherein the ammonia complex is formed by adding aqueous ammonia to a nickel salt solution.
(4)前記アンモニア錯体の形成を、ニッケル塩溶液に
アンモニアガスをバブリングして行なう特許請求の範囲
第(1)項記載のアルカリ蓄電池用陽極の製造方法。
(4) The method for producing an anode for an alkaline storage battery according to claim (1), wherein the ammonia complex is formed by bubbling ammonia gas into a nickel salt solution.
JP60022341A 1985-02-07 1985-02-07 Manufacture of alkaline battery positive electrode Pending JPS61181074A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60022341A JPS61181074A (en) 1985-02-07 1985-02-07 Manufacture of alkaline battery positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60022341A JPS61181074A (en) 1985-02-07 1985-02-07 Manufacture of alkaline battery positive electrode

Publications (1)

Publication Number Publication Date
JPS61181074A true JPS61181074A (en) 1986-08-13

Family

ID=12079988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60022341A Pending JPS61181074A (en) 1985-02-07 1985-02-07 Manufacture of alkaline battery positive electrode

Country Status (1)

Country Link
JP (1) JPS61181074A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260762A (en) * 1988-04-11 1989-10-18 Yuasa Battery Co Ltd Nickel electrode for alkaline battery and battery using same
JPH06127947A (en) * 1992-06-15 1994-05-10 Inco Ltd Preparation of nickel hydroxide
EP0649818A1 (en) 1993-10-20 1995-04-26 Nikko Rica Co., Ltd. Method for the preparation of nickel hydroxide particles
US7563431B2 (en) * 2001-07-06 2009-07-21 H. C. Starck Gmbh Nickel hydroxide and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186099A (en) * 1975-01-28 1976-07-28 Tokyo Shibaura Electric Co
JPS56143671A (en) * 1980-04-09 1981-11-09 Sanyo Electric Co Ltd Manufacture of positive active material for alkaline storage battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5186099A (en) * 1975-01-28 1976-07-28 Tokyo Shibaura Electric Co
JPS56143671A (en) * 1980-04-09 1981-11-09 Sanyo Electric Co Ltd Manufacture of positive active material for alkaline storage battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01260762A (en) * 1988-04-11 1989-10-18 Yuasa Battery Co Ltd Nickel electrode for alkaline battery and battery using same
JPH0724218B2 (en) * 1988-04-11 1995-03-15 株式会社ユアサコーポレーション Nickel electrode for alkaline battery and battery using the same
JPH06127947A (en) * 1992-06-15 1994-05-10 Inco Ltd Preparation of nickel hydroxide
EP0649818A1 (en) 1993-10-20 1995-04-26 Nikko Rica Co., Ltd. Method for the preparation of nickel hydroxide particles
US7563431B2 (en) * 2001-07-06 2009-07-21 H. C. Starck Gmbh Nickel hydroxide and method for producing same

Similar Documents

Publication Publication Date Title
JPH0559546B2 (en)
JPH0350384B2 (en)
JPS61181074A (en) Manufacture of alkaline battery positive electrode
JPH0221098B2 (en)
JPS62234867A (en) Nickel electrode for alkaline cell
JP2835282B2 (en) Nickel hydroxide for nickel electrode, method for producing the same, nickel electrode, and alkaline secondary battery incorporating the same
JPH10284075A (en) Manufacture of positive electrode active material for alkaline battery
JPH0514382B2 (en)
JPS61239564A (en) Manufacture of positive electrode of alkaline storage battery
JP3287165B2 (en) Manufacturing method of nickel positive electrode for alkaline storage battery
JPH10326617A (en) Manufacture of positive electrode active material for alkaline secondary battery, paste type nickel electrode and alkaline secondary battery
JPH02234356A (en) Sealed-type alkali battery
JP3136963B2 (en) Method of treating hydrogen storage alloy for batteries
JPH10334911A (en) Alkaline storage battery and its manufacture
JP2730137B2 (en) Alkaline secondary battery and charging method thereof
JPS61237367A (en) Manufacture of positive electrode for alkaline storage battery
JPS6188453A (en) Nickel positive electrode for alkaline storage battery
JPH05254847A (en) Production of nickel hyroxide powder for nickel electrode
JPH0326903B2 (en)
JPS59128765A (en) Nonaqueous electrolyte battery
JPH04129171A (en) Manufacture of nickel-hydrogen storage battery
JPS6226148B2 (en)
JPH041992B2 (en)
JP2754664B2 (en) Method for producing cadmium hydroxide
JPS6235455A (en) Manufacture of cathode for alkaline storage battery