JPS6115925A - Short-time heat treatment of same-metal welded part of low-temperature steel pipe containing ni - Google Patents

Short-time heat treatment of same-metal welded part of low-temperature steel pipe containing ni

Info

Publication number
JPS6115925A
JPS6115925A JP13416784A JP13416784A JPS6115925A JP S6115925 A JPS6115925 A JP S6115925A JP 13416784 A JP13416784 A JP 13416784A JP 13416784 A JP13416784 A JP 13416784A JP S6115925 A JPS6115925 A JP S6115925A
Authority
JP
Japan
Prior art keywords
temperature
welding
low
quenching
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13416784A
Other languages
Japanese (ja)
Inventor
Masaaki Koshiyou
古生 正昭
Kazuo Akusa
阿草 一男
Noboru Nishiyama
昇 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13416784A priority Critical patent/JPS6115925A/en
Publication of JPS6115925A publication Critical patent/JPS6115925A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To improve remarkably the low-temp. toughness of the same-metal welded part by heat-treating the same-metal welded part under specified conditions when a low-temp. steel pipe contg. Ni is welded by using a same-metal welding material and then the same-metal welded part is hardened and tempered. CONSTITUTION:When a low-temp. steel pipe contg. Ni is welded by using a same-metal welding material and then the same-metal welded part is submitted to short-time hardening and tempering, the same-metal welded part is kept at 550-650 deg.C for 1-10min before the part is hardened to improve the low-temp. toughness of the same-metal welded part. The welding material is preferably composed of <=about 0.08% C, about 0.01-0.45% Si, about 0.3-1.0% Mn, <=about 0.01% P, <=about 0.01% S, <=about 0.035% O, <=about 0.01% N, and the remainder of an appropriate amt. of Ni, Fe, and inevitable impurities.

Description

【発明の詳細な説明】 この発明は、含Ni低温用鋼からなる溶接鋼管例えばU
OE鋼管を、共金系溶接材料を用いて製造する方法に関
し、特に溶接後に共金溶接部に対して短時間の熱処理を
施して溶接部の低温靭性を改善する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides welded steel pipes made of Ni-containing low-temperature steel, such as U
The present invention relates to a method for manufacturing OE steel pipes using a cometal welding material, and particularly to a method of improving the low-temperature toughness of the weld by subjecting the cometal weld to a short-time heat treatment after welding.

周知のように2.5%Ni鋼、3.5%Ni鋼、5.5
%Ni鋼あるいは9%Ni鋼等の含Ni(!温用鋼は、
極低温において高い強度と靭性を有することから、種々
の低温液化ガスの運搬や貯蔵等を目的とした各種構造物
の素材として用いられている。
As is well known, 2.5% Ni steel, 3.5% Ni steel, 5.5
%Ni steel or 9%Ni steel (! Warm steel is
Because it has high strength and toughness at extremely low temperatures, it is used as a material for various structures for the purpose of transporting and storing various low-temperature liquefied gases.

従来このような含N1低凋用鋼からなる構造物の溶接に
は、極低温の使用温度において溶接部に充分な靭性を確
保するため、高N1のオーステナイト系溶接材料を使用
するのが通常であった。しかしながらオーステナイト系
溶接材料を用いる場合、その溶接材料が高価なNiを多
量に含有するため著しく高コストとなるに加えて、溶接
部(溶接金属)の高温割れ感受性が高く、さらには母材
の含Ni低温用鋼と比較して溶接金属の降伏強度が低い
などの問題があった。
Conventionally, when welding structures made of such N1-containing low-decay steel, a high N1 austenitic welding material is usually used to ensure sufficient toughness of the welded part at extremely low operating temperatures. there were. However, when using austenitic welding consumables, the welding consumables contain large amounts of expensive Ni, resulting in extremely high costs.In addition, the weld zone (weld metal) is susceptible to hot cracking, and the base metal contains a large amount of Ni. There were problems such as the yield strength of the weld metal being lower than that of Ni low-temperature steel.

そこでこれらの問題を克服するため、母材の含N1低瀉
用鋼とほぼ同等の成分系を有するいわゆる共金糸の溶接
材料を用いることによって、低コスト化、溶接金属の高
強度化および溶接金属の高温割れ感受性の低減を図る方
法が検討され、特にTIG溶接およびMIG溶接におい
てはある程度の成果が得られるに至っている。すなわち
TIG溶接あるいはMIG溶接においては、溶接時にお
ける溶接金属への不純物の混入を極少量に抑制すること
ができるため、靭性向上に有効なNiをオーステプイト
系溶接材料はどは含有しない共金系溶接材料でも溶接の
ままにおいて低温靭性をある程度確保でき、併せて共金
系溶接材料を使用した場合の前述のような利点を発揮で
きるのである。
Therefore, in order to overcome these problems, by using a so-called co-metallic thread welding material that has almost the same composition system as the base metal low N1 steel, we are reducing costs, increasing the strength of the weld metal, and increasing the strength of the weld metal. Methods for reducing the hot cracking susceptibility of steel have been studied, and some results have been achieved, particularly in TIG welding and MIG welding. In other words, in TIG welding or MIG welding, since the incorporation of impurities into the weld metal during welding can be suppressed to a very small amount, austepite welding materials do not contain Ni, which is effective for improving toughness, and cometal welding. It is possible to ensure a certain degree of low-temperature toughness even when the material is welded, and at the same time, the above-mentioned advantages of using a co-metallic welding material can be achieved.

一方、TIG溶接やM I G溶接よりも高能率の溶接
法として知られるサブマージアーク溶接においては、フ
ラックスの影響で溶接金属中に混入する酸素等の不純物
を極少量に抑制することは困難であり、そのため含Ni
用低温鋼のサブマージアーク溶接において共金系溶接材
料を用いた場合、溶接部に充分な低温靭性を確保するこ
とが困難となる。そこでこの場合には溶接後に共金溶接
部に対して焼入れ焼もどし等の熱処理を施すことにより
共金溶接部の低温靭性を改善することが考えられるが、
通常の構造物では溶接後に充分な熱処理を施すことが困
難な場合が多く、そのため含Ni低温用鋼からなる通常
の構造物のサブマージアーク溶接に共金系溶接材料を用
いることは実際には困難とされていた。
On the other hand, in submerged arc welding, which is known as a welding method with higher efficiency than TIG welding and MIG welding, it is difficult to suppress impurities such as oxygen that mix into the weld metal to a very small amount due to the influence of flux. , therefore Ni-containing
When a co-metallic welding material is used in submerged arc welding of low-temperature steel, it is difficult to ensure sufficient low-temperature toughness in the weld. Therefore, in this case, it may be possible to improve the low-temperature toughness of the co-metal weld by subjecting the co-metal weld to heat treatment such as quenching and tempering after welding.
For ordinary structures, it is often difficult to perform sufficient heat treatment after welding, and therefore it is actually difficult to use matching welding materials for submerged arc welding of ordinary structures made of Ni-containing low-temperature steel. It was said that

ところで含N1低温用鋼の用途のうちでも、低i!酸化
ガスの輸送管等として使用されるLJOEII管におい
ては、その造管のための溶接後に溶接部に対して熱処理
を施すことが比較的容易であり、そこでそのtJOEl
管の造管のための溶接に高能率のサブマージアーク溶接
を適用しかつ低コスト等の利点を有する共金系溶接材料
を使用することが期持されている。すなわち、tJOE
鋼管の311!ラインにおいて溶接後に熱処理を加える
ことによって、共金系溶接材料をサブマージアーク溶接
に適用した場合の最大の問題である低温靭性を改善する
ことができると考えられる。しかし、なから低温靭性向
上を図るための熱処理は、従来はある程度長時間施すこ
と、すなわち焼入れおよび焼もどし処理にそれぞれ15
分以上かけるか、または焼入れ時間を短くして焼もどし
時間をより長くするなどの処置を講じる必要があるとさ
れ、そのためバッチ式炉の使用も考えられるが、長さ1
0−を越えるLIOE鋼管をバッチ処理するのは巨大な
炉を必要とするため現実的でない。一方パイブQT装置
を用いてパイプを搬送しながら熱処理する方法において
は、従来の条件では非常な低速度搬送かもしくは繰返し
処理が必要であり、処理能率の低下が新たな問題となる
By the way, among the applications of N1-containing low-temperature steel, low i! For LJOE II pipes used as oxidizing gas transport pipes, it is relatively easy to heat treat the welded parts after welding for pipe making, and the tJOEl
It is expected to apply high-efficiency submerged arc welding to welding for pipe manufacturing and to use co-metallic welding materials, which have advantages such as low cost. That is, tJOE
Steel pipe 311! It is thought that by applying heat treatment after welding on the line, it is possible to improve low-temperature toughness, which is the biggest problem when applying alloy welding materials to submerged arc welding. However, heat treatment to improve low-temperature toughness has conventionally been carried out for a certain amount of time, that is, quenching and tempering treatments each require 15
It is said that it is necessary to take measures such as shortening the quenching time and lengthening the tempering time.
Batch processing of LIOE steel pipes exceeding 0- is impractical because it requires a huge furnace. On the other hand, in the method of heat-treating the pipe while transporting it using a pipe QT device, under conventional conditions, extremely low-speed transport or repeated processing is required, which poses a new problem of reduced processing efficiency.

この問題を解決するため、例えば特開昭54−1127
21号公報に提案されているように、含Ni低温用鋼の
共金溶接部の低温靭性を短時間の熱処理によって改善す
るための研究がなされている。上記の提案の方法は、含
Ni低温用銅のサブマージアーク溶接後に、ACsCs
上900’C以下の温度に15分以内保持する焼もどし
を行なうことによって、短時間の熱処理で共金溶接部の
低温靭性の向上を図ったものであるが、本発明者等の実
験によれば、この提案の方法ではある程度の低温靭性向
上は得られるものの、未だ充分に満足できる程度までは
至らないことが判明している。
In order to solve this problem, for example, Japanese Patent Laid-Open No. 54-1127
As proposed in Japanese Patent No. 21, research has been conducted to improve the low-temperature toughness of alloy welds of Ni-containing low-temperature steels by short-term heat treatment. The above proposed method uses ACsCs after submerged arc welding of Ni-containing low-temperature copper.
This is an attempt to improve the low-temperature toughness of the co-metal welded joint through a short heat treatment by performing tempering at a temperature of 900°C or less for 15 minutes or less, but according to experiments conducted by the present inventors. For example, although the proposed method improves the low-temperature toughness to a certain extent, it has been found that it is still not able to reach a fully satisfactory level.

また上記提案の方法の場合、焼入れのための加熱保持l
I門および焼もどし加熱時開がそれぞれ15分以内とさ
れ、各保持時間の下限および昇温開始から昇温完了まで
の時間は特に規定されていないが、本発明者等が実験を
行なったところ、通常の条件下において良好な低温靭性
を得るためには、各加熱工程における昇温開始時点から
保持終了時点まではそれぞれ15分を越える時間が必要
であることが判明している。したがって上記提案の方法
の場合でも実際には各熱処理工程の昇温開始から冷却開
始までのトータル処理時間に15分以上を要し、そのた
めパイプ搬送速度の低下は不可欠であり、処理能率の向
上は得られなかった。
In addition, in the case of the method proposed above, heating and holding l for quenching
The I gate and tempering heating opening are each within 15 minutes, and the lower limit of each holding time and the time from the start of heating to the completion of heating are not particularly stipulated, but according to the experiments conducted by the present inventors. It has been found that in order to obtain good low-temperature toughness under normal conditions, it is necessary to take more than 15 minutes from the start of temperature rise to the end of holding in each heating step. Therefore, even in the case of the method proposed above, the total processing time from the start of temperature rise to the start of cooling in each heat treatment process actually requires more than 15 minutes, so it is essential to reduce the pipe conveyance speed, and it is difficult to improve processing efficiency. I couldn't get it.

この発明は以上の事情を背景としてなされたもので、含
Ni低温用鋼管の造管のための溶接に共金系溶接材料を
使用した場合に、共金溶接部の低温靭性を極く短時間の
熱処理で向上させ得る方法を提供することを目的とする
ものである。
This invention was made against the background of the above-mentioned circumstances. When a co-metallic welding material is used for welding for manufacturing Ni-containing low-temperature steel pipes, the low-temperature toughness of the co-metallic weld can be improved in an extremely short period of time. The object of the present invention is to provide a method that can improve the performance by heat treatment.

本発明者等は上述の目的を達成するべく、種々実験・検
討を進めたところ、含N1低温用鋼共金溶接部の焼入れ
、焼もどしの前に予め溶接金属中の炭化物を析出、凝集
させておくことが、短時間の焼入れ、焼もどしで共金溶
接部の低温靭性を改善するに有効であるとの新規な知見
を得た。その知見をもとにさらに実験を重ねた結果、焼
入れ前に550〜650℃の温度域に1〜10分保持す
る予備熱処理を施すことによって、実際に短時間の焼入
れ、焼もどしで含Ni([用銅の共金溶接部の低温靭性
を改善し得ることを見出し、この発明をなすに至ったの
である。
In order to achieve the above object, the present inventors conducted various experiments and studies, and found that carbides in the weld metal were precipitated and agglomerated before quenching and tempering of N1-containing low-temperature steel alloy welds. We have obtained new knowledge that it is effective to improve the low-temperature toughness of co-metallic welds by short-time quenching and tempering. As a result of further experiments based on this knowledge, we found that by performing preliminary heat treatment at a temperature range of 550 to 650°C for 1 to 10 minutes before quenching, it was actually possible to quench and temper for a short time to contain Ni (Ni). [We have discovered that it is possible to improve the low-temperature toughness of alloy welded parts of copper alloys, and have come up with this invention.

すなわちこの発明は、含Ni低温用鋼管を、共金系溶接
材料を用いて溶接により造管し、溶接終了後に共金溶接
部に対して短時間の焼入れ焼もどし処理を施す方法にお
いて、前記焼入れの前に550〜650℃の温度で1〜
10分間保持することを特徴とするものである。このよ
うに焼入れ前に550〜650℃の温度で1〜10分間
保持する予備熱処理を施すことによって、焼入れ、焼も
どし処理それぞれの昇温開始がら昇温完了までを10分
以内とし、かつ昇温後の保持を行なわない短時間処理、
すなわち特開昭54−112721号公報に提案された
ごとき加熱保持を設けなくとも共金溶接部の低温靭性を
顕著に改善することができるようになり、その結果、造
管ラインにおいて溶接後の鋼管を搬送しながらの熱処理
でも搬送速度を低下させることなく顕著な靭性の改善が
可能となる。したがって溶接法として高能率なサブマー
ク溶接を適用した場合、その高能率という長所を充分に
生かして高速で造管することができると同時に、共金溶
接部の低温靭性が優れた高品質の含N1g11i用鋼管
を製造することができるのである。
That is, the present invention provides a method in which a Ni-containing low-temperature steel pipe is formed by welding using a cometal welding material, and after welding, the cometal welded part is subjected to a short quenching and tempering treatment. 1~ at a temperature of 550~650℃ before
It is characterized by being held for 10 minutes. By performing preliminary heat treatment in which the temperature is maintained at a temperature of 550 to 650°C for 1 to 10 minutes before quenching, the time from the start of temperature rise to the completion of temperature rise in each of quenching and tempering processes is within 10 minutes, and Short-time processing without post-retention,
In other words, it has become possible to significantly improve the low-temperature toughness of the co-metal welded joint without providing heating and holding as proposed in JP-A-54-112721, and as a result, the steel pipe after welding in the pipe making line can be improved. Even by heat treatment while transporting, it is possible to significantly improve the toughness without reducing the transport speed. Therefore, when high-efficiency sub-mark welding is applied as a welding method, it is possible to make full use of its high efficiency to form pipes at high speed, and at the same time, it is possible to manufacture high-quality pipes with excellent low-temperature toughness of the cometal weld. This makes it possible to manufacture steel pipes for N1g11i.

以下にこの発明の熱処理方法についてさらに詳細に説明
する。
The heat treatment method of the present invention will be explained in more detail below.

この発明の方法において対象となる母材は、いわゆる含
N1低渇用鋼であって、種々のNi含有量の鋼、例えば
2.5%Ni鋼、3.5%Ni1%5%Ni11,6%
N1鋼、8%Nil、9%Ni鋼などが知られいるが、
この発明はこれらのいずれにも適用可能である。
The target base material in the method of the present invention is so-called N1-containing low-depletion steel, and steels with various Ni contents, such as 2.5%Ni steel, 3.5%Ni1%5%Ni11,6 %
N1 steel, 8%Nil, 9%Ni steel, etc. are known, but
This invention is applicable to any of these.

またこの発明の方法において使用する溶接材料は、母材
の含Ni鋼の成分系に近い成分組成を有する共金糸の溶
接材料であれば良く、したがって母材含Ni鋼のNi含
有憬に近い量のNiを含有するフェライト系溶接材料(
但し実際には母材のNi!よりも若干高めのNi含有量
とする)が用いられる。例えば母材が2.5%Nitg
、365%Ni鋼、5%N+PI、996 N ! t
Aの場合、溶接材料としてはそれぞれNiを2.5〜6
%、365〜6%、5〜9%、9〜13%程度含有する
ものを用いるのが通常である。
Further, the welding material used in the method of the present invention may be a welding material of a common metal thread having a composition close to that of the Ni-containing steel as the base material, and therefore in an amount close to that of the Ni-containing steel as the base material. Ferritic welding material containing Ni (
However, in reality, the base material is Ni! (The Ni content is slightly higher than that of the above). For example, the base material is 2.5%Nitg.
, 365% Ni steel, 5% N+PI, 996 N! t
In the case of A, the welding material contains 2.5 to 6 Ni.
%, 365 to 6%, 5 to 9%, or 9 to 13%.

また、これらの溶接材料のNi以外の成分としては溶接
金属の成分組成でG O,08%以下、810.01〜
0.45%、M n O,3〜i0.0%、p o、o
i%以下、s o、oi%以下、OO,035%以下、
N0101%以下で残部が適合のN1およびl”eと不
可避不純物となるような成分組成であることが望ましい
が、必要に応じて熱処理の効果を劣化させない程度の成
分を溶接金属中に含有させうる量の元素を添加してもさ
しつかえはない。
In addition, the components other than Ni in these welding materials include GO, 08% or less, and 810.01 to 810.01% in the composition of the weld metal.
0.45%, MnO, 3-i0.0%, po, o
i% or less, so, oi% or less, OO, 035% or less,
It is desirable that the composition be such that N0 is 101% or less and the rest is compatible with N1 and l"e, which become unavoidable impurities, but if necessary, components can be included in the weld metal to the extent that they do not deteriorate the effect of heat treatment. There is no problem even if a certain amount of elements are added.

すなわち溶接金属の成分を上記組成とする理由を説明す
ると以下の通りである。
That is, the reason why the components of the weld metal have the above composition is as follows.

Cは、0.08%より高くなれば高靭性の低C焼もどし
マルテンサイト組織が得がたくなり、焼もとしによる靭
性改善効果が損われるため、0.08%以下どするのが
望ましい。
If C is higher than 0.08%, it becomes difficult to obtain a high-toughness, low-C tempered martensitic structure, and the toughness improvement effect by tempering is impaired, so it is desirable to keep it at 0.08% or less.

S′iは、0.01%未満では溶接金属中の酸素量の増
大をうながし、熱処理後の吸収エネルギー値を低下させ
、一方0.45%を越えれば焼もどし抵抗の増大のため
本発明法をもってしても短時間熱処理が困難となる。し
たがって本発明法に最適な溶接金属中の3iは0.01
〜0.45%とすることが望ましい。
If S'i is less than 0.01%, it promotes an increase in the amount of oxygen in the weld metal and reduces the absorbed energy value after heat treatment, while if it exceeds 0.45%, it increases the tempering resistance, which makes it difficult to use the method of the present invention. Even with this, short-term heat treatment becomes difficult. Therefore, the optimum 3i in the weld metal for the method of the present invention is 0.01
It is desirable to set it to 0.45%.

〜1nは、Si と同様脱酸剤として作用する一方、N
iとともに必要な引張強さを与える元素であるが、0.
3%未満では脱醒不足を生じて溶接金属中の酸素量を増
大させ、1.0%を越えればNiと異なり靭性を劣化さ
せる傾向がある。したがって溶接金属中のMnは0.3
〜1.0%が適当である。
~1n acts as a deoxidizing agent like Si, while N
It is an element that provides the necessary tensile strength together with i, but 0.
If it is less than 3%, degassing will be insufficient and the amount of oxygen in the weld metal will increase, and if it exceeds 1.0%, unlike Ni, it tends to deteriorate the toughness. Therefore, Mn in the weld metal is 0.3
~1.0% is appropriate.

PおよびSはいずれも不純物であり、低い程好ましいが
、それぞれ0.01%までは本発明法により得られる良
好な結果を阻害することはない。
Both P and S are impurities, and the lower the content, the better, but up to 0.01% each will not impede the good results obtained by the method of the present invention.

0およびNは、サブマージアーク溶接法ではMIG溶接
法、TIG溶接法の場合と比較して低減が難かしく、や
やもすると増大する傾向にあるが、熱処理後の低温靭性
を満足するためにはそれぞれ0.035%以下、0.0
1%以下とすることが望ましい。
It is difficult to reduce 0 and N in submerged arc welding compared to MIG welding and TIG welding, and they tend to increase, but in order to satisfy low-temperature toughness after heat treatment, each must be 0.035% or less, 0.0
It is desirable that it be 1% or less.

またNiは、母材のNilと同等に与えて母材と同等の
儂械的性質を溶接金属に与えるために必要な元素であり
、とくに低温靭性の向上に有効であるが、必要以上に含
有させることはなく、前述のごとく丹銅板と同等もしく
はやや高めになる程度が好ましい。
In addition, Ni is an element necessary to give the weld metal the same mechanical properties as the base metal by adding it to the same level as Ni in the base metal, and is particularly effective in improving low-temperature toughness. As mentioned above, it is preferable to have the same or slightly higher level than the red copper plate.

一方、その他の不可避不純物は少ないほど良いことは衆
知のとおりである。さらに本発明法による短時間熱処理
の効果を損わない範囲であれば、溶接作業性および溶接
金属の特性などを改善する目的で加えられるその他の元
素を含有させてもなんらさしつかえはない。
On the other hand, it is common knowledge that the fewer other unavoidable impurities, the better. Furthermore, there is no problem in including other elements for the purpose of improving welding workability and properties of the weld metal, as long as they do not impair the effects of the short-time heat treatment according to the method of the present invention.

また溶接法としては、前述の如く高能率である反面、共
金系溶接材料を用いた場合に溶接のままでは溶接部の低
温靭性が劣化し易いサブマージアーク溶接法がこの発明
の効果を最も顕著に発揮することができるが、その他の
溶接法例えばMIG溶接やTIG溶接にも適用できるこ
とは勿論である。
Furthermore, as a welding method, although it is highly efficient as mentioned above, the effect of this invention is most noticeable in the submerged arc welding method, which tends to deteriorate the low-temperature toughness of the welded part when welding is performed when a co-metallic welding material is used. However, it goes without saying that it can also be applied to other welding methods such as MIG welding and TIG welding.

この発明の方法では、上述のようにサブマージアーク溶
接等によって共金系溶接材料を用いて溶接した含Ni低
温用鋼管の共金溶接部に対して、焼入れ焼もどし処理を
施す前に、550〜650℃の温度範囲内での1〜10
分閤の予備熱処理を施す。すなわち焼入れ温度よりも低
い温度域に予め保持し、その後焼入れ温度まで昇温して
焼入れし、さらに焼もどす。
In the method of the present invention, before quenching and tempering the cometal welded part of the Ni-containing low-temperature steel pipe welded using a cometal welding material by submerged arc welding or the like, as described above, 1-10 within the temperature range of 650℃
Perform preliminary heat treatment for bulking. That is, the material is preliminarily held in a temperature range lower than the quenching temperature, then heated to the quenching temperature for quenching, and further tempered.

上述のように焼入れ焼もどし前の予備熱処理が低温靭性
の改善に有効であるとの知見の基礎となった実験につい
て以下に説明する。
The experiment that formed the basis of the finding that preliminary heat treatment before quenching and tempering is effective in improving low-temperature toughness as described above will be described below.

先ず本発明者等は、焼入れ前の加熱のヒートパターンと
して、第1図(A)〜(D)に示す種々のパターンを設
定した。ここで第1図(A)〜(D)において8点は昇
温開始点、0点は冷却開始点(焼入点)、E点は焼入れ
温度到達点、A点は焼入れ前に焼入れ温度よりも低温で
保持する場合の保持温度到達点、8点はその保持の終了
点をそれぞれ示す。したがって第1図(A)のヒートパ
ターンは昇温開始点Sから焼入れ温度まで単調に昇温さ
せて直ちに焼入れる場合、第1図(B)のヒートパター
ンは焼入れ温度まで昇温してからその温度で短時間保持
し、焼入れる場合、第1図(C)は焼入れ前に焼入れ温
度よりも低い温度で保持し、その後焼入れ温度まで昇温
して直ちに焼入れる場合、第1図(D)は同じく焼入れ
前に焼入れ温度よりも低い温度で保持し、その後一旦室
温まで冷却(B=点)した後焼入れ温度に昇温して直ち
に焼入れる場合をそれぞれ示す。
First, the present inventors set various patterns shown in FIGS. 1(A) to 1(D) as heat patterns for heating before quenching. Here, in Fig. 1 (A) to (D), 8 points are the temperature increase start point, 0 point is the cooling start point (quenching point), E point is the quenching temperature reached point, and A point is the temperature rise point before quenching. The 8 points indicate the holding temperature reached when holding at a low temperature, and the 8 points indicate the end point of the holding. Therefore, the heat pattern in Figure 1 (A) is when the temperature is raised monotonically from the heating start point S to the quenching temperature and then quenched immediately, and the heat pattern in Figure 1 (B) is when the temperature is raised to the quenching temperature and then If the material is held at a temperature for a short period of time and then quenched, Figure 1 (C) is used. If the material is held at a temperature lower than the quenching temperature before quenching, then heated to the quenching temperature and then quenched immediately, Figure 1 (D) is shown. Similarly, before quenching, the material is held at a temperature lower than the quenching temperature, and then once cooled to room temperature (point B), then heated to the quenching temperature, and immediately quenched.

そして焼入れ温度を790℃、8点から0点までの時間
すなわち昇温開始から焼入れ冷却開始までの時間を10
分以内とした第1図(A)〜(C)の各パターンもしく
は8点から8点およびB一点から0点までの時間をそれ
ぞれ10分以内とじた第1図(D)のパターンでの焼入
れ(Q)と通常の焼もどしくT>とを、QnT、Q−+
Q−+T、Q→Q4T−+T、Q→T→Q→Tなど種々
組合せて、含Ni低温用鋼のサブマージアーク溶接後の
共金溶接部に対し熱処理し、その共金溶接部の低温靭性
が充分に改善されるパターン、組合せを調査した。なお
ここで共金溶接部の作成条件は次の通りであり、またシ
ャルピー衝撃試験片はフィニツシングサイドの母材表面
下7■の位置が中心となるように採取した。
Then, the quenching temperature was set to 790°C, and the time from the 8th point to the 0th point, that is, the time from the start of temperature rise to the start of quenching cooling, was 10
Quenching in each pattern of Figure 1 (A) to (C) in which the time from point 8 to point B and from point B to point 0 was kept within 10 minutes, respectively, in the pattern shown in Figure 1 (D). (Q) and normal tempering T>, QnT, Q−+
The low-temperature toughness of the co-metallic welds was evaluated by heat-treating the cometal welds after submerged arc welding of Ni-containing low-temperature steel using various combinations such as Q-+T, Q→Q4T-+T, Q→T→Q→T, etc. We investigated patterns and combinations that could sufficiently improve the results. Here, the conditions for making the matching welded part were as follows, and the Charpy impact test piece was taken so that its center was 7 inches below the surface of the base metal on the finishing side.

母材鋼板 :3.5%N1鋼(板厚20wm)開先形状
 :第5図(B)に示す通り 溶接ワイヤ:第1表のW4、W5 フラックス: Ca F2−Ca 0−3i 02−A
i’203系(非水砕溶融型) 溶接方法 :2電極サブマージアーク溶接(両側1層溶
接) このような実験の結果、第1図(A)、(B)のパター
ンの焼入れの場合には、焼入れと焼もどしを如何に組合
わせても、それぞれ1回ずつの焼入れと焼もどしでは、
S点→C点10分以内の条件下では一101℃における
vノツチシャルピー衝撃吸収エネルギーVE−/+1/
が3kgLiに達しなかったのに対し、第1図(C)、
(D)のパターンの場合には、焼入れ前の低温での保持
(A点→B点)温度を選ぶことによって、1回の焼入れ
と1回の焼もどしでVE−1゜1の値が5kof−s+
以上に達する場合があることが判明した。すなわち、焼
入れ前における焼入れ温度よりも低温での保持によって
、短時間熱処理で低温靭性が大幅に改善される可能性が
あることを見出した。
Base material steel plate: 3.5% N1 steel (plate thickness 20wm) Groove shape: As shown in Figure 5 (B) Welding wire: W4, W5 in Table 1 Flux: Ca F2-Ca 0-3i 02-A
i'203 series (non-fracturing type) Welding method: 2-electrode submerged arc welding (single-layer welding on both sides) As a result of these experiments, in the case of quenching with the patterns shown in Figure 1 (A) and (B), , No matter how you combine quenching and tempering, with one quenching and one tempering each,
Under the condition of S point → C point within 10 minutes, v Noti Charpy impact absorption energy VE-/+1/ at -101℃
did not reach 3 kgLi, whereas Fig. 1 (C),
In the case of pattern (D), by selecting the holding temperature at a low temperature before quenching (point A → point B), the value of VE-1°1 can be reduced to 5kof with one quenching and one tempering. −s+
It turns out that more than that can be reached. In other words, it has been found that by holding the steel at a temperature lower than the quenching temperature before quenching, the low-temperature toughness may be significantly improved by short-term heat treatment.

さらに本発明者等は、焼入れ前の低温での保持における
適切な保持温度を見出すべく、次のような実験を行なっ
た。すなわち焼入れ処理のヒートパターンを第′1図(
C)に示すパターンとして、保持温度(A点→B点)を
100〜790℃の範囲内の種々の温度とした焼入れの
後、第1図(A)のヒートパターンで焼もどすところの
焼入れ焼もどし処理を行ない、溶接金属中央のシャルピ
ー衝撃吸収エネルギーを調べた。その結果を保持温度と
対応して第2図に示す。なお焼入れ温度(E。
Furthermore, the present inventors conducted the following experiment in order to find an appropriate holding temperature for holding at a low temperature before quenching. In other words, the heat pattern of the quenching treatment is shown in Figure '1 (
As the pattern shown in C), after quenching at various holding temperatures (point A → point B) within the range of 100 to 790°C, tempering is performed using the heat pattern shown in Figure 1(A). The Charpy impact absorption energy at the center of the weld metal was examined after performing a restoration process. The results are shown in FIG. 2 in correspondence with the holding temperature. Furthermore, the quenching temperature (E.

0点)は790℃とし、昇温開始から保持温度までの昇
温時@ (S−)A点)は30秒、保持R間(A −=
 8点)は5分、保持温度から焼入れ温度までの昇温時
間(B−E点)は30秒とし、焼入れ温度到達後直ちに
焼入れ(したがってE点=C点)した。トータルの昇温
開始から焼入れまでの時間は6分である。また焼もどし
処理温度は600℃で、昇温開始から昇温完了までを6
分とし、昇温完了と同時に冷却した。この実験における
共金溶接部の作成条件は以下の通りである。
0 point) is 790°C, temperature rising from the start of heating to the holding temperature @ (S-)A point) is 30 seconds, and holding R (A-=
8 points) was 5 minutes, the heating time from the holding temperature to the quenching temperature (B-E point) was 30 seconds, and quenching was performed immediately after reaching the quenching temperature (therefore, point E = point C). The total time from the start of temperature rise to quenching was 6 minutes. In addition, the tempering treatment temperature is 600℃, and the period from the start of temperature increase to the completion of temperature increase is 600℃.
The mixture was cooled at the same time as the heating was completed. The conditions for creating a matching weld in this experiment were as follows.

母材鋼板 :9%N11(板厚12.75mm )開先
形状 :第5図(A)に示す通り 溶接ワイヤ:第1表のW3 フラックス: Qa F2−Ca 0−8i 02−A
120s系(非水砕溶融型) 溶接方法 :2電極サブマージアーク溶接(両側15I
i溶接) 第2図から、焼入れ前の保持温度を550〜650℃の
範囲内とすることによって、−196℃における衝撃吸
収エネルギーvE−+ttが10kC1r・m前後と著
しく優れた低温靭性が得られ、550〜650℃を外れ
た温度域での保持では、vE−tBが5 kof−n以
下であって低温靭性がほとんど改善されないことが判る
。すなわちこの実験結果から、焼入れ前に550〜65
0℃の温度域に短時間保持(この例では5分)すること
によって、短い焼入れ処理時間(この例では昇温開始の
8点から昇温完了のE点まで6分)、短い焼もどし処理
時間(この例で6分保持)で、サブマージアーク溶接に
よる含N1g1温用鋼の共金溶接部のU牲を大幅に向上
させ得ることが判明したのである。こ゛   のように
短時間の熱処理でも充分な靭性の向上がなされる理由は
、焼入れ前の550〜650℃の温度域での保持が炭化
物の析出・塊状化を促進したためと思われる。
Base steel plate: 9% N11 (plate thickness 12.75 mm) Groove shape: As shown in Figure 5 (A) Welding wire: W3 in Table 1 Flux: Qa F2-Ca 0-8i 02-A
120s type (non-water fused type) Welding method: 2-electrode submerged arc welding (15I on both sides)
(i) Welding) From Figure 2, by setting the holding temperature before quenching within the range of 550 to 650°C, extremely excellent low-temperature toughness can be obtained, with impact absorption energy vE-+tt at -196°C being around 10 kC1r・m. , it can be seen that when held in a temperature range outside of 550 to 650°C, vE-tB is 5 kof-n or less, and low-temperature toughness is hardly improved. In other words, from this experimental result, 550 to 65
By holding the temperature in the 0°C temperature range for a short time (5 minutes in this example), the quenching process can be shortened (in this example, 6 minutes from point 8 where temperature rise starts to point E where temperature rise is completed) and tempering process can be shortened. It has been found that it is possible to significantly improve the U resistance of a co-metallic welded part of N1g1 hot-use steel by submerged arc welding (held for 6 minutes in this example). The reason why such a short heat treatment can sufficiently improve toughness is thought to be that holding the steel in the temperature range of 550 to 650°C before quenching promoted precipitation and agglomeration of carbides.

なお特に実験結果は示さなかったが、第1図(D)に示
すようなヒートパターンで焼入れ前に550〜650℃
に保持した場合、すなわち550〜650℃に保持し、
次いで一旦室温まで冷却した後、焼入れ福変まで加熱し
て焼入れた場合゛も、上記と同様に充分な低温靭性の改
善が図られることが確認されている。
Although no particular experimental results were shown, the heating temperature was 550 to 650°C before quenching using a heat pattern as shown in Figure 1 (D).
When held at 550-650°C,
It has been confirmed that even when the material is cooled to room temperature and then heated to the quenching point, the low-temperature toughness is sufficiently improved in the same way as described above.

次にこの発明の方法における焼入れ前の予備熱処理条件
の限定理由について説明する。
Next, the reasons for limiting the preliminary heat treatment conditions before quenching in the method of the present invention will be explained.

焼入れ前の予備熱処理における保持温度が550℃未満
、または650℃を越える場合には、第2図の実験結果
から明らかなように充分な低温靭性改善効果が得られず
、したがって保持温度は550〜650℃の範囲内とし
た。
If the holding temperature in the preliminary heat treatment before quenching is less than 550°C or more than 650°C, a sufficient low-temperature toughness improvement effect cannot be obtained, as is clear from the experimental results in Figure 2. The temperature was within the range of 650°C.

また焼入れ前の予備熱処理における保持時間が1分未満
では充分な低温靭性改善効果が得られず、−力10分を
越えて保持してもそれ以上低温靭性は向上せず、かつ短
時間熱処理が達成できなくなるから、550〜650℃
での保持時間は1〜10分の範囲内とした。
Furthermore, if the holding time in preliminary heat treatment before quenching is less than 1 minute, a sufficient effect of improving low-temperature toughness will not be obtained, and if the holding time exceeds 10 minutes, the low-temperature toughness will not improve any further, and short-time heat treatment will not improve the low-temperature toughness any further. 550-650℃ because it cannot be achieved.
The holding time was within the range of 1 to 10 minutes.

さらにこの発明の方法における焼入れ前の予備熱処理の
有効性を、種々の溶接金属中Nilについて検討した結
果を第2表に示□す。なおこの実験に供した溶接部は、
それぞれ第2表中に示す種々の含N+低温用鋼母材とし
て、第1表のW1〜W7に示すワイヤ(共金溶接材料)
とCaF2−8i 02−Ca 0−Al120a系の
溶融型非水砕フランクスを用い、サブマージアーク溶接
により作成した。また溶接後の熱処理における焼入れの
ヒートパターンは第1図(C)のパターンとし、焼入れ
前の予備熱処理(A点→B点)の保持温度を500〜7
00℃、保持時間を0.5〜15分の範囲内として穆々
変化させ、かつ焼入れ(E、 C点)の温度を780〜
820℃とし、さらに焼もどしは第1図(A)のヒート
パターンで行ない、焼もどし温度を590〜620℃、
昇温開始から昇温完了までの焼もどし処理時間を3〜1
0分とした。
Furthermore, Table 2 shows the results of examining the effectiveness of preliminary heat treatment before quenching in the method of this invention for Nil in various weld metals. The welded part used in this experiment was
Wires (common metal welding materials) shown in W1 to W7 in Table 1 as various N+ low-temperature steel base materials shown in Table 2, respectively.
and CaF2-8i 02-Ca 0-Al120a-based melting type non-water-crunched flanks were used, and were created by submerged arc welding. In addition, the heat pattern for quenching in the heat treatment after welding is the pattern shown in Figure 1 (C), and the holding temperature in the preliminary heat treatment (point A → point B) before quenching is 500 to 700℃.
00℃, the holding time was gradually changed within the range of 0.5 to 15 minutes, and the quenching temperature (points E and C) was 780℃ to 780℃.
The temperature was 820°C, and further tempering was performed using the heat pattern shown in Figure 1 (A), with the tempering temperature being 590 to 620°C.
The tempering time from the start of temperature rise to the completion of temperature rise is 3 to 1
It was set to 0 minutes.

第2表から明らかなように、この発明の範囲内の条件で
熱処理した場合(実験番号1.3.4.7〜9.13〜
17)には、いずれも短時間の熱処理(焼入れ、焼もど
しともに10分以内)で良好な靭性が得られた。一方実
験番号5.6の比較法の場合、焼入れ前の保持(A−+
8点)の温度が550〜650℃の温度域を外れたため
良好な靭性が得られず、実験番号2.10の比較例の場
合は焼入れ前の保持時間が1分未満であるため良好な靭
性が得られなかった。さらに実験番号11.12の場合
、焼入れ前の保持時間が長ずきるため、良好な靭性は得
られたものの、パイプを搬送しながら行なう焼入れ処理
時間として不適切となっている。
As is clear from Table 2, when heat treatment was performed under conditions within the scope of this invention (experiment numbers 1.3.4.7 to 9.13 to
17), good toughness was obtained with short heat treatment (within 10 minutes for both quenching and tempering). On the other hand, in the case of the comparative method of Experiment No. 5.6, the retention before quenching (A-+
Good toughness could not be obtained because the temperature in point 8) was outside the temperature range of 550 to 650°C, and in the case of the comparative example of experiment number 2.10, the holding time before quenching was less than 1 minute, so good toughness was not obtained. was not obtained. Furthermore, in the case of experiment numbers 11 and 12, the holding time before quenching was too long, so although good toughness was obtained, the quenching treatment time was inappropriate when the pipe was transported while being transported.

以下にこの発明の方法を実際に含Ni低温用鋼からなる
UOE鋼管の製造に適用した実施例を記す。
An example in which the method of the present invention was actually applied to the production of a UOE steel pipe made of Ni-containing low-temperature steel will be described below.

実施例 1 第1表のW3で示す溶接ワイヤを用い、かつフラックス
としてQa F240%、Si Q224.0%、Ca
 Q28.7%、Ai’2038.3%を主成分とする
非水砕溶融型のフラックスを用い、9%Ni鋼からなる
20インチLIOE鋼管の2種のもの、すなわち肉厚1
2.75 armの鋼管Aおよび肉厚6IIIlの鋼管
Bを製造する実験を行なった。なお素材銅板を管状に成
形後の仮付溶接は、第1表のw3と同一組成の直径1.
2m(イ)のワイヤを用い、100%Arガスシールド
によるlvl I G溶接を行なった。ここで素材鋼板
としては9%Ni鋼の板厚12.75 +uのもの(w
A管Aの場合)および板厚611110のもの(I管B
の場合)を用い、溶接部分の開先形状は第5図(C)、
第5図(D)に示す形状、寸法とした。
Example 1 The welding wire shown in Table 1 W3 was used, and the flux was Qa F240%, Si Q224.0%, Ca
Two types of 20-inch LIOE steel pipes made of 9% Ni steel, namely, wall thickness 1
An experiment was conducted to manufacture a steel pipe A of 2.75 arms and a steel pipe B of 6IIIl in wall thickness. Note that tack welding after forming the raw copper plate into a tubular shape is performed using a diameter 1.
Lvl IG welding was performed using a 2 m (A) wire with a 100% Ar gas shield. Here, the material steel plate is a 9% Ni steel plate with a thickness of 12.75 +u (w
For A pipe A) and for one with a plate thickness of 611110 (for I pipe B
), and the groove shape of the welded part is as shown in Figure 5 (C).
The shape and dimensions were as shown in FIG. 5(D).

また溶接条件は第3表の上段、中段に示す通りである。The welding conditions are as shown in the upper and middle rows of Table 3.

溶接終了後の上記鋼管A、Bを拡管成形し、しかる後に
鋼管Aについては第3図(A)のヒートパターン、鋼管
Bについては第3図(B)のヒートパターンとなるよう
に、加熱炉の出力と搬送速度を調整して、パイプ焼入れ
焼もどし装置により熱処理を行なった。得られた2種の
肉厚の9%Ni鋼のUOE鋼管A1Bの機械的特性を調
べたところ、第4表の上段および中段に示すように優れ
た機械的性質を有することが確認され、また形状精度も
良好であることが確認された。なお引張試論はJIS 
 Z−3121号試験片、シャルピー衝撃試験はJIS
  Z−3112の試験片で行ない、鋼管Bの場合はハ
ーフサイズ試験片とした。
After welding, the above-mentioned steel pipes A and B are expanded and formed, and then heated in a heating furnace so that the steel pipe A has the heat pattern shown in Figure 3 (A), and the steel pipe B has the heat pattern shown in Figure 3 (B). Heat treatment was performed using a pipe quenching and tempering device by adjusting the output and conveyance speed. When the mechanical properties of the obtained UOE steel pipe A1B made of 9% Ni steel with two types of wall thickness were investigated, it was confirmed that it had excellent mechanical properties as shown in the upper and middle rows of Table 4. It was confirmed that the shape accuracy was also good. In addition, the tensile test is based on JIS
Z-3121 test piece, Charpy impact test is JIS
The test was conducted using a Z-3112 test piece, and in the case of steel pipe B, a half-size test piece was used.

実施例 2 第1表のW4で示すワイヤおよびW5で示す溶接ワイヤ
を用い、かつフラックスとして実施例1で用いたものと
同じフラックスを用い、3.5%Ni鋼からなる肉厚2
0+amの20インチUOEgil管(以下鋼管Cとす
る)を製造する実験を行なった。なお素材鋼板を管状に
成、形後の仮付溶接は、第1表のW4と同一組成の直径
1.6mmのワイヤを用い、100%Arガスシールド
によるMIG溶接を行なった。溶接部分の開先形状は第
5図(E)に示す通りであり、また溶接条件は第3表の
下段に示す通りとした。
Example 2 Using the wire shown as W4 and the welding wire shown as W5 in Table 1, and using the same flux as that used in Example 1, a wall thickness 2 made of 3.5% Ni steel was used.
An experiment was conducted to manufacture a 20-inch UOEgil pipe (hereinafter referred to as steel pipe C) of 0+am. Note that the raw steel plate was formed into a tubular shape, and the tack welding after shaping was performed by MIG welding with a 100% Ar gas shield using a wire with a diameter of 1.6 mm having the same composition as W4 in Table 1. The groove shape of the welded portion was as shown in FIG. 5(E), and the welding conditions were as shown in the lower row of Table 3.

溶接終了後の上記#l管Cを拡管整形し、しかる後に第
4図に示されるヒートパターンで短時間熱処理を施した
。熱処理後の鋼管Cについて、機械的特性を調べたとこ
ろ、第4表の下段に示すように優れた機械的性質を有す
ることが確認され、また管精度も良好であることが確認
された。なお引張試股片はJIS  Z−3121で全
板厚から採取し、シャルピー衝撃試験片はJIS  Z
−3112,4号試験片としてフィニツシュング側の母
材表面下7IIImを中心に採取した。
After welding, the #l tube C was expanded and then heat treated for a short time using the heat pattern shown in FIG. When the mechanical properties of the heat-treated steel pipe C were examined, it was confirmed that it had excellent mechanical properties as shown in the lower part of Table 4, and it was also confirmed that the pipe precision was good. The tensile test piece was taken from the entire plate thickness according to JIS Z-3121, and the Charpy impact test piece was taken according to JIS Z-3121.
-3112, No. 4 test piece was collected mainly at 7IIIm below the surface of the base material on the Finishschung side.

以上の実施例および前述の各実践データからも明らかな
ように、この発明の熱処理方法によれば、含N1q1.
用鋼管を、共金系溶接材料を用いて溶接により造管する
にあたって、共金1接部の低温靭性を短時間の熱処理に
よって充分に改善することができる。したがってこの発
明の熱処理方法を適用すれば、造管ラインにおいて溶接
後の鋼管を搬送しながら熱処理する場合にも搬送速度を
低下させることなく共金溶接部の靭性向上を図ることが
でき、そして従来は靭性の低下の点から実用化が困難と
されていた含Ni低温用鋼のサブマージアーク溶接によ
る共金溶接が実際に実現可能となり、造管能率の向上や
コスト低減を図ることが可能となる。
As is clear from the above examples and the above-mentioned practical data, according to the heat treatment method of the present invention, N1q1.
When producing steel pipes by welding using a co-metal welding material, the low-temperature toughness of the co-metal joint can be sufficiently improved by short-term heat treatment. Therefore, if the heat treatment method of the present invention is applied, it is possible to improve the toughness of the welded joint without reducing the conveyance speed even when heat treatment is carried out while conveying the welded steel pipe in the pipe making line. This makes it possible to actually achieve alloy welding by submerged arc welding of Ni-containing low-temperature steel, which was considered difficult to put into practical use due to a decrease in toughness, making it possible to improve pipe manufacturing efficiency and reduce costs. .

なおこの発明の方法は前述したようにサブマージアーク
溶接の場合に限られるものではなく、MIG溶接やTI
G溶接等にも適用可能であり、これらの溶接法の場合も
より−1の低温靭性の向上が図られる。
As mentioned above, the method of this invention is not limited to submerged arc welding, but can also be applied to MIG welding and TI welding.
It can also be applied to G welding and the like, and these welding methods can also improve the low temperature toughness by -1.

第1表 第4表:実施例1.2における試験結果”  vE−1
96であられす ** vE−101であられす
Table 1 Table 4: Test results in Example 1.2 "vE-1"
Hello 96** Hello vE-101

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜(D)はそれぞれこの発明の基礎実醗に
おけるヒートパターンを示す線図、第2図は焼入れ前の
予備熱処理における保持温度と、焼入れ焼もどし後の低
温靭性(−196’C)との。 関係を示す相関図、第3図(A)、(B)は実施例1に
おける熱処理のヒートパターンを示す線図で、(A)は
鋼管Aについてのパターン、(B)は!1!Bについて
のパターンを示す。第4図は実施例2における熱処理の
ヒートパターンを示す線図、第5図(A)〜(E)はそ
れぞれこの発明の基礎実践もしくは実施例における溶接
部の開先形状を示す図である。
Figures 1 (A) to (D) are diagrams showing the heat patterns in the basic practical experiment of this invention, respectively, and Figure 2 shows the holding temperature in preliminary heat treatment before quenching and the low-temperature toughness (-196 'C) with. 3 (A) and (B) are diagrams showing the heat pattern of heat treatment in Example 1, (A) is the pattern for steel pipe A, and (B) is! 1! The pattern for B is shown. FIG. 4 is a diagram showing a heat pattern of heat treatment in Example 2, and FIGS. 5(A) to (E) are diagrams showing groove shapes of welded parts in basic practice or embodiments of the present invention, respectively.

Claims (1)

【特許請求の範囲】 含Ni低温用鋼管を、共金系溶接材料を用いて溶接によ
り製造し、溶接終了後に共金溶接部に対して短時間の焼
入れ、焼もどし処理を施す方法において、 前記焼入れの前に550〜650℃の温度で1〜10分
間保持することを特徴とする含Ni低温用鋼管の共金溶
接部の短時間熱処理方法。
[Scope of Claims] A method of manufacturing a Ni-containing low-temperature steel pipe by welding using a co-metal welding material, and subjecting the co-metal welded portion to short-time quenching and tempering treatment after welding, comprising: 1. A short-time heat treatment method for a co-metal welded part of a Ni-containing low-temperature steel pipe, the method comprising holding the joint at a temperature of 550 to 650°C for 1 to 10 minutes before quenching.
JP13416784A 1984-06-29 1984-06-29 Short-time heat treatment of same-metal welded part of low-temperature steel pipe containing ni Pending JPS6115925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13416784A JPS6115925A (en) 1984-06-29 1984-06-29 Short-time heat treatment of same-metal welded part of low-temperature steel pipe containing ni

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13416784A JPS6115925A (en) 1984-06-29 1984-06-29 Short-time heat treatment of same-metal welded part of low-temperature steel pipe containing ni

Publications (1)

Publication Number Publication Date
JPS6115925A true JPS6115925A (en) 1986-01-24

Family

ID=15122011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13416784A Pending JPS6115925A (en) 1984-06-29 1984-06-29 Short-time heat treatment of same-metal welded part of low-temperature steel pipe containing ni

Country Status (1)

Country Link
JP (1) JPS6115925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043407B2 (en) 2007-10-05 2011-10-25 Kobe Steel, Ltd. Welding solid wire
KR20150039225A (en) 2010-12-22 2015-04-09 가부시키가이샤 고베 세이코쇼 Welding solid wire and welding metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043407B2 (en) 2007-10-05 2011-10-25 Kobe Steel, Ltd. Welding solid wire
KR20150039225A (en) 2010-12-22 2015-04-09 가부시키가이샤 고베 세이코쇼 Welding solid wire and welding metal
US9156112B2 (en) 2010-12-22 2015-10-13 Kobe Steel, Ltd. Welding solid wire and weld metal

Similar Documents

Publication Publication Date Title
JPS629646B2 (en)
JPH0213007B2 (en)
JPH03229839A (en) Manufacture of duplex stainless steel and its steel material
JP5229300B2 (en) Elementary pipe for high-strength thick-walled welded bend steel pipe with excellent weld toughness and method for producing the same
JP2005281842A (en) Production method of low temperature service low yield ratio steel material having excellent weld zone toughness
JPS6210212A (en) Production of bend pipe
JPS6115925A (en) Short-time heat treatment of same-metal welded part of low-temperature steel pipe containing ni
JPS6067623A (en) Preparation of high strength low carbon seamless steel pipe by direct hardening method
JP2735161B2 (en) High-strength, high-toughness non-heat treated steel for hot forging
JPH0211654B2 (en)
JPS61117223A (en) Manufacture of bent pipe made of high toughness welding metal
JPS62107023A (en) Working method for welded steel pipe
JPS61133312A (en) Production of low temperature steel plate having high toughness
JP3804087B2 (en) Manufacturing method of hot-bending steel pipe
KR910003883B1 (en) Making process for high tension steel
JP4649753B2 (en) Elementary pipe for high strength thick welded bend steel pipe with excellent weld toughness and method for manufacturing the same
JPS6256523A (en) Manufacture of high strength rail providing weldability
JPH0790375A (en) Production of thick bend steel pipe having high strength and high toughness
JPS637328A (en) Production of steel having excellent sulfide corrosion cracking resistance
JPS59232226A (en) Production of clad pipe bend having excellent corrosion resistance and toughness
JPS59153841A (en) Production of high-tension electric welded steel pipe having uniform strength
JPS59136419A (en) Preparation of ultra-high tensile steel excellent in weldability
JPS6021326A (en) Production of tempered high tensile steel having exellent toughness
JPH11323442A (en) Heat treating method for electric resistance weld zone increasing workability of electric resistance weld zone
JPS62260017A (en) Production of large-diameter high-strength chain having excellent low-temperature toughness