JPH0211654B2 - - Google Patents

Info

Publication number
JPH0211654B2
JPH0211654B2 JP11378684A JP11378684A JPH0211654B2 JP H0211654 B2 JPH0211654 B2 JP H0211654B2 JP 11378684 A JP11378684 A JP 11378684A JP 11378684 A JP11378684 A JP 11378684A JP H0211654 B2 JPH0211654 B2 JP H0211654B2
Authority
JP
Japan
Prior art keywords
toughness
weld metal
welded
less
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11378684A
Other languages
Japanese (ja)
Other versions
JPS60258411A (en
Inventor
Tadamasa Yamaguchi
Tosha Matsuyama
Noboru Nishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11378684A priority Critical patent/JPS60258411A/en
Publication of JPS60258411A publication Critical patent/JPS60258411A/en
Publication of JPH0211654B2 publication Critical patent/JPH0211654B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 溶接鋼管の加工方法に関し、この明細書で述べ
る技術内容は、たとえば溶接鋼管を用いるパイプ
ライン中での河川横断部分などに使用される、曲
管の素材パイプの如くに適用することができるよ
うな二次加工性を具備させるため、該鋼管の溶接
金属の成分範囲を、該加工過程を経た後において
も、元の鋼管の本来性能が維持される加工条件と
ともに究明した結果に基いて、該溶接金属組成の
成分範囲に限定した溶接鋼管を、曲管としての使
用に供するための加工条件を特定した溶接鋼管の
加工方法を提案するところにある。 (背景技術) 石油、天然ガスなどの大量輸送方法としてパイ
プラインによる方法はもつとも効率が良く、世界
各地に長距離パイプラインが数多く建設されてい
るが、輸送効率を上げるため最近では管内の輸送
圧力を増加させる傾向にある。 管内圧力が高くなるほどパイプに要求される強
度も高くなるが、中でも寒冷地で使用される場合
には強度とともに低温での高じん性が必要とさ
れ、鋼板については化学組成の調整や特殊制御圧
延法の適用により要求性能をほぼ満足できるもの
が得られている。 この種の鋼管には一般にNbを含有した非調質
高張力鋼板が使用されるが、圧延温度と圧下率を
制御し、強度とじん性を確保して、UOE法、ベ
ンデイングロール法、スパイラル法などにより成
形後通常は両面一層サブマージアーク溶接方法に
より製管される。 ところでパイプラインにおける河川横断部分
や、ポンプステーシヨンまわりなどの曲線配管部
分にはライン本管と同一外径の曲管が使用される
が、従来鍛造や溶接加工により別途製作されてい
たこの曲管も、納期やコストの面から、最近では
前述のような溶接鋼管を曲げ加工して充当しよう
とする気運が強まりつつある。 (問題点) 曲げ加工性の面から通常は高温で加工されるが
溶接ままでは高強度、高じん性を有する上記溶接
鋼管も高温加熱加工による曲管成形を経た後、そ
の再加熱条件によつてはじん性が劣化しとくに溶
接金属のじん性劣化は著しいため、これを防止す
ることが大きな問題となる。 溶接後にいわゆる焼入れ−焼戻し処理や焼なら
し処理により高強度で高じん性を有する溶接金属
を得る方法についてはすでに開示されていて、た
とえば特公昭55−19297、同56−19381号各公報に
溶接金属の化学組成や、熱処理条件が示されてい
るが曲管製造の場合には、曲げ加工時に鋼管各部
に相当大きな加工歪が生じ、析出や、組織変化な
どじん性にとつて好ましくない現象が起り、じん
性劣化が助長されることになる。それ故、単に直
管の熱処理条件の応用のみではこの問題の解決は
困難であり上記各公報に示されている熱処理法は
全く役に立たず曲管を作るための適正な溶接金
属、加熱加工条件が必要なのである。 (発明の動機) このような現状をふまえて発明者らは、溶接鋼
管溶接金属の加工前のじん性確保はもちろんのこ
と、高温における曲管成形後のじん性劣化を回避
することもできるような溶接金属組成と加工条件
について詳細な検討を行つた。 その結果、溶接ままの素管および高温における
曲管成形後に降伏強度40〜60Kgf/mm2程度の強度
と−46℃で7Kgfm程度の低温じん性を有する溶
接金属を得るためには、溶接金属の化学組成を特
定化した上で、熱間での曲げ加工につきγ粒の粗
大化を防止するため、加熱温度範囲と、加工完了
までの経過時間を制限する必要のあることが判明
した。また強度とじん性を同時に確保するために
は加工後の冷却過程における平均冷却速度につい
ても適切な制御下に冷却することが重要であるこ
とが知見された。 (発明の目的) この発明は、ラインパイプとして使用され得る
のはもちろん、それによるパイプラインの部分と
しての同径曲管に容易に加工することができて強
度およびじん性の劣化を伴わない、溶接鋼管の加
工方法を与えることが目的である。 (発明の構成) この発明は C:0.12wt%以下、 Si:0.10〜0.50wt%、 Mn:0.80〜2.30wt%、 Al:0.010〜0.070wt%、 Ni:0.20〜3.00wt%、 Mo:0.10wt%以下、 Ti:0.015〜0.050wt%、および B:0.0020wt%をこえて0.0050wt%までを含有
し、 N:0.010wt%以下 O:0.025〜0.050wt%であつてさらに0.035wt
%以下のNbおよび0.040wt%以下のVのうち
1種以上を含み、残部は溶接上不可避的に入
つてくる混入成分および鉄の、溶接金属組成
に成る継目溶接部を有する溶接鋼管を、加熱
温度850〜1050℃において120秒以内の保持時
間で熱間二次加工を施し、その後300℃に至
る平均冷却速度を15〜60℃/secの範囲で冷
却することを特徴とする溶接鋼管の加工方法
である。 この発明においてまず溶接鋼管の加熱後におけ
る加工条件は、溶接金属の化学組成との関係でつ
ぎに示す重要な意味を有している。 すなわち、熱間二次加工に供すると否とに拘わ
らず溶接金属は、溶接ままで十分な強度と低温じ
ん性を有している必要があり、そのためには酸素
量が少いほど好ましい。 しかしながら高温加熱では酸素(酸化物)がγ
粒の成長抑制作用を有しているため過度に酸素量
を低減することは曲げ加工熱処理後のじん性面か
らは好ましくなく、適正な酸素量、すなわち
0.025〜0.050%の含有量と、とくに850〜1050℃
の範囲の加熱温度で120秒以内に二次加工を施す
ことが重要なのである。なお、850℃より低い温
度での曲げは変形の抵抗が大きく短時間での曲げ
加工が困難となる。 また一般に溶接鋼管用母材にはNbを含む制御
圧延鋼板が使用されるが、Nbは溶接ままでは溶
接金属中に固溶し、溶接金属のじん性に決定的な
影響を及ぼさないが、その後の再加熱処理により
微細なNb炭窒化物として析出するとじん性は顕
著に劣化する。したがつてNbを含む溶接金属を
熱処理して使用する場合には微細な炭窒化物を生
じないように留意しなければならないが、加熱温
度の上限を1050℃として溶接金属中のNb量の上
限を0.035%とすることにより焼戻し時のNbの微
細析出によるじん性劣化の軽減は可能となる。 次に加熱後の連続冷却においては、変態が完全
に終了するまで冷却速度を制御することが大切で
あるが、300℃までにほぼ変態は完全に終了する
ため、曲げ加工後の冷却としては300℃までを考
慮すれば十分である。加熱温度から300℃までの
平均冷却速度が60℃/secより速い場合には溶接
金属の硬度が大きくなりすぎ、必要に応じて施さ
れる焼戻しによつても硬度低下が少ないため強度
が高くなりすぎじん性の確保が困難となり、いつ
ぽう冷却速度が15℃/secより遅くなると粗大な
フエライトが生成してじん性を確保することがむ
ずかしくなるとともに強度の低下も大きくなる。 このように迅速に加工を完了してからも300℃
に至る間に適正な冷却速度の制御を要し、それに
応じて溶接金属の組成も規制する必要のあること
が見出されたのである。 なお冷却後の焼戻し処理は、もちろん必要に応
じて実施すれば良い。 上述のようにして曲げ加工を行つた溶接鋼管の
溶接金属強度と、低温じん性とを確保するために
は前述のような加工熱処理条件が必要であるが、
それ以外にも溶接金属化学組成の規制を行わない
と−46℃レベルの低温じん性を確保することは困
難である。溶接金属化学組成を特定し、かつ適正
な加工熱処理条件を適用することによりはじめて
溶接ままおよび加工熱処理後の両方の状態で十分
な強度と低温じん性を有する溶接金属が得られる
のである。 つぎに溶接金属の化学組成を限定した理由につ
いて述べる。 C:上記の熱処理条件のもとではC量が0.12%を
超えると、焼入時(冷却時)にじん性に有害な
高炭素マルテンサイトが生成し、焼戻しによつ
てもじん性は向上しないためC量は0.12%以下
にする必要がある。 Si:Siは母材などからこの種の溶接金属に不可欠
に入つてくる成分であり、じん性対策上からも
0.10%以上が下限値として必要である。いつぽ
う0.50%を超えると溶接まま状態でのじん性確
保が困難となるばかりでなく加工熱処理後もポ
リゴナルフエライト粒が大きくなり良好なじん
性は得られないためSi量は0.10%〜0.50%とし
た。 Mn:Mnは溶接金属の脱酸の上では不可欠の元
素であると同時に強度じん性の上からも重要で
あり、0.80%より少いと脱酸不足になりやすく
かつ溶接金属の強度を保つことがむずかしい。
いつぽう2.30%を超えると焼入れ性が大きくな
りすぎてラス状組織となり、じん性が劣化する
ためその上限は2.30%とする必要がある。 Al:Alは脱酸上および窒素を固定する上から、
また組織微細化の面からも必要な元素である
が、0.010%より少ないとその効果は期待でき
ず、いつぽう0.070%を超えるとフエライトが
粗大になり溶接ままでのじん性が著しく不良と
なるため、0.010〜0.070%にする必要がある。 Ni:Niは前述のMnや後記するMoとともに溶接
まま溶接金属の強度およびじん性向上には効果
的な元素であるが、0.20%より少い場合にはそ
の効果は期待できない。Niの上記効果は加工
熱処理後でもかわらず、しかも広範囲の添加量
によつてもじん性劣化をまねくことがなく、極
めて有効な元素である。しかしながら添加量が
多くなりすぎると溶接時に高温割れの発生する
危険性があるため3.00%を上限とした。 Mo:Moも焼入性を高め、溶接まま溶接金属の
じん性向上には効果的な元素であり、とくに後
記するTi、Bと同時に添加される場合には極
めて良好なじん性を有する溶接金属が得られ
る。しかしながらMoは加工熱処理時に高炭素
マルテンサイトを生成しやすくし、焼戻しによ
つてもじん性は向上しないため加工熱処理後の
じん性を考慮した場合添加量の上限は0.10%で
ある。 Ti、B:つぎにTiとBについてはこれらの総合
的な効果として溶接ままではもちろんのこと、
加工熱処理後でも細粒フエライトが生成して、
良好な低温じん性が得られるのでまとめて述べ
る。Bの基本的な働きは、旧オーステナイト粒
界に生成する粒界フエライトの析出を抑制する
ことであるが、Bが窒化物や酸化物になつてし
まうとその効果は期待できなくなる。Tiを添
加することによりBの窒化、酸化を抑制するこ
とができ、しかもTiはフエライト粒を細かく
する働きを有しているためTiとBを同時に添
加することで低温じん性の確保は容易となり、
添加量を制限すればこの効果は加工熱処理後で
も失われない。 ここにB量が0.0020%未満では粒界フエライ
トが生成しやすく、0.0050%を越えると粒界に
Bの濃厚偏折が生じるためいずれも低じん性と
なる。 一方TiについてはBを有効に活用する量が
0.015〜0.050%であり、0.015%より少ない場合
には細粒フエライトが得られにくく、また
0.050%を超えると固溶Tiが多くなり、何れも
低じん性となる。 N:NについてはBの窒化を防止するため、また
固溶Nによるじん性劣下を防止するためそのお
それのない0.010%以下に限定する必要がある。 O:Oについてはすでに述べたごとく溶接ままの
じん性、加工熱処理後のじん性の両方を考慮す
ると、0.020%〜0.050%にする必要がある。 Nb、V:通常溶接鋼管用母材にはNbやVを含む
制御圧延鋼板が用いられ、溶接時には母材希釈
により溶接金属にこれらの元素が含有される。 溶接ままではこれらの元素は固溶状態にあ
り、じん性に決定的な影響をおよぼさないが、
加工熱処理、焼戻し過程で微細に析出すると、
じん性は大幅に劣化する。 前記加工熱処理条件の場合にはNb量が0.035
%以下、V量が0.040%以下であればこれらの
1種以上を含んでいてもじん性の確保は可能で
あることからそれぞれの上限を0.035%、0.040
%とした。 なお、P、Sは不純物元素として溶接金属に入
つてくるが、じん性を劣化させる元素であるため
少いにこしたことはない。この発明の成分範囲内
にあつてはいずれも0.020%までは許される。 以下にこの発明の実施例について説明する。 実施例 1 表1に示す化学組成を有する板厚25.4mmの鋼板
に角度60゜、深さ11mmのV溝加工を施し、表2に
示すワイヤと表3に示すフラツクスを組み合せて
入熱68kJ/cmのV溝一層サブマージアーク溶接
を行つた。なお溶接金属の成分調整のため溶接前
開先内に必要な合金成分を適宜適量散布して溶接
を行つた。 また溶接金属の酸素量はフラツクスの塩基度と
母材、ワイヤ、散布合金中の脱酸元素の量によつ
て決まるが、主として組合せるフラツクスを変え
ることにより変化させた。
(Technical field) The technical content described in this specification regarding the processing method of welded steel pipes can be applied to curved material pipes used, for example, in river crossing sections of pipelines using welded steel pipes. In order to provide secondary workability that allows the steel pipe to undergo secondary workability, the composition range of the weld metal of the steel pipe was determined based on the results of investigating the processing conditions that would maintain the original performance of the original steel pipe even after the processing process. Therefore, the present invention proposes a method for processing a welded steel pipe in which processing conditions for using the welded steel pipe as a bent pipe, which are limited to the range of the weld metal composition, are specified. (Background technology) Pipelines are an efficient method for transporting large volumes of oil, natural gas, etc., and many long-distance pipelines have been constructed around the world. There is a tendency to increase. The higher the pressure inside the pipe, the higher the strength required of the pipe, but in particular, when used in cold regions, not only strength but also high toughness at low temperatures is required, and steel plates require adjustment of chemical composition and special controlled rolling. By applying this method, we have obtained products that can almost satisfy the required performance. This type of steel pipe generally uses non-temperature high-strength steel sheets containing Nb, but the rolling temperature and reduction rate are controlled to ensure strength and toughness. After forming by a method such as a method, pipes are usually manufactured by double-sided single-layer submerged arc welding. By the way, curved pipes with the same outer diameter as the main line are used for river crossing sections and curved piping parts around pump stations, but these curved pipes, which were previously manufactured separately by forging or welding, are also used. Recently, there has been a growing trend to bend welded steel pipes as described above due to delivery time and cost considerations. (Problem) Although the above-mentioned welded steel pipes are usually processed at high temperatures from the viewpoint of bending workability, they have high strength and high toughness when as welded. As a result, the toughness deteriorates, especially in the weld metal, so preventing this is a major problem. Methods for obtaining weld metal with high strength and high toughness by so-called quenching-tempering treatment or normalizing treatment after welding have already been disclosed, for example, in Japanese Patent Publication Nos. 1987-19297 and 1981-19381. The chemical composition of the metal and heat treatment conditions are indicated, but in the case of bent pipe manufacturing, considerable processing strain occurs in each part of the steel pipe during bending, and phenomena that are unfavorable for toughness such as precipitation and structural changes occur. This will accelerate the deterioration of toughness. Therefore, it is difficult to solve this problem simply by applying the heat treatment conditions for straight pipes, and the heat treatment methods shown in the above publications are completely useless. It is necessary. (Motivation for the Invention) In view of the current situation, the inventors have developed a method that not only ensures the toughness of welded metal of welded steel pipes before processing, but also avoids the deterioration of toughness after forming bent pipes at high temperatures. A detailed study was conducted on the weld metal composition and processing conditions. As a result, in order to obtain a weld metal that has a yield strength of about 40 to 60 Kgf/ mm2 and a low-temperature toughness of about 7 Kgfm at -46℃ after forming an as-welded raw pipe and a bent pipe at high temperatures, it is necessary to After specifying the chemical composition, it was found that it was necessary to limit the heating temperature range and the elapsed time until the completion of bending in order to prevent coarsening of the γ grains during hot bending. It was also found that in order to simultaneously ensure strength and toughness, it is important to appropriately control the average cooling rate during the cooling process after processing. (Object of the Invention) The present invention not only can be used as a line pipe, but also can be easily processed into a curved pipe of the same diameter as a part of a pipeline without deterioration in strength and toughness. The purpose is to provide a method for processing welded steel pipes. (Structure of the invention) This invention includes C: 0.12wt% or less, Si: 0.10 to 0.50wt%, Mn: 0.80 to 2.30wt%, Al: 0.010 to 0.070wt%, Ni: 0.20 to 3.00wt%, Mo: 0.10 wt% or less, Ti: 0.015 to 0.050 wt%, and B: more than 0.0020 wt% to 0.0050 wt%, N: 0.010 wt% or less O: 0.025 to 0.050 wt%, and further contains 0.035 wt%.
% or less of Nb and 0.040wt% or less of V, and the remainder is iron and other contaminants that inevitably enter during welding. A welded steel pipe having a seam weld is heated. Processing of welded steel pipes characterized by performing hot secondary processing at a temperature of 850 to 1050°C for a holding time of 120 seconds or less, and then cooling to 300°C at an average cooling rate of 15 to 60°C/sec. It's a method. In this invention, the processing conditions after heating the welded steel pipe have the following important meaning in relation to the chemical composition of the weld metal. That is, regardless of whether or not it is subjected to hot secondary processing, the weld metal must have sufficient strength and low-temperature toughness as welded, and for this purpose, the lower the oxygen content, the better. However, in high-temperature heating, oxygen (oxide)
Since it has the effect of inhibiting grain growth, reducing the amount of oxygen excessively is not preferable from the viewpoint of toughness after bending heat treatment.
0.025~0.050% content and especially 850~1050℃
It is important to perform secondary processing within 120 seconds at a heating temperature in the range of . Note that bending at a temperature lower than 850°C has a large resistance to deformation, making it difficult to perform the bending process in a short time. In addition, controlled rolled steel plates containing Nb are generally used as the base material for welded steel pipes, but Nb is dissolved in the weld metal as it is being welded and does not have a decisive effect on the toughness of the weld metal, but after When Nb carbonitrides are precipitated as fine Nb carbonitrides by reheating, the toughness deteriorates significantly. Therefore, when heat-treating weld metal containing Nb and using it, care must be taken not to produce fine carbonitrides, but the upper limit of the heating temperature should be set at 1050°C and the upper limit of the amount of Nb in the weld metal. By setting Nb to 0.035%, it is possible to reduce toughness deterioration due to fine Nb precipitation during tempering. Next, in continuous cooling after heating, it is important to control the cooling rate until the transformation is completely completed, but since the transformation is almost completely completed by 300℃, the cooling rate after bending is 300°C. It is sufficient to consider temperatures up to ℃. If the average cooling rate from the heating temperature to 300°C is faster than 60°C/sec, the hardness of the weld metal will be too high, and even if tempering is performed as necessary, there will be little hardness loss, resulting in high strength. It becomes difficult to ensure sufficient toughness, and if the cooling rate is slower than 15°C/sec, coarse ferrite will form, making it difficult to ensure sufficient toughness and causing a significant decrease in strength. 300℃ even after completing processing quickly like this
It was discovered that it is necessary to control the cooling rate appropriately during the process, and that it is also necessary to regulate the composition of the weld metal accordingly. Of course, the tempering treatment after cooling may be carried out as necessary. In order to ensure the weld metal strength and low-temperature toughness of the welded steel pipe that has been bent as described above, the processing heat treatment conditions described above are necessary.
In addition to this, it is difficult to ensure low-temperature toughness at the -46°C level unless the chemical composition of the weld metal is regulated. Only by specifying the chemical composition of the weld metal and applying appropriate processing heat treatment conditions can weld metals with sufficient strength and low-temperature toughness both in the as-welded and post-process heat treatment states be obtained. Next, we will discuss the reasons for limiting the chemical composition of the weld metal. C: Under the above heat treatment conditions, if the C content exceeds 0.12%, high carbon martensite, which is harmful to toughness, will be generated during quenching (cooling), and toughness will not improve even after tempering. The amount of C needs to be 0.12% or less. Si: Si is an essential component that enters this type of weld metal from the base metal, etc., and is also important from the viewpoint of toughness measures.
A lower limit of 0.10% or more is required. If it exceeds 0.50%, it will not only be difficult to secure toughness in the as-welded state, but also the polygonal ferrite grains will become large even after processing heat treatment, making it impossible to obtain good toughness, so the Si content should be 0.10% to 0.50%. did. Mn: Mn is an essential element for deoxidizing weld metal, and is also important from the viewpoint of strength and toughness. If it is less than 0.80%, deoxidation tends to be insufficient and it is difficult to maintain the strength of weld metal. It's difficult.
If the content exceeds 2.30%, the hardenability becomes too large, resulting in a lath-like structure and the toughness deteriorates, so the upper limit should be 2.30%. Al: Al is used for deoxidizing and fixing nitrogen.
It is also a necessary element from the perspective of microstructural refinement, but if it is less than 0.010%, no effect can be expected, and if it exceeds 0.070%, the ferrite will become coarse and the toughness as welded will be significantly poor. Therefore, it is necessary to set it to 0.010 to 0.070%. Ni: Ni is an element that is effective in improving the strength and toughness of as-welded weld metal along with the above-mentioned Mn and later-mentioned Mo, but if it is less than 0.20%, no such effect can be expected. The above-mentioned effects of Ni remain even after processing and heat treatment, and it does not cause deterioration of toughness even when added in a wide range of amounts, making it an extremely effective element. However, if the amount added is too large, there is a risk of hot cracking occurring during welding, so the upper limit was set at 3.00%. Mo: Mo is also an effective element for increasing hardenability and improving the toughness of as-welded weld metal.Especially when added at the same time as Ti and B (described later), weld metal with extremely good toughness can be produced. can get. However, Mo tends to generate high carbon martensite during heat treatment, and the toughness does not improve even after tempering, so when considering the toughness after heat treatment, the upper limit of the amount added is 0.10%. Ti, B: Next, regarding Ti and B, the overall effect of these is not only when welding, but also when welding.
Even after processing heat treatment, fine grained ferrite is generated,
Since good low-temperature toughness can be obtained, we will discuss them together. The basic function of B is to suppress the precipitation of grain boundary ferrite generated at prior austenite grain boundaries, but this effect can no longer be expected if B becomes a nitride or oxide. By adding Ti, it is possible to suppress the nitridation and oxidation of B, and since Ti has the function of making ferrite grains finer, it is easy to ensure low-temperature toughness by adding Ti and B at the same time. ,
If the amount added is limited, this effect will not be lost even after processing heat treatment. If the amount of B is less than 0.0020%, grain boundary ferrite is likely to be formed, and if it exceeds 0.0050%, concentrated B polarization occurs at the grain boundaries, resulting in low toughness. On the other hand, regarding Ti, the amount to effectively utilize B is
It is 0.015 to 0.050%, and if it is less than 0.015%, it is difficult to obtain fine ferrite, and
If it exceeds 0.050%, the amount of solid solution Ti increases, resulting in low toughness. N: In order to prevent nitridation of B and to prevent deterioration of toughness due to solid solute N, it is necessary to limit the content to 0.010% or less. As for O:O, as mentioned above, it is necessary to set it to 0.020% to 0.050%, considering both the as-welded toughness and the toughness after processing heat treatment. Nb, V: Normally, a controlled rolled steel plate containing Nb and V is used as the base material for welded steel pipes, and these elements are contained in the weld metal by diluting the base material during welding. As welded, these elements are in a solid solution state and do not have a decisive effect on toughness, but
When finely precipitated during processing heat treatment and tempering process,
Toughness deteriorates significantly. In the case of the above processing heat treatment conditions, the Nb amount is 0.035
% or less, and if the V amount is 0.040% or less, it is possible to secure toughness even if one or more of these is contained, so the upper limits are set at 0.035% and 0.040%, respectively.
%. Note that P and S enter the weld metal as impurity elements, but since they are elements that deteriorate toughness, they are not a big deal. Within the component range of this invention, up to 0.020% is allowed. Examples of the present invention will be described below. Example 1 A 25.4 mm thick steel plate having the chemical composition shown in Table 1 was machined with a V-groove at an angle of 60° and a depth of 11 mm, and the wire shown in Table 2 and the flux shown in Table 3 were combined to generate a heat input of 68 kJ/ cm V-groove single-layer submerged arc welding was performed. In order to adjust the composition of the weld metal, welding was performed by spraying the necessary alloy components in appropriate amounts into the groove before welding. The amount of oxygen in the weld metal is determined by the basicity of the flux and the amount of deoxidizing elements in the base metal, wire, and dispersed alloy, but it was mainly changed by changing the fluxes used in combination.

【表】【table】

【表】【table】

【表】 表4は、溶接金属の化学組成と溶接まま状態で
の吸収エネルギ、硬さを示したものであるが、こ
れらの溶接金属を用いて加工熱処理条件の影響に
ついて検討した。
[Table] Table 4 shows the chemical composition of weld metals, absorbed energy and hardness in as-welded state. Using these weld metals, we investigated the influence of processing heat treatment conditions.

【表】【table】

【表】 まず加熱温度の影響に関し、表4中の溶接金属
No.3に750℃〜1150℃の加熱、保持時間60秒で各
加熱温度から300℃に至るまでの平均冷却速度が
30℃/secとなる熱処理を施しその後600℃で焼戻
し処理をしたときの−46℃における吸収エネルギ
変化を第1図に示す。 第1図から明らかなように850〜1050℃の範囲
で良好なじん性が得られる。850℃より低温では
部分的にしかオーステナイト化しないため、組織
が不均一となつてじん性は劣化する。また1050℃
より高温ではオーステナイト粒が粗大化してラス
状組織となるためぜい化し、適正な加熱温度は
850〜1050℃であることがわかる。 つぎに加熱保持時間の影響に関しては同じく表
4中No.3溶接金属に900℃、1050℃での保持時間
を20〜180秒に変化させて、各加熱温度から300℃
に至るまでの平均冷却速度が30℃/secとなる熱
処理を施し、その後600℃で焼戻し処理をしたと
きの−46℃における吸収エネルギ変化を第2図に
示す。 上記の加熱温度での保持時間が120秒以内であ
れば溶接金属の組織は微細なフエライトであるが
120秒を超えるとラス状組織が生じるためじん性
は劣化し、120秒内に加工熱処理を施す必要があ
ることがわかる。 第3図は加熱温度950℃、保持時間60秒のとき
950℃から300℃までの平均冷却速度を変化させた
場合の−46℃における吸収エネルギを示したもの
である。なお用いた溶接金属、焼戻し条件などは
前出の例と全く同じである。 第3図に示すごとく15〜60℃/secの範囲では
組織が良好で高じん性を示すのに対し、この範囲
外ではじん性が劣化している。 つぎに溶接金属中酸素量の影響に関し表4に示
した溶接金属を用い加熱温度950℃、保持時間60
秒950℃から300℃までの平均冷却速度30℃/sec
となる熱処理を施し、その後600℃で焼戻し処理
を行つたときの結果を第4図に示した。同図には
溶接ままでの結果も併記してある。 溶接ままでは酸素量が0.020〜0.050%の範囲で
良好な低温じん性が得られるのに対し、熱処理後
では0.025〜0.050%の範囲でしか良好なじん性が
得られなくなる。これは酸素量が少くなると加熱
冷却後ラス状組織となりやすいためであり、溶接
まま熱処理後の両方のじん性を考えると酸素量は
0.025%以上とする必要がある。いつぽう0.050%
を超えると酸化物が多くなりすぎ高じん性が得ら
れない。 以上この発明で規定した熱処理条件と溶接金属
の成分組成の関連について主として表4のNo.3に
ついて述べたが、同表の他の試料についてもほぼ
同様な挙動を示すことがたしかめられている。 実施例 2 表1に示した鋼板にV開先を付し表2、表3の
溶接材料を組合せて入熱量68kJ/cmのV溝一層
サブマージアーク溶接を行つた。なお溶接金属の
成分調整のため溶接前に開先内に必要な合金を適
宜適当量散布して溶接を行つた。溶接ままおよび
その後に950℃加熱、60秒保持後950℃〜300℃間
の平均冷却速度30℃/secで冷却して600℃で焼戻
し処理を行つた後の溶接金属の−46℃における吸
収エネルギと溶接金属化学組成を表5に示す。 表5においてこの発明の溶接金属A1〜A7で
は溶接ままおよび熱処理後の両方の状態で−46℃
における吸収エネルギがいずれも7Kgfm以上と
なつている。 これに対し比較例B1〜B7では両状態とも良好
なじん性が得られるものではない。
[Table] First, regarding the influence of heating temperature, weld metals in Table 4
No. 3 has an average cooling rate from each heating temperature to 300℃ with heating from 750℃ to 1150℃ and holding time of 60 seconds.
Figure 1 shows the change in absorbed energy at -46°C when heat treated at 30°C/sec and then tempered at 600°C. As is clear from FIG. 1, good toughness can be obtained in the range of 850 to 1050°C. At temperatures lower than 850°C, austenitization occurs only partially, resulting in an uneven structure and poor toughness. Also 1050℃
At higher temperatures, the austenite grains become coarser and form a lath-like structure, resulting in brittleness, and the appropriate heating temperature is
It can be seen that the temperature is 850-1050℃. Next, regarding the effect of heating holding time, we also applied No. 3 weld metal in Table 4 by changing the holding time at 900°C and 1050°C from 20 to 180 seconds, and from each heating temperature to 300°C.
Figure 2 shows the change in absorbed energy at -46°C when heat treatment was performed at an average cooling rate of 30°C/sec, followed by tempering at 600°C. If the holding time at the above heating temperature is within 120 seconds, the structure of the weld metal will be fine ferrite.
It can be seen that if the time exceeds 120 seconds, the toughness deteriorates due to the formation of a lath-like structure, and therefore it is necessary to perform processing heat treatment within 120 seconds. Figure 3 is when the heating temperature is 950℃ and the holding time is 60 seconds.
The figure shows the absorbed energy at -46°C when the average cooling rate is changed from 950°C to 300°C. The weld metal, tempering conditions, etc. used were exactly the same as in the previous example. As shown in FIG. 3, in the range of 15 to 60°C/sec, the structure is good and exhibits high toughness, whereas outside this range, the toughness deteriorates. Next, regarding the influence of the oxygen content in the weld metal, we used the weld metal shown in Table 4 at a heating temperature of 950°C and a holding time of 60°C.
Average cooling rate 30℃/sec from 950℃ to 300℃
Figure 4 shows the results of heat treatment followed by tempering at 600°C. The same figure also shows the results for the as-welded condition. As welded, good low-temperature toughness can be obtained with an oxygen content in the range of 0.020 to 0.050%, but after heat treatment, good toughness can only be obtained with an oxygen content in the range of 0.025 to 0.050%. This is because when the amount of oxygen is small, it is easy to form a lath-like structure after heating and cooling. Considering the toughness of both as-welded and after heat treatment, the amount of oxygen is
It needs to be 0.025% or more. 0.050%
If it exceeds 20%, there will be too much oxide and high toughness will not be obtained. The relationship between the heat treatment conditions specified in this invention and the composition of the weld metal has been mainly described above with respect to No. 3 in Table 4, but it has been confirmed that other samples in the same table exhibit almost the same behavior. Example 2 A V-groove groove was added to the steel plate shown in Table 1, and the welding materials shown in Tables 2 and 3 were combined to perform single-layer V-groove submerged arc welding with a heat input of 68 kJ/cm. In order to adjust the composition of the weld metal, an appropriate amount of the necessary alloy was sprinkled into the groove before welding. Absorbed energy at -46°C of weld metal as welded and after heating to 950°C, holding for 60 seconds, cooling at an average cooling rate of 30°C/sec between 950°C and 300°C, and tempering at 600°C. Table 5 shows the chemical composition of the weld metal. In Table 5, weld metals A1 to A7 of the present invention were -46°C both as welded and after heat treatment.
The absorbed energy in all cases is 7Kgfm or more. On the other hand, in Comparative Examples B1 to B7, good toughness was not obtained in either state.

【表】 注:アンダーラインは本発明の成分範囲からは
ずれていることを示す。
実施例 3 表6に示す溶接金属を有する外径600mm、肉厚
25.4mmのAPI5LX−X65試験管を2次加工として
曲率半径3000mmでの曲管加工を950℃加熱で120秒
以内に行い、950゜〜300℃間を平均30℃/secで冷
却した。また曲管加工部の一部を600℃にて焼戻
し処理を行い。加熱冷却まま部分と冷却後焼戻し
処理を行つた部分から丸棒引張試験片、衝撃試験
片を採取して、曲げ加工する前の値と比較した。 その結果を表7に示すが、この発明の条件を満
たす溶接金属では−46℃における吸収エネルギが
良好であるのに対し、比較した溶接金属では良好
なじん性が得られない。 引張強度は溶接まま、熱処理後とも60Kgf/mm2
以上は確保できた。
[Table] Note: Underlined items indicate components outside the scope of the present invention.
Example 3 Outer diameter 600 mm, wall thickness with weld metal shown in Table 6
A 25.4 mm API5LX-X65 test tube was subjected to secondary processing, and a curved tube with a radius of curvature of 3000 mm was heated at 950°C within 120 seconds, and cooled at an average rate of 30°C/sec between 950° and 300°C. In addition, a part of the curved pipe part was tempered at 600℃. Round bar tensile test pieces and impact test pieces were taken from the part that was left heated and cooled and the part that was tempered after cooling, and compared with the values before bending. The results are shown in Table 7. Weld metals that meet the conditions of the present invention have good absorbed energy at -46°C, while comparative weld metals do not have good toughness. Tensile strength is 60Kgf/ mm2 both as welded and after heat treatment.
We were able to secure more than that.

【表】【table】

【表】 (発明の効果) 以上のようにして、溶接鋼管を石油と天然ガス
などの輸送に供するパイプラインのラインパイプ
としての所要性能を充分に具備すさせ得るのはも
ちろん、該パイプライン中の曲管に充当する素材
として必要となる二次加工性が溶接金属の成分組
成の特定と加工条件の限定によつて充足され、こ
の発明の方法により曲管加工を行つた溶接鋼管は
−46℃における衝撃特性および十分な引張特性
を、該加工後にも持続することができるので、特
別仕様の鍛造曲管との間における納期調節の要も
なく、パイプラインの施工が有利に可能となる。
[Table] (Effects of the invention) As described above, it is possible to make welded steel pipes have sufficient performance as line pipes for pipelines for transporting oil, natural gas, etc. The welded steel pipe processed by the method of the present invention has a -46 Since the impact properties and sufficient tensile properties at °C can be maintained even after the processing, it is possible to advantageously construct pipelines without the need to adjust the delivery schedule between specially designed forged curved pipes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は表4に示した溶接金属のじん
性におよぼす熱履歴条件の影響について、第1図
は加熱温度、また第2図は900℃、1050℃におけ
る保持時間、第3図は加熱温度〜300℃間の冷却
速度、そして第4図は溶接金属酸素量との関係を
示すグラフである。
Figures 1 to 4 show the influence of thermal history conditions on the toughness of weld metal shown in Table 4. Figure 1 shows the heating temperature, Figure 2 shows the holding time at 900°C and 1050°C, and The figure is a graph showing the cooling rate between the heating temperature and 300° C., and FIG. 4 is a graph showing the relationship with the amount of oxygen in the weld metal.

Claims (1)

【特許請求の範囲】 1 C:0.12wt%以下、 Si:0.10〜0.50wt%、 Mn:0.80〜2.30wt%、 Al:0.010〜0.070wt%、 Ni:0.20〜3.00wt%、 Mo:0.10wt%以下、 Ti:0.015〜0.050wt%、および B:0.0020wt%をこえて0.0050wt%までを含有
し、 N:0.010wt%以下 O:0.025〜0.050wt%であつてさらに0.035wt
%以下のNbおよび0.040wt%以下のVのうち
1種以上を含み、残部は溶接上不可避的に入
つてくる混入成分および鉄の、溶接金属組成
に成る継目溶接部を有する溶接鋼管を、加熱
温度850〜1050℃において120秒以内の保持時
間で熱間二次加工を施し、その後300℃に至
る平均冷却速度を15〜60℃/secの範囲で冷
却することを特徴とする溶接鋼管の加工方
法。
[Claims] 1 C: 0.12wt% or less, Si: 0.10 to 0.50wt%, Mn: 0.80 to 2.30wt%, Al: 0.010 to 0.070wt%, Ni: 0.20 to 3.00wt%, Mo: 0.10wt % or less, Ti: 0.015 to 0.050wt%, and B: more than 0.0020wt% to 0.0050wt%, N: 0.010wt% or less, O: 0.025 to 0.050wt%, and further 0.035wt.
% or less of Nb and 0.040wt% or less of V, and the remainder is iron and other contaminants that inevitably enter during welding. A welded steel pipe having a seam weld is heated. Processing of welded steel pipes characterized by performing hot secondary processing at a temperature of 850 to 1050°C for a holding time of 120 seconds or less, and then cooling to 300°C at an average cooling rate of 15 to 60°C/sec. Method.
JP11378684A 1984-06-05 1984-06-05 Method for working welded steel tube Granted JPS60258411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11378684A JPS60258411A (en) 1984-06-05 1984-06-05 Method for working welded steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11378684A JPS60258411A (en) 1984-06-05 1984-06-05 Method for working welded steel tube

Publications (2)

Publication Number Publication Date
JPS60258411A JPS60258411A (en) 1985-12-20
JPH0211654B2 true JPH0211654B2 (en) 1990-03-15

Family

ID=14621056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11378684A Granted JPS60258411A (en) 1984-06-05 1984-06-05 Method for working welded steel tube

Country Status (1)

Country Link
JP (1) JPS60258411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161500A (en) * 2010-02-12 2011-08-25 Nippon Steel Corp Method for producing spiral steel tube, and spiral steel tube

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0714534B2 (en) * 1985-04-08 1995-02-22 株式会社日立製作所 High frequency heating bending steel pipe manufacturing method
JP4581275B2 (en) * 2000-03-31 2010-11-17 Jfeスチール株式会社 Elementary pipe for high-strength welded bend steel pipe with excellent weld toughness and manufacturing method thereof
JP4495060B2 (en) * 2005-10-13 2010-06-30 新日本製鐵株式会社 Welded joints for refractory structures with excellent high-temperature strength and toughness
CN106191670A (en) * 2016-07-11 2016-12-07 山东钢铁股份有限公司 A kind of ocean engineering low temperature resistant hot-rolled steel channel and manufacture method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161500A (en) * 2010-02-12 2011-08-25 Nippon Steel Corp Method for producing spiral steel tube, and spiral steel tube

Also Published As

Publication number Publication date
JPS60258411A (en) 1985-12-20

Similar Documents

Publication Publication Date Title
JP4853575B2 (en) High strength steel pipe for low temperature excellent in buckling resistance and weld heat affected zone toughness and method for producing the same
US8926766B2 (en) Low yield ratio, high strength and high uniform elongation steel plate and method for manufacturing the same
JP5055774B2 (en) A steel plate for line pipe having high deformation performance and a method for producing the same.
JP2013204103A (en) High strength welded steel pipe for low temperature use having superior buckling resistance, and method for producing the same, and method for producing steel sheet for high strength welded steel pipe for low temperature use having superior buckling resistance
JP3550726B2 (en) Method for producing high strength steel with excellent low temperature toughness
JP3546726B2 (en) Method for producing high-strength steel plate with excellent HIC resistance
JPH04268016A (en) Production of high tensile strength steel sheet for door guide bar having excellent crushing characteristic
JPS5891123A (en) Production of seamless steel pipe for 80kg/mm2 class structure having excellent toughness of weld zone
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JPS59232225A (en) Manufacture of bent pipe with high tension and toughness
JPH0211654B2 (en)
JPH1180833A (en) Production of steel sheet for high strength line pipe excellent in hic resistance
JPS62107023A (en) Working method for welded steel pipe
JPS602364B2 (en) Manufacturing method of non-thermal high tensile strength steel plate with excellent low-temperature toughness
JPS58100624A (en) Production of ni steel having high performance for stopping brittle cracking
JPH04180537A (en) High tensile strength steel plate for door guard bar excellent in collapse strength
KR910003883B1 (en) Making process for high tension steel
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JPH07268457A (en) Production of thick steel plate for line pipe, having high strength and high toughness
JPS63179019A (en) Manufacture of high tension steel plate having low yield ratio
JPH0247525B2 (en)
JPS6117885B2 (en)
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JPH02190423A (en) Manufacture of steel plate having excellent ctod properties in weld zone
JPS59150019A (en) Production of seamless steel pipe having high toughness

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees