JPS61112384A - Solar battery and manufacture thereof - Google Patents

Solar battery and manufacture thereof

Info

Publication number
JPS61112384A
JPS61112384A JP59233072A JP23307284A JPS61112384A JP S61112384 A JPS61112384 A JP S61112384A JP 59233072 A JP59233072 A JP 59233072A JP 23307284 A JP23307284 A JP 23307284A JP S61112384 A JPS61112384 A JP S61112384A
Authority
JP
Japan
Prior art keywords
layer
photovoltaic
electrode
resin
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59233072A
Other languages
Japanese (ja)
Inventor
Hiroshi Okaniwa
宏 岡庭
Kenji Nakatani
健司 中谷
Mitsuaki Yano
矢野 満明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP59233072A priority Critical patent/JPS61112384A/en
Publication of JPS61112384A publication Critical patent/JPS61112384A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve productivity, by bonding at least one of electrode layers to a photovoltaic layer by a conducting bonding layer, and separately preparing the photovoltaic layer and the electrode layer. CONSTITUTION:An electrode sheet, which is separately prepared, is bonded to a semiconductor layer of a photovoltaic layer by a conducting bonding agent. As the conducting bonding layer, a dispersing type conducting macromolecular- resin bonding agent prepared by the following method is used: conducting oxide fine particles of tin oxide, indium oxide, titanium oxide and the like are dispersed into a macromolecular resin for binder such as polyester resin, acrylic resin, polyvinyl resin, epoxy resin, polyurethane resin, silicon resin and the like. It is desirable to have resistivity of 10<6>cmOMEGA or less in order that a light current generated in the semiconductor photovoltaic layer is transmitted to electrode layers without loss by said conducting bonding layer.

Description

【発明の詳細な説明】 [利用分野] 本発明は半導体を光起電力層とする太陽電池及びその製
造方法に関し、更に詳しくは歩留りが良く且つ生産性が
良い太陽電池及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to a solar cell having a semiconductor as a photovoltaic layer and a method for manufacturing the same, and more particularly to a solar cell with high yield and productivity and a method for manufacturing the same.

[従来技術] 半導体を光起電力層とする太陽電池としては、単結晶S
i、多結晶S1.非晶質S1を起電力層としたシリコン
系太陽電池、 GLI AS 、  Ill P。
[Prior art] As a solar cell using a semiconductor as a photovoltaic layer, single crystal S
i, polycrystalline S1. Silicon solar cell with amorphous S1 as an electromotive force layer, GLI AS, Ill P.

Cds/Cu 2 S、 Cd Te /Cd S等の
化合物半導体を起電力層とした太陽電池など各種のもの
が提案されている。中でも非晶質シリコン太陽電池はシ
ランガス、ジシランガス等のグロー放電分解法によって
低い基板温度で広い面積に均一に連続的に堆積出来、又
基板として高分子フィルム、ガラス、セラミック、金属
フォイル等の各種基板が選択出来、コスト的に非常に有
利な為広く研究されている。しかしながら、製造上以下
の問題がある。 非晶質シリコン半導体太陽電池の基本
構造としては、上記各種基板上に設けられた金属電極層
/非晶質半導体層/透明電極層の積層構造が主として用
いられ、金属電極層、非晶質半導体層。
Various types of solar cells have been proposed in which an electromotive force layer is made of a compound semiconductor such as Cds/Cu 2 S or Cd Te /Cd 2 S. Among these, amorphous silicon solar cells can be deposited uniformly and continuously over a wide area at low substrate temperatures by using glow discharge decomposition of silane gas, disilane gas, etc., and can also be deposited on various substrates such as polymer films, glass, ceramics, and metal foils. can be selected, and it is widely researched because it is very advantageous in terms of cost. However, there are the following manufacturing problems. The basic structure of an amorphous silicon semiconductor solar cell is mainly a laminated structure of metal electrode layer/amorphous semiconductor layer/transparent electrode layer provided on the various substrates mentioned above. layer.

透明電極層あるいは透明電極層、非晶質半導体層。Transparent electrode layer or transparent electrode layer, amorphous semiconductor layer.

金属電極層の順に真空蒸着法、スパッタ法などの物理的
方法、グロー放電分解法、光CVD法などの化学的方法
等の膜形成手段を用いて順次各層上に堆積されている。
Metal electrode layers are sequentially deposited on each layer using a film forming method such as a physical method such as a vacuum evaporation method or a sputtering method, or a chemical method such as a glow discharge decomposition method or a photo-CVD method.

たとえば金爪電極朝/非晶質半導体/透明電極層に、順
次堆積する場合を例にとると、同一基板上で太陽電池を
パターン化してモジュールを作成する場合にはマスクを
用いた蒸着法、スパッタ法や、レジストを用いた乾式、
あるいは湿式のエツチング法によって透明電極層をパタ
ーン化する方法がとられてきた。
For example, in the case of sequentially depositing a metal nail electrode layer, an amorphous semiconductor layer, and a transparent electrode layer, if a module is created by patterning solar cells on the same substrate, a vapor deposition method using a mask, sputtering method, dry method using resist,
Alternatively, a method has been adopted in which the transparent electrode layer is patterned by a wet etching method.

ところでマスクを用いたバターニングの場合。By the way, in the case of buttering using a mask.

金属マスク等を直接非晶質半導体層表面に接触させねば
ならない為、非晶質半導体層自身に損傷を与えやすく、
歩留りを低下させる問題がある。さらに連続的に広幅、
長尺の大面積太陽電池を作成するには多数の開口部を有
する広幅、長尺のマスクを該基板ゝ密着させ1正確に移
動させな1.f h tf    、i、ならず、パタ
ーンずれ等の問題がある。
Since a metal mask or the like must be brought into direct contact with the surface of the amorphous semiconductor layer, the amorphous semiconductor layer itself is easily damaged.
There is a problem of lowering yield. Continuously wider,
In order to create a long, large-area solar cell, a wide and long mask with many openings is brought into close contact with the substrate and moved accurately.1. f h tf , i, and there are problems such as pattern deviation.

一方しシストを用いたパターンニングの場合も、非晶質
半導体層自身に損傷を与えやすいばかりでなく、T程的
にbレジスト添付、エツチング、レジスト除去のごとく
、複2IhT稈を必要とする問題がある。
On the other hand, in the case of patterning using cysts, not only is it easy to damage the amorphous semiconductor layer itself, but there are also problems that require multiple IhT culms, such as resist attachment, etching, and resist removal. There is.

[発明の目的] 本発明の目的はかかる問題点を解決し、生産性良く且つ
歩留りの良い太陽電池及びその製造方法を提供すること
にある。
[Object of the Invention] An object of the present invention is to solve the above problems and provide a solar cell with high productivity and high yield, and a method for manufacturing the same.

[発明の構成] 上述の目的は以下の本発明により達成される。[Structure of the invention] The above objects are achieved by the invention as follows.

すなわら本発明は、半導体からなる光起電力層と、光起
電力層の両面に設けられた少なくとも一方が透明な第1
及び第2の電極層とを有する太陽電池において、前記電
極層の少なくとも一方が前記光起電力層に導電性接着層
により接合されていることを特徴とする太陽電池を第1
発明とし、第1発明の太陽電池を製造するに際し、導電
性接着層により接合される電極と光起電力層若しくは電
極層上に光起電力層を積層した光起電力積層体とを予め
作成し、次いで両者を導電性接着層により接合すること
を特徴とする太陽電池の製造方法を第2発明とするもの
である。
In other words, the present invention provides a photovoltaic layer made of a semiconductor, and a first layer provided on both sides of the photovoltaic layer, at least one of which is transparent.
and a second electrode layer, wherein at least one of the electrode layers is bonded to the photovoltaic layer by a conductive adhesive layer.
When manufacturing the solar cell of the first invention, an electrode and a photovoltaic layer or a photovoltaic layer formed by laminating a photovoltaic layer on an electrode layer are prepared in advance. A second invention provides a method for manufacturing a solar cell, which is characterized in that the solar cells are then bonded together using a conductive adhesive layer.

上述の本発明は、良好な電気的接合を得るためには光起
電力層の半導体層上に直接電極層を膜形成手段等により
形成するのが必須であるとの従来の知見に反し、半導体
層上に導電性接着剤により別途作成した電極シートを接
着することにより、驚くべきことに従来の直接積層した
太陽電池に対し遜色のない性能を有する太陽電池が得ら
れることを見出し、なされたものである。
The present invention described above is contrary to the conventional knowledge that it is essential to form an electrode layer directly on the semiconductor layer of the photovoltaic layer by a film forming means in order to obtain a good electrical connection. It was discovered that by adhering a separately prepared electrode sheet onto the layer using a conductive adhesive, it was surprisingly possible to obtain a solar cell with performance comparable to that of conventional directly laminated solar cells. It is.

上述の構成から本発明は以下の種々の作用効果を奏する
From the above-described configuration, the present invention has the following various effects.

すなわら、光起電力層と電極層を全く独立に並行して作
製できるので、従来に比し生産性が大巾に上昇すると共
に、光起電力層と電極層とを独立に品質管理できると共
に前述したパターン化に伴なう問題もないので歩留りも
大巾に上昇する。
In other words, since the photovoltaic layer and the electrode layer can be fabricated completely independently and in parallel, productivity is greatly increased compared to conventional methods, and the quality of the photovoltaic layer and electrode layer can be controlled independently. At the same time, since there are no problems associated with patterning as described above, the yield can be greatly increased.

また、本発明は電極層を光起電力層の半導体層とは無関
係に別途基板上に形成する為、真空蒸着法をはじめとす
る各種の電極形成法が利用出来、広幅、長尺の大面積の
太陽電池の製造に際し連続化が容易である。又電極層の
パターン化において半導体層に損傷を与える為に従来使
用することが困難であったレーザスクライブ法をはじめ
としてマスク蒸着法等の種々の方法で容易に形成可能で
、太陽電池のパターン化も容易に出来る。
In addition, in the present invention, since the electrode layer is formed on a separate substrate independently of the semiconductor layer of the photovoltaic layer, various electrode formation methods including vacuum evaporation can be used. Continuation is easy when manufacturing solar cells. In addition, the electrode layer can be easily formed using various methods such as the laser scribing method, which was difficult to use in the past due to damage to the semiconductor layer, as well as the mask evaporation method, and is useful for patterning solar cells. can also be done easily.

さらに、導電性接着層を介して接合させる電極層と光起
電力積層体との基板を個々に選択することができるので
、太陽電池を適用する為に必要な各用途に適した表面保
護能、耐久性能を形成出来る。
Furthermore, since it is possible to individually select the substrates for the electrode layer and photovoltaic laminate to be bonded via the conductive adhesive layer, the surface protection ability suitable for each application required for applying the solar cell, Durable performance can be created.

以上から、本発明は、電極層、光起電力層が薄膜からな
るものに、生産性等から特に有利である。
From the above, the present invention is particularly advantageous for those in which the electrode layer and the photovoltaic layer are formed of thin films in terms of productivity and the like.

なお、ここで薄膜には、リボン、シート、箔、フィルム
等が含まれる。
Note that the thin film herein includes ribbons, sheets, foils, films, and the like.

又、導電性接着層による接合に際しては、生産性面から
、接合する電極層と光起電力層若しくは光起電力積層体
とを移送手段により移送しつつ、連続的に行なうことが
有利である。この際、前記電極層と光起電力層若しくは
光起電力積層体とを別々の長尺基板上に形成するように
すると、前述の点と合せ、各層の形成から最終形態の製
品近くまで連続的製造が出来、非常に生産性の良いプロ
セスが得られる。
Further, when bonding using the conductive adhesive layer, from the viewpoint of productivity, it is advantageous to carry out the bonding continuously while transferring the electrode layer and the photovoltaic layer or photovoltaic laminate to be bonded using a transfer means. At this time, if the electrode layer and the photovoltaic layer or the photovoltaic laminate are formed on separate long substrates, in addition to the above point, it is possible to continuously form the electrode layer and the photovoltaic layer or the photovoltaic laminate from the formation of each layer to the final product. It can be manufactured and a very productive process can be obtained.

ところで本発明の光起電力層の半導体層としては結晶シ
リコン、多結晶シリコン、非晶質シリコン、ガリウム砒
素、インジュームリン、Cd S/CU 2 S、Cd
 Te /Cd Sなどの■族、 I[−VT族、I−
V族半導体層が用いられる。
By the way, as the semiconductor layer of the photovoltaic layer of the present invention, crystalline silicon, polycrystalline silicon, amorphous silicon, gallium arsenide, indulumin, Cd S/CU 2 S, Cd
■group such as Te/CdS, I[-VT group, I-
A group V semiconductor layer is used.

電極層としては金属を主とする通常の電極層の場合、A
n、A(1、Au 、Pt 、Cu 、Ni 。
In the case of a normal electrode layer mainly made of metal, A
n, A(1, Au, Pt, Cu, Ni.

Cr、Fe、Mo、W、Ti 、Csの金属単体および
/またはそれらの合金金属層の単層および/または多層
積層膜が適用され、必要に応じて透明導電層を積層され
てなる電極層も適用される。なお該電極層の形成にはス
パッタリング法、真空蒸着法等の物理的方法、メッキ等
の化学的方法、又金属フィルムをラミネートして設ける
方法等呼々の製法が適用出来る。          
        パ1電極層が透明電極層である場合に
は酸化インジューム、酸化錫、錫酸カドニウム、酸化チ
タン等の導電性酸化物、AU 、Pt 、Pd等の薄層
金属膜、A11lを主成分とする薄層を導電性酸化物層
でサンドインチ状に積層した導電性積層体等が用いられ
る。これらの透明電極層は真空蒸着法、スパッタリング
法など公知の方法によって形成出来、10000Ω/口
以下の表面抵抗、好ましくは1000Ω/口以下の表面
抵抗を有し、可視光での光透過率が50%以上であるこ
とが望ましい。大面積太陽電池を形成する時には、透明
電極層での抵抗による出力損失をさける為、くし形パタ
ーンの良導電性金属層を収集電極として、基板/透明電
極層界面あるいは透明電極層表面に設けることも出来る
Single-layer and/or multi-layer laminated films of single metals such as Cr, Fe, Mo, W, Ti, and Cs and/or their alloy metal layers are applied, and if necessary, transparent conductive layers are laminated as electrode layers. Applicable. Note that various manufacturing methods can be applied to form the electrode layer, such as a physical method such as a sputtering method and a vacuum evaporation method, a chemical method such as plating, and a method in which a metal film is laminated.
When the P1 electrode layer is a transparent electrode layer, the main components are conductive oxides such as indium oxide, tin oxide, cadmium stannate, and titanium oxide, thin metal films such as AU, Pt, and Pd, and A11L. A conductive laminate, etc., in which thin layers of conductive oxide layers are laminated in a sandwich-like manner, is used. These transparent electrode layers can be formed by known methods such as vacuum evaporation and sputtering, and have a surface resistance of 10,000 Ω/hole or less, preferably 1,000 Ω/hole or less, and a visible light transmittance of 50. % or more is desirable. When forming a large area solar cell, in order to avoid output loss due to resistance in the transparent electrode layer, a comb-shaped highly conductive metal layer is provided as a collection electrode at the substrate/transparent electrode layer interface or on the surface of the transparent electrode layer. You can also do it.

又透明電極層を堆積した積層体の基板としては高分子フ
ィルム、高分子樹脂板、ガラス等の透光性材料用いられ
る。
Further, as the substrate of the laminate on which the transparent electrode layer is deposited, a light-transmitting material such as a polymer film, a polymer resin plate, or glass is used.

本発明の導電性接着層としてはポリエステル樹脂、アク
リル樹脂、ポリビニル系樹脂、エポキシ系樹脂、ポリ・
フレタン系樹脂、シリコーン系樹脂等のバインダー用の
高分子樹脂 に酸化錫1M化インジュウム、酸化チタン
等の酸化物導電性微粒子を分散さけた分散型の導電性高
分子樹脂接着剤が用いられる。又ポリビニルカルバゾー
ル等の導電性高分子樹脂も使用出来る。さらに半田等の
低融点金属薄層を接着層として利用することも可能であ
る。接着力、耐久性等の面からは、導電性高分子樹脂、
特に分散型の導電性高分子樹脂が、電気抵抗面からは低
融点金属薄層が好ましく、用途に応じて選定する。これ
らの導電性高分子樹脂はスピナー法、バーコード法、ド
クターブレード法。
The conductive adhesive layer of the present invention may be polyester resin, acrylic resin, polyvinyl resin, epoxy resin, polyester resin, acrylic resin, polyvinyl resin, epoxy resin, or
A dispersion-type conductive polymer resin adhesive is used in which conductive fine particles of an oxide such as 1M indium tin oxide or titanium oxide are dispersed in a polymer resin for a binder such as a Frethane resin or a silicone resin. Further, conductive polymer resins such as polyvinyl carbazole can also be used. Furthermore, it is also possible to use a thin layer of a low melting point metal such as solder as an adhesive layer. In terms of adhesion and durability, conductive polymer resin,
In particular, a dispersed conductive polymer resin is preferably a thin layer of a low melting point metal from the viewpoint of electrical resistance, and is selected depending on the application. These conductive polymer resins can be used using the spinner method, barcode method, and doctor blade method.

スクリーン印刷法等の方法を用いて接合する電(部層あ
るいは/また半導体層表面に塗布する。半導体層の損傷
発生を少なくする為には電極層表面に塗付するのが好ま
しい。この導電性接着層が半導体光起電力層で発生した
光電流を電極層に損失なく伝達する役割をはだす為には
106cmΩ以下の抵抗率である事が望ましい。なお、
接着層の厚みは特に限定されないが、接着力、耐久性、
電気抵抗。
It is applied to the electrode layer and/or the surface of the semiconductor layer to be bonded using a method such as screen printing.In order to reduce damage to the semiconductor layer, it is preferable to apply it to the surface of the electrode layer. In order for the adhesive layer to perform the role of transmitting the photocurrent generated in the semiconductor photovoltaic layer to the electrode layer without loss, it is desirable that the adhesive layer has a resistivity of 106 cmΩ or less.
The thickness of the adhesive layer is not particularly limited, but the adhesive strength, durability,
electrical resistance.

光透過性等多くの因子に関係し実験的に決める必要があ
るが、通常は0.01〜10μの範囲で選定される。
Although it is related to many factors such as light transmittance and needs to be determined experimentally, it is usually selected in the range of 0.01 to 10μ.

又該導電性接着層もレーザスクライブ法、エツヂレグ法
等よるパターン化、あるいはスクリーン印刷ににるパタ
ーン化塗付によって、電導領域を分割することが可能で
ある。該導電性接着層を設けた電極層、半導体層とを重
ね合わせ、又各層がパターン化されている場合は各パタ
ーンを適切に位置合わせしてラミネートする事によって
本発明の太陽電池を形成出来る。
Further, the electrically conductive adhesive layer can also be divided into electrically conductive regions by patterning using a laser scribing method, edge leg method, etc., or by patterning coating using screen printing. The solar cell of the present invention can be formed by laminating the electrode layer provided with the conductive adhesive layer and the semiconductor layer, or, if each layer is patterned, properly aligning each pattern and laminating them.

以下実施例をあげ、本発明を説明する。The present invention will be explained below with reference to Examples.

[実施例1 金属電極層上に光起電力層として非晶質半導体層を積層
した光起電力積層体の基板として厚さ100μmのポリ
エステルフィルムを用いた。このポリエステルフィルム
上に金属電極層としてアルミニウム層を0.4μmの厚
さに、さらにステンレス鋼層を100人の厚さに連続ス
パッタ装置を用いて連続的に堆積した。
[Example 1] A polyester film with a thickness of 100 μm was used as a substrate of a photovoltaic laminate in which an amorphous semiconductor layer was laminated as a photovoltaic layer on a metal electrode layer. On this polyester film, an aluminum layer was continuously deposited as a metal electrode layer to a thickness of 0.4 μm, and a stainless steel layer was further deposited to a thickness of 100 μm using a continuous sputtering device.

非晶質半導体層として非晶質シリコン層を特開昭59−
34668号公報に開示のものと同様な内部電極型の3
室分離方式の高周波(13,56MH7)グロー放電装
置を用いて前記金属電極層上に以下のようにして設()
た。すなわら、巻出し室に前記ポリエステルフィルム基
板上に金属電極層を形成した電極基板を装着し、巻出し
Tと反応室との間に設けたプレスパツタ室で215°C
に該基板を加熱しながらアルゴンガス又は/及び水素ガ
スを導入して1.0tOrrの各ガス雰囲気下で5〜3
0wの高周波電力を印加し前記基板のプレスパツタリン
グを行ってクリーニングを行う。
An amorphous silicon layer is used as an amorphous semiconductor layer in JP-A-59-
3 of the internal electrode type similar to that disclosed in Publication No. 34668.
A high-frequency (13,56MH7) glow discharge device with a chamber separation method was used to set the metal electrode layer on the metal electrode layer as follows ().
Ta. That is, the electrode substrate in which a metal electrode layer was formed on the polyester film substrate was mounted in the unwinding chamber, and heated at 215°C in a press sputtering chamber provided between the unwinding T and the reaction chamber.
While heating the substrate, argon gas and/or hydrogen gas was introduced, and 5 to 3
Cleaning is performed by applying high frequency power of 0 W and pre-sputtering the substrate.

次にシランガスとシランガスに対して1%濃度のシボラ
ンガスを導入した1 torrの該ガス雰囲気下のP型
反応室でグロー放電分解により該基板上に厚さ250人
のP型の非晶質シリコン層を設ける。
Next, a P-type amorphous silicon layer with a thickness of 250 nm was formed on the substrate by glow discharge decomposition in a P-type reaction chamber under a gas atmosphere of 1 torr in which silane gas and ciborane gas at a concentration of 1% of the silane gas were introduced. will be established.

引続いてシランガス単独でi型反応室においてi型の非
晶質シリコン層を厚5000人積層する。次に、シラン
ガスとシランガスに対して1%のホスフィンガス、さら
に水素ガスを導入したn型反応室において微結晶層を含
んだn型の非晶質シリコ   1゛1ン層を厚さ200
A設け、ポリエステルフィルム/An/ss/pin型
非晶質シリコン積層体を形成する。このように所定の光
起電力積層体を得た。
Subsequently, an i-type amorphous silicon layer with a thickness of 5,000 layers is deposited in an i-type reaction chamber using silane gas alone. Next, in an n-type reaction chamber into which silane gas, 1% phosphine gas relative to the silane gas, and hydrogen gas were introduced, an n-type amorphous silicon 1-1 layer containing a microcrystalline layer was formed to a thickness of 200 mm.
A is provided to form a polyester film/An/ss/pin type amorphous silicon laminate. In this way, a predetermined photovoltaic laminate was obtained.

一方透明電極層は以下のようにして作成した。On the other hand, the transparent electrode layer was created as follows.

すなわら、同じ100μm厚のポリエステルフィルムを
基板としてスパッタ、装置内に装着し、10逼torr
に排気しながら50℃に加熱する。その後アルゴンガス
を導入し3X 1O−3torrの雰囲気下で、酸化イ
ンジュームと酸化錫の混合酸化物ターゲットからスパッ
タリングして厚さ 700人の錫をドープした酸化イン
ジューム層をポリエステルフィルム上に設けて、所定の
透明電極層を得た。
In other words, the same 100 μm thick polyester film was sputtered as a substrate, installed in the equipment, and heated at 10 torr.
Heat to 50°C while evacuating. Then, argon gas was introduced and a tin-doped indium oxide layer with a thickness of 700 mm was formed on the polyester film by sputtering from a mixed oxide target of indium oxide and tin oxide under an atmosphere of 3X 1O-3 torr. , a predetermined transparent electrode layer was obtained.

導電性接着層としては酸化錫微粒子をポリエステル系樹
脂バインダー中に分散した導電性高分子樹脂をバーコー
ド法により厚さ1μで前記透明電極層の酸化インジュー
ム層上に塗イhした。
As a conductive adhesive layer, a conductive polymer resin in which fine particles of tin oxide were dispersed in a polyester resin binder was coated to a thickness of 1 μm on the indium oxide layer of the transparent electrode layer using a bar code method.

この透明電極層/導電性樹脂層の電極積層体をYAGレ
ーザ−スクライブ法を用いて1 cm角にバターニング
し10 (IAIの電気的に分離された領域を形成した
This electrode laminate of transparent electrode layer/conductive resin layer was patterned into 1 cm squares using a YAG laser scribing method to form electrically isolated regions of 10 (IAI).

次に、前記光起電力積図体と電極積層体をその非晶質シ
リコン層と導電性樹脂層を密着する様に重ね合わせ、1
80℃に加熱された加熱ローラーからなるラミネーター
装置を用いてラミネートし、前記2つの積層体を接合さ
せ、太陽電池を製作した。この様にして得た太陽電池を
600ルツクスの蛍光燈下で測定した結果蛍光燈下での
変換効率11.5%であった。その他の詳細データを表
1に示す。
Next, the photovoltaic laminate and the electrode laminate are stacked so that the amorphous silicon layer and the conductive resin layer are in close contact with each other.
The two laminates were laminated using a laminator device consisting of heated rollers heated to 80° C., and the two laminates were joined to produce a solar cell. The solar cell thus obtained was measured under a fluorescent light of 600 lux, and the conversion efficiency under fluorescent light was 11.5%. Other detailed data are shown in Table 1.

表1 ここで生存率とは開放電圧が0.5V以上を示した前記
1cm角の太陽電池10個に対する割合を表わす。
Table 1 Here, the survival rate represents the ratio to the 10 1 cm square solar cells having an open circuit voltage of 0.5 V or more.

表1の結果は本発明の太陽電池が十分な性能を有し、従
来例に比し遜色ないことを示している。
The results in Table 1 show that the solar cell of the present invention has sufficient performance and is comparable to conventional examples.

Claims (1)

【特許請求の範囲】 1、半導体からなる光起電力層と、光起電力層の両面に
設けられた少なくとも一方が透明な第1及び第2の電極
層とを具備した太陽電池において、前記電極層の少なく
とも一方が前記光起電力層に導電性接着層により接合さ
れていることを特徴とする太陽電池。 2、前記導電性接着層が導電性高分子樹脂層である特許
請求の範囲第1項記載の太陽電池。 3、前記導電性高分子樹脂層が導電性酸化物、金属又は
これらの混合物の微粒子を分散させて導電性を付与をし
た高分子樹脂層である特許請求の範囲第2項記載の太陽
電池。 4、半導体からなる光起電力層と光起電層の両面に設け
られた少なくとも一方が透明な第1及び第2の電極層を
具備し、前記電極層の一方が前記光起電力層に導電性接
着層により接合された太陽電池の製造方法において、導
電性接着層により接合される電極と、光起電力層若しく
は電極層上に光起電力層を積層した光起電力積層体とを
予め作製し、次いで両者を導電性接着層により接合する
ことを特徴とする太陽電池の製造方法。 5、前記光起電力層若しくは光起電力積層体と前記電極
を移送手段により移送しつつ、導電性接着層により前記
光起電力層若しくは光起電力積層体に前記電極を接合す
る特許請求の範囲第4項記載の太陽電池の製造方法。 6、長尺基板上に前記光起電力層若しくは光起電力積層
体を作製すると共に前記電極を別の長尺基板上に作製し
、長尺基板を移送しつつ、接合する特許請求の範囲第5
項記載の太陽電池の製造方法。
[Claims] 1. A solar cell comprising a photovoltaic layer made of a semiconductor, and first and second electrode layers, at least one of which is transparent, provided on both sides of the photovoltaic layer, wherein the electrode A solar cell characterized in that at least one of the layers is bonded to the photovoltaic layer by a conductive adhesive layer. 2. The solar cell according to claim 1, wherein the conductive adhesive layer is a conductive polymer resin layer. 3. The solar cell according to claim 2, wherein the conductive polymer resin layer is a polymer resin layer imparted with conductivity by dispersing fine particles of a conductive oxide, metal, or a mixture thereof. 4. A photovoltaic layer made of a semiconductor and first and second electrode layers, at least one of which is transparent, provided on both sides of the photovoltaic layer, and one of the electrode layers is electrically conductive to the photovoltaic layer. In a method for manufacturing a solar cell bonded by a conductive adhesive layer, an electrode to be bonded by a conductive adhesive layer and a photovoltaic layer or a photovoltaic laminate in which a photovoltaic layer is laminated on an electrode layer are prepared in advance. and then bonding the two using a conductive adhesive layer. 5. A claim in which the electrode is bonded to the photovoltaic layer or photovoltaic laminate by a conductive adhesive layer while the photovoltaic layer or photovoltaic laminate and the electrode are transferred by a transfer means. 4. The method for manufacturing a solar cell according to item 4. 6. The photovoltaic layer or the photovoltaic laminate is produced on a long substrate, and the electrode is produced on another long substrate, and the long substrate is transferred and bonded. 5
2. Method for manufacturing a solar cell as described in Section 1.
JP59233072A 1984-11-07 1984-11-07 Solar battery and manufacture thereof Pending JPS61112384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59233072A JPS61112384A (en) 1984-11-07 1984-11-07 Solar battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59233072A JPS61112384A (en) 1984-11-07 1984-11-07 Solar battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61112384A true JPS61112384A (en) 1986-05-30

Family

ID=16949360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59233072A Pending JPS61112384A (en) 1984-11-07 1984-11-07 Solar battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61112384A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193488A (en) * 1985-02-22 1986-08-27 Teijin Ltd Manufacture of amorphous solar cell
JPH01294303A (en) * 1988-05-20 1989-11-28 Showa Denko Kk Conductive paste and solid-state electrolytic capacitor
JPH036867A (en) * 1989-06-05 1991-01-14 Mitsubishi Electric Corp Electrode structure of photovoltaic device, forming method, and apparatus for manufacture thereof
EP0553853A3 (en) * 1992-01-31 1997-09-10 Canon Kk Process for preparing semiconductor substrate
JP2001189473A (en) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd Photosensor and manufacturing method therefor
JP2010186845A (en) * 2009-02-12 2010-08-26 Sumitomo Bakelite Co Ltd Resin composition, wavelength conversion composition, wavelength conversion layer, and photovoltaic device including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854684A (en) * 1981-09-08 1983-03-31 テキサス・インスツルメンツ・インコ−ポレイテツド Solar energy converter
JPS5878473A (en) * 1981-11-05 1983-05-12 Seiko Epson Corp Thin film solar battery
JPS5853159B2 (en) * 1975-10-11 1983-11-28 タカハシ ヤスモト Cylinder lock for filing cabinets, etc.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853159B2 (en) * 1975-10-11 1983-11-28 タカハシ ヤスモト Cylinder lock for filing cabinets, etc.
JPS5854684A (en) * 1981-09-08 1983-03-31 テキサス・インスツルメンツ・インコ−ポレイテツド Solar energy converter
JPS5878473A (en) * 1981-11-05 1983-05-12 Seiko Epson Corp Thin film solar battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193488A (en) * 1985-02-22 1986-08-27 Teijin Ltd Manufacture of amorphous solar cell
JPH0564871B2 (en) * 1985-02-22 1993-09-16 Teijin Ltd
JPH01294303A (en) * 1988-05-20 1989-11-28 Showa Denko Kk Conductive paste and solid-state electrolytic capacitor
JPH036867A (en) * 1989-06-05 1991-01-14 Mitsubishi Electric Corp Electrode structure of photovoltaic device, forming method, and apparatus for manufacture thereof
EP0553853A3 (en) * 1992-01-31 1997-09-10 Canon Kk Process for preparing semiconductor substrate
JP2001189473A (en) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd Photosensor and manufacturing method therefor
JP2010186845A (en) * 2009-02-12 2010-08-26 Sumitomo Bakelite Co Ltd Resin composition, wavelength conversion composition, wavelength conversion layer, and photovoltaic device including the same

Similar Documents

Publication Publication Date Title
TW304309B (en)
AU695669B2 (en) Photovoltaic element, electrode structure thereof, and process for producing the same
US4400577A (en) Thin solar cells
CN101939847A (en) Solar cell module and solar cell
US20110277812A1 (en) Photovoltaic device conducting layer
TW302553B (en)
JPH07106617A (en) Transparent electrode, formation thereof and solar cell employing same
JPH0563218A (en) Solar battery and manufacture thereof
JPS61112384A (en) Solar battery and manufacture thereof
JPS59167056A (en) Silicon semiconductor electrode
JP2001210845A (en) Method of manufacturing thin film photoelectric conversion device
JP2000150929A (en) Photovoltaic element and manufacture thereof
JPS59208789A (en) Solar cell
JPS61193488A (en) Manufacture of amorphous solar cell
JP3653379B2 (en) Photovoltaic element
JP2003264307A (en) Thin film solar cell and its manufacturing method
US20120132261A1 (en) Cadmium stannate sputter
JPH1126795A (en) Manufacture of integrated thin film solar cell
US8273597B2 (en) Process for making solar panel and the solar panel made thereof
JP2004214541A (en) Thin-film solar battery, and manufacturing method thereof
JPS59154081A (en) Solar battery
CN209526105U (en) The silicon based hetero-junction solar battery of air-flow plasma sputtering metal line
JP4220014B2 (en) Method for forming thin film solar cell
JPH11298021A (en) Substrate for photovoltaic element, and photovoltaic element using the same, and integrated photovoltaic element and manufacture of the integrated photovoltaic element
JPH04337673A (en) Tandem-type organic solar cell