JPS61101644A - Air-fuel ratio controlling apparatus - Google Patents

Air-fuel ratio controlling apparatus

Info

Publication number
JPS61101644A
JPS61101644A JP22262684A JP22262684A JPS61101644A JP S61101644 A JPS61101644 A JP S61101644A JP 22262684 A JP22262684 A JP 22262684A JP 22262684 A JP22262684 A JP 22262684A JP S61101644 A JPS61101644 A JP S61101644A
Authority
JP
Japan
Prior art keywords
fuel
value
air
circuit
pulse width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22262684A
Other languages
Japanese (ja)
Inventor
Masayuki Okubo
雅之 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP22262684A priority Critical patent/JPS61101644A/en
Publication of JPS61101644A publication Critical patent/JPS61101644A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • F02D41/123Introducing corrections for particular operating conditions for deceleration the fuel injection being cut-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/1489Replacing of the control value by a constant

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To prevent the air-fuel mixture from becoming over-ruch, by setting the value of feedback factor alpha for stopping feedback control of the air-fuel ratio at the time of fuel cut at a specific value in an apparatus in which judgement is made from the output of an O2-sensor whether the air-fuel mixture is rich or lean and the value alphais detected from the result of the above judgement. CONSTITUTION:In normal operation of an engine, a base injection pulse width Tp is calculated by an arithmetic circuit 3 from the output signals of an air-flow meter 1 and a rotation sensor 2, and a feedback factor alpha is calculated by an alpha-value calculating circuit 7 on the basis of the result of judgement made by an air-fuel ratio judging circuit 6 to which the output of an O2-sensor 5 is furnished. The final injection pulse width Ti is calculated by correcting the above pulse width Tp by an arithmetic circuit 4 on the basis of the value alpha, etc. On the other hand, in case that the conditions of fuel cut are satisfied at the time of deceleration, changeover circuits 11, 13 are switched respectively to the sides of clamping circuits 12, 14 in response to the fuel-cut signal given from a fuel-cut circuit 15 to clamp the value alpha at a center value alphai based on the valve alpha at the time of idling operation, and the final injection pulse width Ti is calculated by use of the value alphai when supply of fuel is recommenced.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野1 本発明は、車両用エンジンの燃料噴射装置にJ3いて、
01センサの信号によりフィードバック制御して混合気
の空燃比を理論空燃比付近に保・つ空燃比制御装置に関
し、特に燃料カットによりフィードバック停止する場合
にクランプされるフィードバック係数αの圃に関するも
のである。
(Industrial Application Field 1 The present invention is directed to a fuel injection device for a vehicle engine.
This relates to an air-fuel ratio control device that maintains the air-fuel ratio of the air-fuel mixture near the stoichiometric air-fuel ratio through feedback control based on the signal from the 01 sensor, and in particular relates to a field with a feedback coefficient α that is clamped when the feedback is stopped due to a fuel cut. .

【発明の背甲] 燃料噴射装置の空燃比制御装置は、Oiセンサからの信
号が空燃比判定回路でリッチまたはリーンに判定され、
この判定結果によるPI倍信号例えばPla、即ちリッ
チの場合のステップ状電圧低下、リーンの場合のステッ
プ状電圧上昇の成分を積痒することで、例えば1±25
%の範囲内に収めたフィードバック係数αを算出して燃
料噴射パルス幅演算回路に入力する。そして、その回路
において吸入空気層とエンジン回転数による基本パルス
幅Tp、上記のα値、補正係数K H、等により噴射パ
ルス幅Tiを算出し、これに基づきインジェクタから燃
料噴射するようになっている。このことから、フィード
バック係数αの値は02センサの信号でフィードバック
制御するに当り、空燃比をL!I!論空燃比付近に保つ
ための重要な要素であり、α=1が理論空燃比に相当す
るものになっている。 ところで、実際にフィードバック制御している場合にお
いて、常に変動するα値の変動状態をみると、制御系の
種々の生産品のバラツキ、経時変化により必ずしもα=
1を中心にして変動していない。即ら、該値の変動範囲
の中心が1より大きい側ずれて全体的にリッチ側にシフ
トしていたり、または逆に1より小さい側にずれて全体
的にリーン側にシフトしていることがある。この場合に
は、α−1±δ〈δはずれ量)の値が実際のai(I部
系において理論空燃比に相当したものになる。 【従来技術と問題点l ここで上記フィードバック制御は、エンジンのすべての
運転状態で行われるわけではなく、0□センサが活性化
するまでの間またはそれが異常な場合、冷態時、始動時
、燃料カットの際などでは停止する。そしてこのフィー
ドバック停止時には、上記フィードバック係数αが、従
来は一律にα−1の10にクランプされている。従って
燃料カットの場合は、その後に復帰する過程において、
01センナの信号により実際にフィードバック制御され
るまでの間は、上記クランプされたα−1の値で燃料噴
射量が決められる。 一方、アクセル開放状態でエンジン回転数が慇定値以十
に低下して燃料復帰する場合は、直ちにアイドル運転に
移行することから、この場合の燃料噴射ハ)が排気ガス
等に多大に影響する。このため、上述の生産品のバラツ
キ等によりαの中心値がずれている場合において、それ
が1より小さいリーン側のα′の値になっていると、第
3図(ハ)に示すようにクランプされたα=1の値はリ
ッチ側に位置する。そして燃料復帰の際には、実際のα
Φ中心直a′よりリッチ側のα=1で決まる燃料噴射が
行われることで、空燃比がオーバリッチになって第3図
Φ)に示すように排気ガス中の未燃燐分が多くなり、始
動性にも不利である等の問題がある。 【発明の目的] 本発明は、上記従来技術における問題点に鑑み、燃料カ
ットによりフィードバック制御を停止した状態から復帰
する際のオーバリッチ化を防いで、排気ガス浄化、始動
性を良好にするようにした空燃比制御装置を提供するこ
とを目的とする。 【発明の構成】 この目的のため本発明の構成は、01t?ンサからの信
号を空燃比判定回路でリーンまたはリッチに判定し、α
値算出回路でフィードバック係数αの値を求めて燃料噴
射パルス幅の決定に用いる制御系において、アイドリン
グ状態のα値のみを学冒してそのα中心値α1を求め、
燃料カットによりフィードバック停止する場合はα=α
iの値にクランプさせ、燃料復帰する際の燃料噴射がを
制御系の実際の理論空燃比に相当したものに定めて、ア
イドリンクに移行丈る場合にオーバリッチにならないよ
うにすることを要旨とするものである。
[Backbone of the invention] The air-fuel ratio control device for the fuel injection device has a system in which a signal from an Oi sensor is determined to be rich or lean by an air-fuel ratio determination circuit.
By multiplying the components of the PI multiplied signal, for example Pla, that is, the step voltage drop in the rich case and the step voltage rise in the lean case, for example, 1 ± 25
% is calculated and input to the fuel injection pulse width calculation circuit. Then, in that circuit, the injection pulse width Ti is calculated from the basic pulse width Tp based on the intake air layer and engine speed, the above α value, the correction coefficient KH, etc., and fuel is injected from the injector based on this. There is. From this, the value of the feedback coefficient α is determined when the air-fuel ratio is set to L! when performing feedback control using the signal from the 02 sensor. I! This is an important element for maintaining the air-fuel ratio near the stoichiometric air-fuel ratio, and α=1 corresponds to the stoichiometric air-fuel ratio. By the way, in the case of actual feedback control, if we look at the fluctuation state of the α value that constantly fluctuates, we find that α does not always change due to variations in the various products of the control system and changes over time.
It does not fluctuate around 1. In other words, the center of the range of variation of this value may shift to a side larger than 1 and shift toward the rich side overall, or conversely, shift toward a side smaller than 1 and shift toward the lean side overall. be. In this case, the value of α-1±δ<δ is the amount of deviation) corresponds to the actual ai (stoichiometric air-fuel ratio in the I system). [Prior art and problems l] Here, the above feedback control is as follows: It does not occur in all operating states of the engine, but it stops until the 0□ sensor is activated or when it is abnormal, when it is cold, when starting, when fuel is cut, etc.This feedback stop occurs. Sometimes, the feedback coefficient α is conventionally clamped uniformly to α-1, which is 10. Therefore, in the case of fuel cut, in the process of returning afterward,
The fuel injection amount is determined by the clamped α-1 value until actual feedback control is performed using the 01 senna signal. On the other hand, when the engine speed drops below a certain value with the accelerator being released and the fuel is restored, the engine immediately shifts to idling operation, so the fuel injection c) in this case greatly affects exhaust gas and the like. Therefore, if the center value of α is shifted due to the above-mentioned product variations, etc., and the value of α′ is on the lean side, which is smaller than 1, as shown in Figure 3 (C), The clamped value of α=1 is located on the rich side. Then, when returning to fuel, the actual α
By performing fuel injection determined by α = 1 on the rich side of Φ center line a', the air-fuel ratio becomes overrich and the unburned phosphorus content in the exhaust gas increases as shown in Figure 3 Φ). However, there are problems such as poor starting performance. [Object of the Invention] In view of the problems in the prior art described above, the present invention aims to prevent overriching when returning from a state in which feedback control is stopped due to fuel cut, and to improve exhaust gas purification and startability. The purpose of the present invention is to provide an air-fuel ratio control device that achieves the following. [Configuration of the Invention] For this purpose, the configuration of the present invention is 01t? The air-fuel ratio judgment circuit judges the signal from the sensor as lean or rich, and α
In the control system used to determine the fuel injection pulse width by determining the value of the feedback coefficient α in the value calculation circuit, only the α value in the idling state is studied and its α center value α1 is determined.
When feedback is stopped due to fuel cut, α = α
The main idea is to clamp the fuel to the value of i and set the fuel injection when returning to fuel to correspond to the actual stoichiometric air-fuel ratio of the control system to prevent over-richness when transitioning to idle link. That is.

【実 施 例】【Example】

以下、本発明の一実施例を図面に基づいて具体的に説明
する。 第1図において、先ず基本的な燃181噴q」判υβ系
について説明する、エアフローメータ1で翳1爪された
吸入空気mQと回転レンサ2からのエンジン回転数Nは
基本噴射パルス幅演停回路3に入力し、基本噴射パルス
幅T pがTp =KQ/N (Kは定数)により算出
され、このパルス幅−[pが燃料噴射パルス幅演9回路
4に入力する。 また、02センナ5からの信号が空燃比判定回路6に入
力して、空燃比がリッチまたはリーンの場合のP値(比
例弁)を出力し、これに基づきαla算出回路1でフィ
ードバック係数αが算出され、これが上記燃料噴射パル
ス幅演陣回路4に入力する、更に、水温、始動、吸気温
度などの補正要素8を有し、これによる補正信号も燃料
噴射パルス幅演n回路4に入力する。こうして燃料噴射
パルス幅演算回路4では、上記基本噴射パルス幅Tp。 フィードバック係数α9種々の補正系v!iK +1.
史にミル補正パルスTsを用いて噴射パルス幅T1を、
次式により算出する。 ■ i   =Tp   ・ α  (1+  K  
I−1>   +  T  Sそして、かかるパルス幅
T1に基づき駆動回路9によりインジェクタ10を開弁
動作プることで、所定の燃料噴射を行うようになってい
る。 次いで燃料カット制御系について説明づると、上記制御
系に45いて燃料噴射パルス幅演算回路4に対して切換
回路11とパルス幅T:を略零にする固定回路12がバ
イパスして接続し、更にα1lOr>出回路7に対して
も切換回路13とα−αiに固定ツる固定回路14がバ
イパスしで接続する。そして燃料カット回路15の出力
により、切換回路11.13を切換えるように<丁っで
いる。 また、制御系の実際のα中心圃を学習するfli制御系
としてアイドル判定回路16を有し、このアイドル判定
回路1Gとαlid C’J出回路4め出力側が、α中
心1if[学習回路17を介しで」−記固定回路14に
接続づる。アイドル判定回路1Gは、アクセル開放でエ
ンジン回転数が例えば800+″pill以下の場合に
所定の時間だけ出力を生じる。学習回路17は、アイド
ル判定回路1Gから出力が生じている間、α値算出回路
7から出力するアイドルα値αiを入力して加算し、か
つ、平均化してαの中心(Dαiを求めるものであり、
こうして学習したαiの値を固定回路14に記憶させる
。 次いでこのように構成された装置の作用について説明す
る。 先ず、通常の燃料噴射制御について説明すると、燃料カ
ット回路15からはカット信号が出力しないことにより
、切換回路11.13は燃料噴射パルス幅演痒回路4.
α舶粋出回路7に切換わっている。 そこでエア70一メータ11回転センサ2の信号Q、N
により、基本噴射パルス幅演惇回路3で基本噴射パルス
幅丁pが算出され、更に01センサ5からの信号による
空燃比判定回路6の判定結果に基づき、α値算出回路で
αが梓出される。これと補正要素8により燃料噴射パル
ス幅演粋回路4で燃料噴射パルス幅「iが演絆される。 そして上記燃料噴射パルス幅T+に基づきインジェクタ
10で燃料噴射することで、理論空燃比付近に保つよう
にフィードバック制御される。 一方、かかるフィードバック制御の状態においてアクセ
ル開放の減速時に燃料カット条件が成立 。 すると、燃料カット回路15からのカット信号が出力し
て、切換回路11は固定回路12に切換わる。そのため
パルス幅T iは、固定回路12により略零に固定され
て燃料カットの状態になる。また、上記カット信号によ
り切換回路13も、固定回路14の方に切換わる。ここ
で燃111カット以前のアイドル条件において、既にア
イドル判定回路1Gとαφ心心学学習回路17より、制
御系の実際のαφ心値αiが学習されて固定回路14に
記憶されており、このためこの中心値αiが、燃料噴射
パルス幅演算回路4に入力して、α−αiにクランプす
る。 次いで、例えばエンジン回転数の低下により燃料カット
・条件が解除して燃料復帰する場合には、切換回路11
.13が元に戻り、燃料噴射パルス幅演算回路4で再び
パルス幅Tiが演痺されるが、このとき燃料カット中に
クランプされていたフィードバック係数J「に繕づき、
次式により算出する。 Ti=Tp ・αi  (1+KH) +Tsそして、
このパルス幅で燃料噴射したものが02廿ンゆ5により
検出された以降は、既に述べた通常のフィードバック制
御に戻るのであり、この状態を図で示すと第2図のよう
になる。 こうして燃料カットの後に燃料復帰する際には、アイド
ル条件の実際の制御80系のαφ心値αiをペースとし
て燃料噴射用が決められるので、最初から空燃比はその
制御系に特有の理論空燃比となる。 そしてアイドリンクに移行するI!1合は、α値と共に
空燃比が大きく変動することなく直らに成果する。 なJ3、フィードバック停止Jる場合の燃f1カット時
以外では、従来と同様にα−1にクランプされることは
勿論である。 以上、本発明の一実施例について説明したが、上記実施
例のみに限定されるしのではない。また、上記システム
をマイコンCソフト的に処理することもできる。 【発明の効果1 以上の説明から明らかなように、本発明の空燃比制御3
I+装置によると、インジェクタ方式でフィードバック
制御されるbにおいて、生産品のバラツキ等でフィード
バック係数αの中心値がずれているとき、それを−′/
′晋制御しで燃料カット後の燃料復帰に用いるので、−
律にα−1にクランプするのに比べてA−バリッヂ化が
防止され、排気ガス浄化等の点で向上づる。また、これ
により生産品のバラツキ、経時変化に対して安定した)
J1゛気ガス特性が19られる。
Hereinafter, one embodiment of the present invention will be specifically described based on the drawings. In Fig. 1, we will first explain the basic fuel 181 injection q'' judgment υβ system.The intake air mQ captured by the air flow meter 1 and the engine rotation speed N from the rotation sensor 2 are the basic injection pulse width output stop. The basic injection pulse width T p is calculated by Tp = KQ/N (K is a constant), and this pulse width - [p is input to the fuel injection pulse width calculation circuit 4. In addition, the signal from the 02 Senna 5 is input to the air-fuel ratio determination circuit 6, which outputs the P value (proportional valve) when the air-fuel ratio is rich or lean.Based on this, the αla calculation circuit 1 calculates the feedback coefficient α. This is calculated and input to the fuel injection pulse width calculation circuit 4. Furthermore, it has correction elements 8 such as water temperature, starting temperature, intake air temperature, etc., and the correction signal from this is also input to the fuel injection pulse width calculation circuit 4. . In this way, the fuel injection pulse width calculation circuit 4 calculates the basic injection pulse width Tp. Feedback coefficient α9 Various correction systems v! iK +1.
The injection pulse width T1 is determined by using the mill correction pulse Ts in the history.
Calculated using the following formula. ■ i = Tp ・ α (1+ K
I-1> + T S Based on this pulse width T1, the drive circuit 9 opens the injector 10, thereby performing a predetermined fuel injection. Next, to explain the fuel cut control system, in the control system 45, a switching circuit 11 and a fixed circuit 12 that makes the pulse width T: approximately zero are connected to the fuel injection pulse width calculation circuit 4 in a bypass manner. α1lOr>The output circuit 7 is also connected to the switching circuit 13 and a fixed circuit 14 fixed to α-αi in a bypass manner. The output of the fuel cut circuit 15 is used to switch the switching circuits 11 and 13. In addition, it has an idle judgment circuit 16 as a fli control system that learns the actual α center field of the control system, and this idle judgment circuit 1G and the αlid C'J output circuit 4 output side are connected to the α center 1if [learning circuit 17]. It is connected to the fixed circuit 14 via. The idle determination circuit 1G generates an output for a predetermined period of time when the accelerator is released and the engine speed is, for example, 800+''pilt or less.The learning circuit 17 generates an output for a predetermined period of time when the accelerator is released and the engine speed is 800+''pilt or less. The idle α value αi output from 7 is input, added, and averaged to find the center of α (Dαi,
The value of αi thus learned is stored in the fixed circuit 14. Next, the operation of the device configured in this way will be explained. First, normal fuel injection control will be explained. Since the fuel cut circuit 15 does not output a cut signal, the switching circuit 11.13 switches to the fuel injection pulse width control circuit 4.
It has been switched to the α output circuit 7. Therefore, air 70, meter 11, rotation sensor 2 signals Q, N
Accordingly, the basic injection pulse width calculation circuit 3 calculates the basic injection pulse width p, and further, based on the judgment result of the air-fuel ratio judgment circuit 6 based on the signal from the 01 sensor 5, α is calculated by the α value calculation circuit. . Based on this and the correction element 8, the fuel injection pulse width "i" is calculated in the fuel injection pulse width calculation circuit 4. Then, by injecting fuel with the injector 10 based on the fuel injection pulse width T+, the air-fuel ratio is near the stoichiometric air-fuel ratio. On the other hand, in this state of feedback control, a fuel cut condition is established during deceleration when the accelerator is released.Then, a cut signal is output from the fuel cut circuit 15, and the switching circuit 11 is switched to the fixed circuit 12. Therefore, the pulse width T i is fixed to approximately zero by the fixed circuit 12, resulting in a fuel cut state.Furthermore, the switching circuit 13 is also switched to the fixed circuit 14 by the cut signal. Under the idle condition before the 111 cut, the actual αφ cardiac value αi of the control system has already been learned by the idle judgment circuit 1G and the αφ cardiac study circuit 17 and stored in the fixed circuit 14, and therefore this central value αi is input to the fuel injection pulse width calculation circuit 4 and clamped to α-αi.Next, when the fuel cut condition is canceled due to a decrease in the engine speed, for example, and the fuel is restored, the switching circuit 11
.. 13 is returned to its original value, and the pulse width Ti is again suppressed in the fuel injection pulse width calculation circuit 4, but at this time, the feedback coefficient J, which was clamped during the fuel cut, is repaired.
Calculated using the following formula. Ti=Tp ・αi (1+KH) +Ts and,
After the fuel injected with this pulse width is detected by the 02-YU5, the control returns to the normal feedback control described above, and this state is illustrated in FIG. 2. In this way, when the fuel is restored after a fuel cut, the fuel injection is determined based on the αφ center value αi of the actual control system 80 under idle conditions, so the air-fuel ratio is set from the beginning to the stoichiometric air-fuel ratio specific to that control system. becomes. And I will move to Idol Link! The first case results immediately without the air-fuel ratio changing significantly with the α value. It goes without saying that, except when the fuel f1 is cut when J3 and feedback are stopped, it is clamped to α-1 as in the conventional case. Although one embodiment of the present invention has been described above, it is not limited to the above embodiment. Further, the above system can also be processed using microcomputer C software. Effect 1 of the invention As is clear from the above explanation, air-fuel ratio control 3 of the present invention
According to the I+ device, when the center value of the feedback coefficient α deviates due to variations in products in b, which is feedback-controlled by the injector method, it is
'Since it is used to restore fuel after fuel cut under the control, -
Compared to normally clamping at α-1, A-bridge formation is prevented and the exhaust gas purification is improved. This also makes it stable against product variations and changes over time.)
J1゛Gas characteristics are 19.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による装置の一実施例を示ず回路図、第
2図(へ)〜(C)は特性線図、第3図(2)〜(C)
は従来の特性線図である。 4・・・燃料噴射パルス幅演忰回路、5・・・Olセン
サ、6・・・空燃比判定回路、7・・・α値算出回路、
13・・・切換回路、14・・・α固定回路、15・・
・燃料カット回路、16・・・アイドル判定回路、17
・・・αφ心心学学習回路 特許出願人    富士重工業株式会社代理人 弁理士
  小 橋 信 浮 量   弁理士   村  井     進r21X3 FfrIv′1 才z! 4          ;。
Fig. 1 is a circuit diagram showing an embodiment of the device according to the present invention, Fig. 2 (f) to (C) are characteristic curve diagrams, and Fig. 3 (2) to (C)
is a conventional characteristic diagram. 4...Fuel injection pulse width calculation circuit, 5...Ol sensor, 6...Air-fuel ratio determination circuit, 7...α value calculation circuit,
13...Switching circuit, 14...α fixed circuit, 15...
・Fuel cut circuit, 16... Idle judgment circuit, 17
...αφ Psychological Learning Circuit Patent Applicant Fuji Heavy Industries Co., Ltd. Agent Patent Attorney Nobu Kobashi Ukiyo Patent Attorney Susumu Murai r21X3 FfrIv'1 Saiz! 4;.

Claims (1)

【特許請求の範囲】[Claims] O_2センサからの信号を空燃比判定回路でリーンまた
はリッチに判定し、α値算出回路でフィードバック係数
αの値を求めて燃料噴射パルス幅の決定に用いる制御系
において、アイドリング状態のα値のみを学習してその
α中心値@αi@を求め、燃料カットによりフィードバ
ック停止する場合はα=@αi@の値にクランプさせる
ことを特徴とする空燃比制御装置。
The air-fuel ratio determination circuit determines the signal from the O_2 sensor as lean or rich, and the α value calculation circuit determines the value of the feedback coefficient α.The control system uses only the α value in the idling state to determine the fuel injection pulse width. An air-fuel ratio control device characterized in that the central value of α is determined by learning, and when feedback is stopped due to fuel cut, clamping is performed to the value of α=@αi@.
JP22262684A 1984-10-22 1984-10-22 Air-fuel ratio controlling apparatus Pending JPS61101644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22262684A JPS61101644A (en) 1984-10-22 1984-10-22 Air-fuel ratio controlling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22262684A JPS61101644A (en) 1984-10-22 1984-10-22 Air-fuel ratio controlling apparatus

Publications (1)

Publication Number Publication Date
JPS61101644A true JPS61101644A (en) 1986-05-20

Family

ID=16785396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22262684A Pending JPS61101644A (en) 1984-10-22 1984-10-22 Air-fuel ratio controlling apparatus

Country Status (1)

Country Link
JP (1) JPS61101644A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105532A (en) * 1980-12-24 1982-07-01 Toyota Motor Corp Air-fuel ratio controlling method
JPS5840009A (en) * 1981-09-03 1983-03-08 株式会社佐藤製作所 Rotary blade type grass shearing machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105532A (en) * 1980-12-24 1982-07-01 Toyota Motor Corp Air-fuel ratio controlling method
JPS5840009A (en) * 1981-09-03 1983-03-08 株式会社佐藤製作所 Rotary blade type grass shearing machine

Similar Documents

Publication Publication Date Title
JPH02185634A (en) Device for controlling air-fuel ratio of alcohol internal combustion engine
JPS63100243A (en) Fuel injection device
US4693076A (en) Double air-fuel ratio sensor system having improved response characteristics
JPH0670388B2 (en) Air-fuel ratio controller
US4970858A (en) Air-fuel ratio feedback system having improved activation determination for air-fuel ratio sensor
JPS58160529A (en) Controller for quantity of fuel supplied to internal combustion engine
JPS61101644A (en) Air-fuel ratio controlling apparatus
JPH0526076A (en) Air-fuel ratio control method for internal combustion engine
JP2977986B2 (en) Oxygen sensor deterioration detection method
JPS6158912A (en) Exhaust cleaning apparatus of engine
JP3042216B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6155340A (en) Exhaust overheat preventing air-fuel ratio controlling method of engine
JP2536753B2 (en) Engine air-fuel ratio control device
JPH01232136A (en) Engine control device
JPS63246429A (en) Fuel injection control device
JPS58217745A (en) Air-fuel ratio control method for internal-combustion engine
JP2857917B2 (en) Catalyst deterioration detection device
JPS59183038A (en) Electronic engine control apparatus
JPH0252103B2 (en)
JPH02211345A (en) Air-fuel ratio controller for engine
JPH0777090A (en) Air-fuel ratio control device with larning function for internal combustion engine
JP2623667B2 (en) Air-fuel ratio control device for internal combustion engine
JPS60128953A (en) Air-fuel ratio controller for engine
JPH1026043A (en) Air-fuel ratio controller of internal combustion engine
JPS63113140A (en) Decelerating decrement control device for electronic control fuel injection system internal combustion engine