JPS6085695A - Television system - Google Patents

Television system

Info

Publication number
JPS6085695A
JPS6085695A JP58192399A JP19239983A JPS6085695A JP S6085695 A JPS6085695 A JP S6085695A JP 58192399 A JP58192399 A JP 58192399A JP 19239983 A JP19239983 A JP 19239983A JP S6085695 A JPS6085695 A JP S6085695A
Authority
JP
Japan
Prior art keywords
signal
period
signals
luminance signal
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58192399A
Other languages
Japanese (ja)
Inventor
Himio Nakagawa
一三夫 中川
Toshiyuki Sakamoto
敏幸 坂本
Masahito Sugiyama
雅人 杉山
Akihide Okuda
章秀 奥田
Toshinori Murata
村田 敏則
Michitaka Osawa
通孝 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58192399A priority Critical patent/JPS6085695A/en
Publication of JPS6085695A publication Critical patent/JPS6085695A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N11/00Colour television systems
    • H04N11/06Transmission systems characterised by the manner in which the individual colour picture signal components are combined
    • H04N11/08Transmission systems characterised by the manner in which the individual colour picture signal components are combined using sequential signals only

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Color Television Systems (AREA)

Abstract

PURPOSE:To make a time base multiple signal having less-deteriorated picture quality without spreading a frequency zone by utilizing a little of high frequency components in the oblique direction, by zone-compressing a luminance signal, making a space in term of time due to the time base compression, and multiplying the time base-compressed chrominance components in the space. CONSTITUTION:The first input terminal 1 inputs a wide zone luminance signal, which is quantized into a digital signal. The first adder 15 sums up these signals, which is divided by a half. The difference of these signal is calculated by a subtractor 16. The second and third input terminals 7 and 8 input (R-Y) and (B-Y), respectively, which are stored in the second and third buffer memory 22 and 23, respectively. Among a horizontal scanning period when signals are not written in each memory, a differential component of the luminance signal is read out through the fourth switch 24 in a half of an image signal period during said period, (R-Y) is read out in its one fourth period and (B-Y) is read out in the remaining one fourth period.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はテレビジョン方式に係シ、特に従来のカラーテ
レビジョン装置よシも高品質の画像を実現するに好適な
テレビジョン方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a television system, and particularly to a television system suitable for realizing higher quality images than conventional color television devices.

〔発明の背景〕[Background of the invention]

現在放送されているテレビジ白ン方式には、NTSO,
PAL、SEOAMがあるが、いずれも色差信号を輝度
信号の烏城成分に周波数多重して伝送している。しだが
って、色差イク号に別に帯域を必要とせず、狭帯域伝送
が可能となっている。
The television whitening system currently being broadcast includes NTSO,
There are PAL and SEOAM, both of which transmit a color difference signal by frequency multiplexing it with the Ushiro component of a luminance signal. Therefore, a separate band is not required for the color difference signal, and narrowband transmission is possible.

しかし、色差信号が周波数多重されているため、クロス
カラーなピ、輝度信号と色差信号間の相互干渉で画質を
著しく劣化させている。
However, since the color difference signals are frequency multiplexed, image quality is significantly degraded due to mutual interference between cross color signals, luminance signals, and color difference signals.

さらに、今後普及が予想される衛星放送では送信パワー
の点からFM変調方式が使用される予定であるが、この
FM変調方式に対しては、FM系の雑音・は良く知られ
ているように三角雑音のだめ、高い周波数にある色差信
号のS/Nを確保するのが雉しいなどの問題点を有して
いるこのため、輝度信号と色差信号を時間軸上で分離し
、多重する時間軸多重信号形式が検討され始めた。例え
ば、MAO方式(MultipleXedAvxalo
gue Component:文献uDirect T
e1evision B r oadcast by 
SatelliteDesirability of 
a New ’rransmission−8tand
ar’ds//、I B A、B / D Repor
t IL6/。
Furthermore, FM modulation is planned to be used in satellite broadcasting, which is expected to become more popular in the future, due to transmission power. There are problems such as the problem of triangular noise and difficulty in ensuring the S/N of color difference signals at high frequencies.Therefore, it is necessary to separate the luminance signal and color difference signal on the time axis and multiplex them on the time axis. Multiplex signal formats began to be considered. For example, MAO method (Multiple
ue Component: Literature uDirect T
e1evision B r oadcast by
Satellite Desirability of
a New 'rranmission-8tand
ar'ds//, I B A, B/D Report
tIL6/.

81)では、輝度信号を時間的にヱに圧縮し、2つの色
差信号を時間的に茗に圧+Mi シ、それを1水平走査
期間毎に交互に圧縮された輝度信号と時間軸多重し、伝
送する。このように#匿計算を時間軸圧縮すると、その
逆数外、ψ1」えばMAC方式では1.5倍周波数帯域
が広く必要となる。このだめ、所要伝送帯域が広くなり
、チャンネル数が少なくなる。またS/Nを確保するた
め送信パワー、もしくけアンテナ利得を必要とするので
、実用上問題が多い。
In 81), the luminance signal is temporally compressed to E, the two color difference signals are temporally compressed to M, and this is time-axis multiplexed with the compressed luminance signal alternately every horizontal scanning period. Transmit. When the # anonymous calculation is compressed on the time axis in this way, in addition to its reciprocal, ψ1'', for example, a 1.5 times wider frequency band is required in the MAC method. As a result, the required transmission band becomes wider and the number of channels becomes smaller. In addition, since transmission power and antenna gain are required to ensure S/N, there are many practical problems.

同様な時間軸多重信号形式として、T、CI方式(’I
’ime Compressed Integrati
on :文献−高品位テレビジョンの開発とその将来〃
、テレビジ 7学会誌Va 1.36 NO10,19
82)がある。これは1水平走査毎に輝度信号の周波数
帯域を異ならせ、狭帯域側の時間軸圧縮比を太きくシ、
この狭帯域輝度信号の伝送される水平走査期間に色差信
号のうち、広帯域の方の信号を時間軸多重し、広帯域の
輝度信萼の伝送される水平走査期間に狭帯域色差信号を
時間軸多重することで、多重信号の必要帯域の増加を少
なくするものである。しかし、この方式では、走肴期間
毎にS/Nが異なる。さらに水平走査期間毎に4[信号
の周波数帯域が異ガるため、微小な面積の信号がゆっく
如上下に動いた場合、この微小な面積の信号が広帯域の
走査線と狭帯域の走査線上に移動する周期ではっきり見
えたシ見えなかったりする現象があり、非常に不自然な
絵柄になる。
Similar time axis multiplexed signal formats include T, CI ('I
'ime Compressed Integrati
on: Literature - Development of high-definition television and its future〃
, Television Television 7 Academic Journal Va 1.36 NO10,19
82). This differs the frequency band of the luminance signal for each horizontal scan, and increases the time axis compression ratio on the narrow band side.
During the horizontal scanning period during which this narrowband luminance signal is transmitted, the broadband signal among the color difference signals is time-axis multiplexed, and during the horizontal scanning period during which the broadband luminance signal is transmitted, the narrowband color-difference signal is time-axis multiplexed. By doing so, the increase in the required bandwidth of multiplexed signals is reduced. However, in this method, the S/N differs depending on the consumption period. Furthermore, every horizontal scanning period, the frequency band of the signal is different, so if a signal with a small area moves slowly up and down, the signal with this small area will be split between the wide-band scanning line and the narrow-band scanning line. There is a phenomenon in which the image appears clearly and sometimes cannot be seen depending on the period of movement, resulting in a very unnatural pattern.

さらに、この2つの信号方式はどちらも色差信号は線順
次で行なわれるため、垂直方向の色の変わり目では、一
方の色差信号は画面上の部分の信号で、他方は下の部分
の色の信号となるため、その水平走査期間は、上の色と
下の色と全く異なる色となって再生されることになシ、
著しい画質劣化となる。
Furthermore, in both of these two signal systems, the color difference signals are performed line-sequentially, so at the vertical color change, one color difference signal is the signal for the upper part of the screen, and the other is the signal for the lower part. Therefore, during that horizontal scanning period, the upper and lower colors will be reproduced as completely different colors.
This results in significant image quality deterioration.

発明の目的〕 本発明の目的は、従来の時間軸多重方式の欠点を解消し
、周波数多重の場合と同じく、伝送信号の最高周波数を
輝度信号の層高周波数と同じにでき、かつ、画質劣化の
少ない時間軸多重方式のテレビジョン方式を提供するこ
とにある〔発明の概要〕 上記目的を達成するため、本発明においては牌シ合った
水平走査期間の輝度信号を加算、及びDJ$1して、和
成分(加算信号)、及び差成分(減算信号)を作如、差
成分を時間的に圧縮し該圧縮信号と、時間軸圧縮された
2つの色差信。
[Object of the Invention] An object of the present invention is to eliminate the drawbacks of the conventional time axis multiplexing method, to make the highest frequency of the transmission signal the same as the layer high frequency of the luminance signal, and to prevent image quality deterioration, as in the case of frequency multiplexing. [Summary of the Invention] In order to achieve the above object, the present invention adds luminance signals of horizontal scanning periods that match the tiles, and adds DJ$1. Then, a sum component (additional signal) and a difference component (subtraction signal) are created, and the difference component is temporally compressed to produce the compressed signal and two time-axis compressed color difference signals.

号を水平走査期間に時間的多重し、−水平走査期間毎に
、上記和成分と上記時間的多重信号とを切換ジて伝送す
るテレビジョン方式を提供する。
The present invention provides a television system in which signals are temporally multiplexed during a horizontal scanning period, and the sum component and the temporally multiplexed signal are switched and transmitted every horizontal scanning period.

さらに本発明においては、同じ水平走査期間の輝度信号
で購成される和成分及び時間軸圧縮信号のうち、時間軸
圧縮信号を先行して伝送するテレビジョン方式を提供す
る。
Furthermore, the present invention provides a television system in which the time-domain compressed signal is transmitted in advance among the sum component and the time-domain compressed signal that are purchased with the luminance signal of the same horizontal scanning period.

本発明は隣り合った水平走査線の画像信号の間には強い
相関関係があることを利用する。
The present invention utilizes the fact that there is a strong correlation between image signals of adjacent horizontal scanning lines.

すなわち、よく知られているように撮像管のビームに拡
がりがあるため、斜め方向の高周波成分はビーム内の積
分効果で縦方向の高周波成分に比べ、エネルギーが少な
い。また視覚上も斜め方向の周波数特性劣化の許容度が
太きい。
That is, as is well known, since the beam of the image pickup tube has a spread, the high frequency components in the diagonal direction have less energy than the high frequency components in the vertical direction due to the integration effect within the beam. Visually, there is also a large tolerance for frequency characteristic deterioration in diagonal directions.

こうした針め方向の尚周波成分のエネルギーがきわめて
少ない事と、視覚上の許容度の大きいことを利用して現
状のNTSO方式では、色信号を輝度1ぎ号の篩周波の
斜め方向成分の部分に多重(すなわち、周波数インター
リーブ)して白黒とのコンパチビリティを得ることに成
功しているわけである。
Taking advantage of the fact that the energy of the still frequency component in the needle direction is extremely small and the visual tolerance is large, the current NTSO system uses the color signal as the diagonal component of the sieve frequency of the 1st luminance. They succeeded in achieving compatibility with black and white by multiplexing (that is, frequency interleaving).

本発明では、この斜め方向の高周波成分が少ない事を利
用して、輝度信号を帯域圧縮し・これを時間軸圧縮して
時間的にすきまをつくシ、この部分に時間軸圧縮した色
信号を多重することで、周波数帯域を広げずに、かつ画
質劣化を少なくした時間軸多重信号をつくるものである
つまり、斜め方向の尚周波成分が少ないという事は、瞬
9合つだ水平走査線の信号の永成分には高周波成分がき
わめて少ない事を示している。したがって、差成分につ
いては帯域を制限しても画質に与える影響はきわめて小
さい。現状のNTSOのようなインターレース走査と異
なる1阻次走査方式では、2つの14D合った水平程度
であれば全く問題ないし、1程度に圧縮しても十分良好
な11!II質が得られる。
In the present invention, taking advantage of the fact that there are few high-frequency components in the diagonal direction, the luminance signal is band-compressed and the time axis is compressed to create a gap in time, and the time axis compressed color signal is applied to this part. By multiplexing, a time-domain multiplexed signal is created without widening the frequency band and with less deterioration in image quality. This shows that there are very few high frequency components in the long component of the signal. Therefore, even if the band is limited for the difference component, the effect on image quality is extremely small. In the 1-order scanning method, which is different from the current interlaced scanning such as NTSO, there is no problem as long as the two 14Ds match horizontally, and even if it is compressed to about 1, the 11! Quality II is obtained.

そこで、2つの水平走食線の信号の木】と差をめ、差成
分については帯域を制限し、この制限された信号の最高
周波数が輝度信号の最高周波数を越えない範囲で時間軸
圧縮し、このため生じた空き時間に時間軸圧縮した色差
信号を伝送するわけである・ さらに本発明においては、この多重された輝度信号の和
成分、差成分、色差信号の送出順序を、受像倣押jの構
成が最も簡単になるように順序づけている。すなわち、
一般の放送においては、少数の放送局から送られた電波
を一般大蒸が受信するわけで、地方の放送局も含め、送
信側は数百の程度に対し、受信側は数千刃台であシ、1
0 程度のひらきがある。したがって、受信側の構成を
できるだけ単純にすること1はきわめて意味が太きい。
Therefore, the difference between the two horizontal eclipsing line signals is determined, the band of the difference component is limited, and the time axis is compressed to the extent that the maximum frequency of this limited signal does not exceed the maximum frequency of the luminance signal. Therefore, the time-axis compressed color difference signal is transmitted during the free time.Furthermore, in the present invention, the transmission order of the sum component, the difference component, and the color difference signal of the multiplexed luminance signal is determined by the image receiving imitation press. The order is such that the configuration of j is the simplest. That is,
In general broadcasting, the radio waves sent from a small number of broadcasting stations are received by the general broadcasting station, and the number of transmitters, including local broadcasting stations, is in the hundreds, while the number of receivers is in the thousands. Ashi, 1
There are about 0 cracks. Therefore, it is extremely important to make the configuration of the receiving side as simple as possible.

ところで、本発明においては和成分は時間軸圧縮されて
いないので、そのま咬オU用できるのに対し、差成分は
圧縮されているだめ、受像機側でもとの時間に併置して
やる必要がある。
By the way, in the present invention, since the sum component is not compressed on the time axis, it can be used as it is, whereas the difference component is not compressed, so it is necessary to juxtapose it at the original time on the receiver side. .

このためにラインメモリを設け、彊き込みクロックに対
し、胱出しクロックを遅してラインメモリ内容を読み出
すことが必要になる。したがって、差成分を先に伝送し
、次に和成分を伝−送するように構成し、差成分を1ラ
イン分記録したのち、和成分のタイミングに合わせて差
成分1を読み出すと、このオ日成分と差成分の時間が揃
い、簡単にこの2つの成分の和と差をとることから、も
との水平走査期間の信号が復元できるわけである。
For this purpose, it is necessary to provide a line memory and read out the contents of the line memory by delaying the bladder output clock with respect to the input clock. Therefore, if the configuration is such that the difference component is transmitted first and then the sum component, and the difference component is recorded for one line, and then the difference component 1 is read out in synchronization with the timing of the sum component, this output Since the times of the daily component and the difference component are aligned, and the sum and difference of these two components are easily calculated, the signal of the original horizontal scanning period can be restored.

〔発明の実施例〕[Embodiments of the invention]

本発明の伝送側の回路構成の一実施例を第1図に示す。 An embodiment of the circuit configuration on the transmission side of the present invention is shown in FIG.

第1図においてi、 2.3.4は入力端子、5は出力
端子、6.Z8はA/Dコンバータ、910、11.2
4はスイッチ、12.13.14.48.49は1H但
し、Hは水平走査期間を示す遅延線、15.17゜18
は加算器、16は減算器、19は低域フィルダ・20は
再サンプリング回路、21.22.23はバッファメモ
リ、25はD/Aコンバータ、26は加算器である。
In FIG. 1, i, 2.3.4 is an input terminal, 5 is an output terminal, and 6. Z8 is A/D converter, 910, 11.2
4 is a switch, 12.13.14.48.49 is 1H, however, H is a delay line indicating the horizontal scanning period, 15.17° 18
16 is an adder, 16 is a subtracter, 19 is a low-pass filter, 20 is a resampling circuit, 21, 22, 23 is a buffer memory, 25 is a D/A converter, and 26 is an adder.

第10入力端子1から広帯域の輝度信号が入力さtする
。第1のA/Dコンバータ6で8ビツトのディジタル信
号に量子化される。この第1のA/I)コンバータ6の
クロック周波数(fc )は、入力端子1から入力され
る輝度信号の最高周波数(fmαX)の2倍以上が必要
である。
A broadband luminance signal is input from the tenth input terminal 1. The first A/D converter 6 quantizes it into an 8-bit digital signal. The clock frequency (fc) of the first A/I converter 6 needs to be at least twice the highest frequency (fmαX) of the luminance signal input from the input terminal 1.

例えばf7′rLax w 16MHzの時、fcは3
2 M Hz以上、例えば40MHzといった値になる
。ここで量子化された波形は第1のスイッチ1で、IH
ごとに第1の遅延線12で1H遅処される。この1H遅
延緋12は・0.1のディジタル信号を遅蝙するもので
あるから、例えば、シフトレジスタとか、通常のDRA
Mなどのメモリを用いて、畳込後IHLで読み出すよう
に構成すれば簡単に構成できる。容量としでは、フレー
ム周波数60 )(z s走査線数525本の順次定食
の場合を考えると、A/Dの標本化周波数が40 MH
zであるなる。量子化を8 bitとしても、メモリ容
貢は約10Kbitで良い。
For example, when f7'rLax w 16MHz, fc is 3
The value is 2 MHz or more, for example, 40 MHz. Here, the quantized waveform is transmitted to the first switch 1, and the IH
Each time, the first delay line 12 delays the signal by 1H. This 1H delay 12 delays the digital signal of 0.1, so for example, it is used in a shift register or a normal DRA.
This can be easily configured by using a memory such as M and reading it out using IHL after convolution. In terms of capacity, if we consider a sequential set meal with a frame frequency of 60 MHz (z s) and 525 scanning lines, the A/D sampling frequency is 40 MHz.
It is z. Even if quantization is set to 8 bits, the memory capacity may be approximately 10 Kbits.

このようにすると、第1のスイッチ9の一方Iの出力に
は第2図(h)に示すように1H毎に出力・が得られ、
他方には第2図(C)に示すように、そ・の反対位置に
出力が得られる。これが第1の遅・延線12で1H遅延
されることになるので、第2・図(d)に示すように、
第2図(b)と同じ時刻に11−1゜毎に出力が得られ
ることになる。
In this way, the output of one side I of the first switch 9 is obtained every 1H as shown in FIG. 2(h),
On the other hand, as shown in FIG. 2(C), an output is obtained at the opposite position. This will be delayed by 1H in the first delay/delay line 12, so as shown in Figure 2 (d),
Outputs are obtained every 11-1 degrees at the same time as in FIG. 2(b).

したがって、第1の加算器15で両者の和をとシ1で割
ると、第2図(h)と(d)の平均値(例えば第2図(
e)のYl+ Y2など)が得られる。減算器16で差
をとると、第2図(b)と(cl′)の圭(例えば第2
o。
Therefore, if the sum of both is divided by 1 in the first adder 15, the average value of FIG. 2(h) and (d) (for example, FIG. 2(
(e) Yl+Y2, etc.) is obtained. When the difference is taken by the subtractor 16, Kei (for example, the second
o.

図(f)のY+−Y2など)が得られる。Y+-Y2 in figure (f), etc.) are obtained.

低域フィルター9はディジタルフィルタで構成さ。The low-pass filter 9 is composed of a digital filter.

れる。良く知られているように、クロック周波・1 数fcの7以下の周波数の信号については、aずつ時間
差のあるディジタル信号の加yA算で、′通常のアナロ
グフィルタと同じようなフィルタが構成できる・ このディジタルフィルタで輝度信号の差成分の帯域を1
、すなわち、差成分の最高周波数を一2 fmax (例えば8MHz)に制限する。このよう。
It will be done. As is well known, for signals with a frequency of 7 or less, where the clock frequency is 1 fc, a filter similar to a normal analog filter can be constructed by adding yA of digital signals with a time difference of a.・This digital filter reduces the band of the difference component of the luminance signal to 1
That is, the highest frequency of the difference component is limited to -2 fmax (for example, 8 MHz). like this.

にすると再サンプリング回路でデータを1クロツク毎に
間引きし、クロック周波数を−Lfcにしても、差成分
の情報は正しく再サンプリングで。
Then, even if the data is thinned out every clock by the resampling circuit and the clock frequency is set to -Lfc, the difference component information will be resampled correctly.

きることになる。I will be able to do it.

したがって、第1のバッファメモリ21には、第1のI
H遅延線のヲのメモリ容量(約5Kbit)で差成分を
記憶することが可能になる。
Therefore, the first buffer memory 21 contains the first I
It becomes possible to store the difference component with the memory capacity (approximately 5 Kbit) of the H delay line.

一方、色差信号は輝度信号に対しては狭帯域でも性能劣
化にならない(現状NTSOではユ8 ・ 程度の帯域で運用されているが芙用土全く問題1 ない)ので例えば、輝度信号の4 (a fmax (
例えば4MFJo) )に制限できる。したかって、第
2・の入力端子7から(R,−Y)、m5の入力端子8
から(B−Y)がそれぞれ入力されると、第2のA/D
コンバータ7、第3のA/Dコンバータ8でそれぞれ量
子化される。この第20A/Dコンバーター第6のA/
Dコンバータのサンプリン゛グ周波数は一!−fc(例
えば10 MHz )で良い。
On the other hand, the performance of color difference signals does not deteriorate compared to luminance signals even in a narrow band (Currently, NTSO operates in a band of about 8.0cm, but there is no problem at all), so for example, 4 (a. fmax (
For example, it can be limited to 4MFJo) ). Therefore, from the second input terminal 7 (R, -Y), the input terminal 8 of m5
When (B-Y) are input, the second A/D
The signals are quantized by the converter 7 and the third A/D converter 8, respectively. This 20th A/D converter 6th A/D converter
The sampling frequency of the D converter is one! -fc (for example, 10 MHz) is sufficient.

第2のスイッチ10と第3のスイッチ11を第1のスイ
ッチ9と同期して動作させると、第2の加算器17と第
3の加算器18の出力にはそれぞれ、第2図(z)と(
e)に示されるように、1H@に2つの走査線の平均値
の情報(例えばUl +、IJzVl+V2など)が得
られる。この色差信号はそれぞれ鵠2のバッファメモリ
22と第3のバッファメモリ23に記憶される。このバ
ッファメモリの記憶容重はそ7tぞれ第1の遅延線12
のユの容4 。
When the second switch 10 and the third switch 11 are operated in synchronization with the first switch 9, the outputs of the second adder 17 and the third adder 18 are respectively shown in FIG. and(
As shown in e), information on the average value of two scanning lines (for example, Ul+, IJzVl+V2, etc.) is obtained in 1H@. These color difference signals are stored in the buffer memory 22 of Mouse 2 and the third buffer memory 23, respectively. The storage capacity of this buffer memory is 7t for each first delay line 12.
No Yu no Yo 4.

量(したがって例えば2sKbjt)で良い事にな0 ここで、輝度信号の差成分は、もとの輝度信1 号の−の帯域であるから、時間軸をiに圧縮す、〕とも
との輝度信号と同じ帯域になる。
(Therefore, for example, 2sKbjt) is sufficient. Here, since the difference component of the luminance signal is in the negative band of the original luminance signal 1, the time axis is compressed to i. It will be in the same band as the signal.

同様に、2つの色差信号(几−Y)と(B−Y・)。Similarly, two color difference signals (几-Y) and (B-Y・).

は1の帯域であるから、時間軸を1に圧煽する4 と輝度信号と同じ帯域になる。したがって、第・1のバ
ッファメモリ21.42のバッファメモ1八22、第3
のバッファメモリ26の読み出しクロ・ツクをすべてf
cとし、それぞれのメモリに信号が普き込まれない水平
走査期のうち、水平走査。
Since it is in the band of 1, 4 which forces the time axis to 1 becomes the same band as the luminance signal. Therefore, the first buffer memory 21.42 buffer memory 1822, the third buffer memory 21.
All the read clocks of the buffer memory 26 of
c, the horizontal scanning period during which signals are not spread to each memory.

成分を第4のスイッチ24を介して読み出L、7の期間
に(R,−Y)を読み出し、残シーの期間に(B−Y)
を読み出すようにすると、輝度信号の最高周波数以内で
、差成分と(R,−Y)、(B−’Y)を多重できる。
The components are read out through the fourth switch 24. (R, -Y) are read out during the period L and 7, and (B-Y) is read out during the remaining period.
By reading out the difference component, (R, -Y) and (B-'Y) can be multiplexed within the highest frequency of the luminance signal.

このようにすると、この6つのバッファメモリの内容が
すべて読み出されてしまうので、読み出した次の水平走
査期間に畳込み情報が入力される形となり、新しく次の
情報が書込めるわけである。
If this is done, all the contents of these six buffer memories will be read out, so that the convolution information will be input in the next horizontal scanning period after reading out, and new next information can be written.

輝度信号の和成分は、第9の1H遅延線48、第10の
1H遅延線49(メモリ容量はそれぞれ10とbit)
で2H遅延されて、輝度信号の差成分、色差信号の後の
1H期間にそのままスイッチ24を介して出力される。
The sum component of the luminance signal is generated by the ninth 1H delay line 48 and the tenth 1H delay line 49 (memory capacity is 10 bits each)
The difference component of the luminance signal and the color difference signal are delayed by 2H and output as they are through the switch 24 during the 1H period after the color difference signal.

以上の実施例において明らかなように、出力信号の順序
は、時間的多重信号に続いて輝度信号の和成分となって
いる。この出力の順序は、先に述べたように、受信機側
の構成を最も簡単に構成するという効果がある。もし、
この効果lを必要としない場合には、和成分を先に出力
しても良い。この場合、上記の1H遅延線48.49は
送信側で不必要となり、受信側に設置される。。
As is clear in the above embodiments, the order of the output signals is the temporally multiplexed signal followed by the sum component of the luminance signal. As mentioned above, this output order has the effect of configuring the receiver side in the simplest manner. if,
If this effect l is not required, the sum component may be output first. In this case, the above-mentioned 1H delay lines 48 and 49 become unnecessary on the transmitting side and are installed on the receiving side. .

上述したように第4のスイッチ24を切換えて。By switching the fourth switch 24 as described above.

出力し、D/Aコンバーク25でアナログ量に卑換し、
それに第4の加算器26で第4の入力端子4から入力さ
れる複合同期信号や音声信号と混。
Output and convert to analog quantity with D/A converter 25,
It is mixed with the composite synchronization signal and audio signal input from the fourth input terminal 4 in the fourth adder 26.

合して、所望の伝送用信号を得るわけである。。Together, the desired transmission signal is obtained. .

ここで、音声信号は、きわめて狭帯域の信号。Here, the audio signal is an extremely narrow band signal.

(帯域20 KHzで画像信号の約10−3の帯域)な
ので例えばP OM (Pu1se Coded Mo
dulation )信号にして水平ブランキング期間
に多重するなどの手段で容易に多重できる。また、複合
同期信号も従来と同じような同期信号でも良いし、同期
情報をコード化して映像信号と同じり。
(The band is 20 KHz, which is about 10-3 of the image signal.) Therefore, for example, POM (Pulse Coded Mo
(duration) signal and multiplexing it during the horizontal blanking period. Furthermore, the composite synchronization signal may be a conventional synchronization signal, or it may be the same as a video signal by encoding synchronization information.

レベル範囲内に多重するいわゆるディジタル同期(例え
ば前述MAO信号)としても良い事などは勿論のことで
ある。
Of course, it is also possible to use so-called digital synchronization (for example, the above-mentioned MAO signal) that is multiplexed within a level range.

まだ、前述したTOI信号のように同期信号・を2Hに
1回伝送する形でも同期系には何ら不l・都合がない。
Still, there is no problem or inconvenience in the synchronization system even if the synchronization signal is transmitted once every 2H like the TOI signal mentioned above.

したがって、2Hに1回、水平プ。Therefore, once every 2H, there is a horizontal pull.

ランキング期間も映像信号の伝送に利用する事。The ranking period can also be used to transmit video signals.

も可能である。この場合、この広がった時間?。is also possible. In this case, this spread time? .

差成分、または色差信号に割当てて、圧縮比を下げて、
広帯域化したps/N改善に利用するのが良い。水平で
ランキング期間は1水平走査期間の約20%あるので、
差成分に割探当てて生2つの色差成分に割り当てても、
第2図0またはQ)に見られるように、約50%割当て
時間が掩加する。
Assign it to the difference component or color difference signal, lower the compression ratio,
It is best to use it for wideband ps/N improvement. Since the horizontal ranking period is about 20% of one horizontal scanning period,
Even if you assign it to the difference component and assign it to the raw two color difference components,
As can be seen in Figure 2 (0 or Q), the allocation time is increased by about 50%.

すなわち差成分に割当てると時間軸の圧縮を。In other words, when assigned to the difference component, the time axis is compressed.

3 1から7にすることができる。この場合、差成分を広帯
域化できるので、低域フィルタ19の傾斜をゆるくでき
るので、リンギングなどの発生しにくい回路がつくシや
すく、フィルタがきわることができるので、帯域制限用
フィルタが構成しゃすくなシ、波形応答の良いものが得
やすくなる。
3 Can be from 1 to 7. In this case, since the difference component can be made into a wide band, the slope of the low-pass filter 19 can be made gentler, making it easier to create a circuit that is less likely to cause ringing, etc., and since the filter can be cut off, it is easier to configure a band-limiting filter. Also, it becomes easier to obtain a waveform with good response.

また、同期情報の入れ方により、第2図(r)、(S)
といった形式なども可能である。さらに、2つの色差信
号の入れる順、輝度信号の差成分と色差信号を入れる順
を入り換えても全く不都合ないことは自明であろう。
Also, depending on how the synchronization information is entered, Fig. 2 (r) and (S)
A format such as this is also possible. Furthermore, it is obvious that there is no problem in changing the order in which the two color difference signals are input, or the order in which the difference component of the luminance signal and the color difference signal are input.

また、時間圧縮比は本質的に上記数値に限定されるもの
でないことも自明であろう。
Furthermore, it is obvious that the time compression ratio is not essentially limited to the above numerical value.

次に、この伝送された信号から、輝度信号、色差信号を
復調する回路を第6図に示す。こ9゜回路は伝送路の途
中、または最終の受像機に含まれるものである。27は
入力端子、28.29.30は出力端子31はA/Dコ
ンバータ、52.43.44゜45はスイッチ、40.
41.42.は1H遅延軸、34゜35、361d、バ
ックアメモリ、38は加算器、39は減算器、46は同
期分離回路、47はクロック再生回路、50.51.5
2、はD/Aコンバータである。
Next, FIG. 6 shows a circuit that demodulates a luminance signal and a color difference signal from this transmitted signal. This 9° circuit is included in the middle of the transmission path or in the final receiver. 27 is an input terminal, 28, 29, 30 is an output terminal 31 is an A/D converter, 52, 43, 44° 45 is a switch, 40.
41.42. is 1H delay axis, 34° 35, 361d, backup memory, 38 is adder, 39 is subtracter, 46 is synchronous separation circuit, 47 is clock regeneration circuit, 50.51.5
2 is a D/A converter.

フレーム周波数60 Hz s走査線数525本の順次
短資の場合、水平繰返し周波数(fu )は約31.5
 KHzとなる。
For a sequential tanshi with a frame frequency of 60 Hz and 525 scanning lines, the horizontal repetition frequency (fu) is approximately 31.5
It becomes KHz.

したがって、はぼ40 MI−1zで発振するVQOと
1280分周する分周回路と、位相検波蕎で構成される
クロック再生回1147に、同期分離回路46で分離さ
れた同期信号を注入するとvCOは40.32 M)(
z −詠十同期信号に位相同期して発振する。したがっ
て、このクロックを用いて第4のA/、Dコンバータ3
1を動作させ、さらに、水平同期信号を基準としてこの
クロックを計数することで、第2図(rL)に示した多
重信号のそれぞれの区間を分離する制御信号などが容易
に得られる。この制御信号を用いて第5のスイッチ62
を制御することで多重信号から輝度信号の和成分、輝度
信号の差成分、色差信号(R−Y ) :色差信号(B
−Y、)をそれぞれ分離できる。 。
Therefore, when the synchronization signal separated by the synchronization separation circuit 46 is injected into the clock recovery circuit 1147, which is composed of the VQO oscillating at 40 MI-1z, a frequency division circuit that divides the frequency by 1280, and a phase detection circuit, the vCO becomes 40.32 M)(
z - Oscillates in phase synchronization with the Eiju synchronization signal. Therefore, using this clock, the fourth A/D converter 3
1, and further, by counting this clock with reference to the horizontal synchronizing signal, a control signal for separating each section of the multiplexed signal shown in FIG. 2 (rL) can be easily obtained. Using this control signal, the fifth switch 62
By controlling the multiplexed signal, the sum component of the luminance signal, the difference component of the luminance signal, the color difference signal (R-Y): the color difference signal (B
-Y, ) can be separated from each other. .

ここで分離されたv#度倍信号尭成分(第4図(υ)う
色差信号(R−Y ) (第4図(へ))、色差信号(
Bs−Y)(第4図(「))はそれぞれ時間軸圧縮され
ているので、第4のバッファメモリ64、第5の・バッ
ファメモリ35.M6のバッファメモリ36に記憶し、
その次の1Hでそれぞれ、クロック周波数を640 f
H1320fH,320fHにして読み出。
Here, the v# degree-folded signal component (Fig. 4 (υ)) color difference signal (RY) (Fig. 4 (to)), the color difference signal (
Bs-Y) (FIG. 4 ()) are compressed on the time axis, so they are stored in the fourth buffer memory 64, the fifth buffer memory 35, and the buffer memory 36 of M6,
In the next 1H, the clock frequency is set to 640 f.
Read with H1320fH and 320fH.

すと、1H期間に伸長した信号が得られる。As a result, a signal extended to 1H period is obtained.

輝度信号の差成分のバッファメモリからの読み出しのタ
イミングは、第4図(W)に示すようにちょうど、輝度
信号の和成分がA/Dから読み出されるタイミング(第
4図(u)参照)に揃うので。
The timing at which the difference component of the luminance signal is read from the buffer memory is exactly the timing at which the sum component of the luminance signal is read out from the A/D (see Figure 4 (u)), as shown in Figure 4 (W). Because we have everything.

和成分と差成分を足し算すると、第4図(→に示すよう
に、2つの水平走査期間のうち先行する水平走査期間の
信号が得られ、和成分から差成分を引き算すると第4図
(、VIに示すように後続する水平走査期間の信号が得
られる。キこで、第6の1H遅延線40を用いて、第2
の減算器39′の出力を1H遅延して、第6のスイッチ
43で1Hごとに切換えて出力するともとの輝度信号と
同じ順の輝度信号が再生できる。
When the sum component and the difference component are added, the signal of the preceding horizontal scanning period of the two horizontal scanning periods is obtained, as shown in Fig. 4 (→), and when the difference component is subtracted from the sum component, the signal of the preceding horizontal scanning period is obtained as shown in Fig. 4 (, The signal for the subsequent horizontal scanning period is obtained as shown in VI.Now, using the sixth 1H delay line 40,
By delaying the output of the subtracter 39' by 1H and outputting it by switching every 1H with the sixth switch 43, a luminance signal in the same order as the original luminance signal can be reproduced.

さらに、2つの色差信号は、第5のバッファメモリ55
と第6のバッファメモリ36の出力をそれぞれ、第7の
1H遅延線41、第8の1H遅・延森42で1H遅延し
、2H期間にわたって同じ情報を読み出すようにすると
、第5図(I9)と(F)に示すように、連続した色差
信号が再生できる・ここで、この2つの色差信号は輝度
信号が例えばYlとY2が読み出される間にUl+ T
J2と■1±。
Further, the two color difference signals are transferred to a fifth buffer memory 55.
If the outputs of the and sixth buffer memory 36 are delayed by 1H in the seventh 1H delay line 41 and the eighth 1H delay/delay line 42, and the same information is read over a 2H period, as shown in FIG. ) and (F), continuous color difference signals can be reproduced. Here, these two color difference signals are generated by Ul + T while the luminance signals are being read out, for example, Yl and Y2.
J2 and ■1±.

V2が読み出されるので、輝度信号と色差信号の垂直方
向の重心が一致している。もちろん、色差信号は2Hに
わたって同一信号を読み出すので、輝度信号に対し垂直
方向解像度はiになるが、水平方向の帯域について前述
した事が垂直方向についても成立ち、色差信号の帯域と
して十分なものが得られる。
Since V2 is read out, the vertical centers of gravity of the luminance signal and the color difference signal coincide. Of course, since the same signal is read out over 2H for the color difference signal, the vertical resolution is i compared to the luminance signal, but what was said above regarding the horizontal band also holds true for the vertical direction, and this is sufficient for the color difference signal band. is obtained.

色差信号の伝送には前述したMAO信号やTCZ信号の
ような線順次方式もあるが、この方式では垂直方向の色
の変わシ目で(R−Y )と(B−Y )の成分の割合
が実際と異なってしまい、変わり目で偽色がつき、著し
い画質劣化をもたらす。これに対し、本実施例で説明し
た色差信号伝送ではこうした問題もなく、きわめて良好
な色再現が可能である・ また、本実施例では送信側で先行する水平走査庫の信号
から後続する走査線の信号を減算する形で説明したため
、再生側では加算器出力に先行する水平走査線の信号が
得られることになったが、送信側で、後続する走査線の
信号から先行する走査線の信号を減算する形にすれば、
再生側では加算器出力には後続する走査線の信号が得ら
れるので、こちらの出力に1H遅延線が必要となるが、
それだけで本質的な差がない事は勿論である。
There is also a line-sequential method for transmitting color difference signals, such as the MAO signal and TCZ signal mentioned above, but in this method, the ratio of (R-Y) and (B-Y) components is determined at the vertical color change line. The image will differ from the actual image, and false colors will appear at the transition points, resulting in significant image quality deterioration. On the other hand, the color difference signal transmission described in this embodiment does not have this problem, and extremely good color reproduction is possible.In addition, in this embodiment, on the transmitting side, the following scanning line is Since the explanation was made in terms of subtracting the signal of If you make it into a subtracting form,
On the playback side, the signal of the subsequent scanning line is obtained from the adder output, so a 1H delay line is required for this output.
Of course, there is no essential difference.

寸だ、本実施例においては、輝度信号の差成分を和成分
に対し先行させるように構成するため、再生側では読み
出し信号のタイミングを8整する1H遅延線が和成分の
方に必要としなくなる。このため、再生側では、きわめ
て大量に生産されるテレビ受像機に組込まれることから
、きわめて意義が大きい。もちろん、第1図の説明で述
べたように、オロ成分を先行することも可能であるが、
この場合、第6図のスイッチ32と加算器38、減算器
390間に、1H遅延腕が21固必要になる。
In this embodiment, since the difference component of the luminance signal is configured to precede the sum component, the 1H delay line that adjusts the timing of the read signal on the playback side is not required for the sum component. . Therefore, on the playback side, it is of great significance because it is incorporated into television receivers that are produced in extremely large quantities. Of course, as mentioned in the explanation of FIG. 1, it is also possible to precede the oro component, but
In this case, 21 1H delay arms are required between the switch 32, adder 38, and subtracter 390 in FIG.

さらに、本発明を現状のNTSOとフィールド周波数を
同一にし、走査線の数を2倍にした順次方式にした場合
(すなわちフレーム周波数60)Tz走査線525本の
順次方式)、この順次方式の信号をNTSO方式に変換
するのは非常に簡単に行なえる。すなわち、あるフィー
ルドでN本目とN+1本目0和をとる場合、次のフィー
ルドでは(N−1)本目とN本目の和、(N+1)本目
と(N+2)本目のオロという形で和カ求められること
になる。したがって、あるフィールドの和信号と次のフ
ィールドの和信号はちょウドインタレースの関係になる
・そこで、輝度信号の和成分と2つの色差信号の和成分
をそのままバッファメモリに蓄え、輝度信号は2倍に、
色差信号は8倍に時間伸長してやシ、必要な帯域制限を
行なうだけでN T 80の4度信号と2つの色差信号
が得られることになる。
Furthermore, if the present invention is made into a sequential method with the same field frequency as the current NTSO and twice the number of scanning lines (i.e., a sequential method with 525 Tz scanning lines at a frame frequency of 60), the signal of this sequential method will be Converting to NTSO format is very easy. In other words, if in a certain field the sum of the Nth and N+1th lines is 0, then in the next field the sum is found as the sum of the (N-1)th and Nth lines, and the sum of the (N+1)th and (N+2)th lines. It turns out. Therefore, the sum signal of one field and the sum signal of the next field have a slightly interlaced relationship. Therefore, the sum component of the luminance signal and the sum component of the two color difference signals are stored as they are in the buffer memory, and the luminance signal is twice,
By time-expanding the color difference signal by eight times and performing the necessary band limiting, a 4 degree signal of N T 80 and two color difference signals can be obtained.

このように従来方式への信号変換はきわめて易しい。In this way, signal conversion to the conventional system is extremely easy.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による時間軸多重方法は従
来の周波数多重と同じく輝度信号の最高周波数帯域内で
色差信号まで多重でき、従来問題であった時間軸多重の
広帯域性という欠点を々くし、かつ、周波数多重方式で
問題であったクロスカラーなどの問題を全く生じなくす
る事が可能となった。さらに、本発明においては、輝度
信号の差成分を和成分に対し時間的に先行させることに
よシ、再生側の構成も1■j単なものとする墨が可能と
なりた。
As explained above, the time axis multiplexing method according to the present invention can multiplex color difference signals within the highest frequency band of the luminance signal in the same way as conventional frequency multiplexing, and eliminates the drawback of conventional time axis multiplexing, which is the broadband nature. Moreover, it has become possible to completely eliminate problems such as cross color, which were problems with frequency multiplexing systems. Furthermore, in the present invention, by making the difference component of the luminance signal temporally precede the sum component, it has become possible to perform black with a simple configuration on the reproduction side.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明によるテレビジョン装置の信号変換器
の一実施例を示す図、第2図は第1図の各部の波形例を
示す図、弔6図は本発明によるテレビジョン装置の信号
復調器の一実施例を示す図、第4図は第3図の各部の波
形例を示す図である。 9、10.11.24.32.45.44.45・・・
・・・スイッチ12、13.14.40.41.42.
48.49・・・・・・1H遅延線21、22.23.
34.35.56・・・・・・バッファメモリ15、1
7.18.58・・・・・・加勢器16.39・・・・
・・減算器 代理人弁理士 高 橋 明 夫 第1頁の続き ■発明者村1)敏則 ■発明者大沢 通孝 横浜市戸塚区吉田町29旙地 株式会社日立製作所家電
研究所内
FIG. 1 is a diagram showing an embodiment of the signal converter of the television device according to the present invention, FIG. 2 is a diagram showing waveform examples of each part of FIG. 1, and FIG. FIG. 4 is a diagram showing an example of a signal demodulator, and FIG. 4 is a diagram showing an example of waveforms of each part in FIG. 3. 9, 10.11.24.32.45.44.45...
...Switches 12, 13.14.40.41.42.
48.49...1H delay line 21, 22.23.
34.35.56...Buffer memory 15, 1
7.18.58... Assister 16.39...
... Subtractor Patent Attorney Akio Takahashi Continued from page 1 ■ Inventor Village 1) Toshinori ■ Inventor Michitaka Osawa 29 Akiji, Yoshida-cho, Totsuka-ku, Yokohama Hitachi, Ltd. Home Appliance Research Laboratory

Claims (1)

【特許請求の範囲】 1、隣シ合った水平走査期間の輝度信号を加算、。 及び減算し、減算信号を時間軸圧縮し、該圧縮5信号と
色差信号を時間軸圧縮した信号とを水平・走査期間に時
間的多重し、−水平走査期間毎にζ上記輝度信号の加算
信号と上記時間的多重信号・とを切換えて伝送すること
を特徴とするテレビジョン方式。 2 同じ水平走査期間で構成される上記加算信号0、及
び上記時間的多重信号のうち、上記的多重信号を先行し
て伝送することを特徴とする特許請求の範囲第1項記載
のテレビジョン方式。
[Claims] 1. Adding luminance signals of adjacent horizontal scanning periods. The subtracted signal is compressed in the time axis, and the compressed 5 signals and the signal obtained by compressing the time axis of the color difference signal are temporally multiplexed in the horizontal scanning period. A television system characterized by switching between and transmitting the above-mentioned temporally multiplexed signal. 2. The television system according to claim 1, wherein of the addition signal 0 and the temporally multiplexed signal, which are configured in the same horizontal scanning period, the multiplexed signal is transmitted first. .
JP58192399A 1983-10-17 1983-10-17 Television system Pending JPS6085695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58192399A JPS6085695A (en) 1983-10-17 1983-10-17 Television system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58192399A JPS6085695A (en) 1983-10-17 1983-10-17 Television system

Publications (1)

Publication Number Publication Date
JPS6085695A true JPS6085695A (en) 1985-05-15

Family

ID=16290659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58192399A Pending JPS6085695A (en) 1983-10-17 1983-10-17 Television system

Country Status (1)

Country Link
JP (1) JPS6085695A (en)

Similar Documents

Publication Publication Date Title
JPH03132185A (en) Television signal converter
US5070395A (en) Television signal system conversion apparatus
KR930002143B1 (en) Television signal circuit
JP2667900B2 (en) Recording and playback device
CN1018044B (en) Extended definition television (edtv) recording apparatus
US5428454A (en) Video signal recording/reproducing apparatus
US4575749A (en) Component companding in a multiplexed component system
CA2113755A1 (en) Television Signal Digitizing Method
JPS60134692A (en) Television device
CA1334686C (en) Video signal recording/reproducing apparatus
JPS6085695A (en) Television system
US5132781A (en) Video signal processing system using common digital filter in plural manners
JPH05199543A (en) Digital video signal processing circuit
JP2708848B2 (en) Television converter
JPS5923149B2 (en) High definition broadcast converter
JP2872269B2 (en) Standard / high-definition television receiver
JP2607537B2 (en) Television signal processing circuit
JPS5831793B2 (en) Kotai Iki TV Jiyoung Shingoden Souhoshiki
JPH0385976A (en) Television system converter
JPH0516234B2 (en)
JPH0226916B2 (en)
JPH04100496A (en) Video signal converter
JPS6262115B2 (en)
JPH03178291A (en) Recording and reproducing method for video signal
JPH048083A (en) Band compression television signal converter