JPS6036411B2 - Method for producing 1,1,1,3,3,3-hexafluoro-propan-2-ol - Google Patents

Method for producing 1,1,1,3,3,3-hexafluoro-propan-2-ol

Info

Publication number
JPS6036411B2
JPS6036411B2 JP55042808A JP4280880A JPS6036411B2 JP S6036411 B2 JPS6036411 B2 JP S6036411B2 JP 55042808 A JP55042808 A JP 55042808A JP 4280880 A JP4280880 A JP 4280880A JP S6036411 B2 JPS6036411 B2 JP S6036411B2
Authority
JP
Japan
Prior art keywords
hexafluoroacetone
catalyst
nickel
reaction
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55042808A
Other languages
Japanese (ja)
Other versions
JPS56139433A (en
Inventor
俊和 河合
泰雄 日比野
裕 丸山
章 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP55042808A priority Critical patent/JPS6036411B2/en
Priority to GB8108711A priority patent/GB2073181B/en
Priority to DE3111817A priority patent/DE3111817C2/en
Priority to IT20854/81A priority patent/IT1136832B/en
Priority to FR8106654A priority patent/FR2479803A1/en
Publication of JPS56139433A publication Critical patent/JPS56139433A/en
Publication of JPS6036411B2 publication Critical patent/JPS6036411B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は1,1,1,3,3,3−へキサフルオロープ
ロパンー2−オールの改良された製造方法に関し、特に
へキサフルオロアセトンの接触水素化による1,1,1
,3,3,3ーヘキサフルオロープロパン−2ーオール
の製造における改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved process for the production of 1,1,1,3,3,3-hexafluoropropan-2-ol, in particular by catalytic hydrogenation of hexafluoroacetone. 1,1
, 3,3,3-hexafluoropropan-2-ol.

1,1,1,3,3,3ーヘキサフルオロープロパン−
2−オールは界面活性剤、乳化剤として(ベルギー特許
第634368号)、またカルボン酸ビニル重合体のよ
うな重合物質の溶媒として(米国特許第3153004
号)、また麻酔性化合物の中間体としても(米国特許第
3346448号)有用であることが知られている。
1,1,1,3,3,3-hexafluoropropane-
2-ol has been used as a surfactant, emulsifier (Belgium Patent No. 634368) and as a solvent for polymeric materials such as vinyl carboxylate polymers (U.S. Pat. No. 3,153,004).
It is also known to be useful as an intermediate for anesthetic compounds (US Pat. No. 3,346,448).

1,1,1,3,3,3ーヘキサフルオロープロパンー
2ーオールの製造法としては■へキサフルオロアセトン
の水素化ホウ素ナトリウム(ソ連特許第138604号
)あるいは水素化アルミニウムリチウム(米国特許第3
227674号)を用いた液相還元、■へキサフルオロ
アセトンの酸化白金触媒(米国特許第3607952号
)あるいはアルカリ金属無機塩基を助触媒とした金属パ
ラジウム触媒(独国特許第2113551号)を用いた
液相水素化、および■へキサフルオロアセトンの、金属
鋼一酸化クロム触媒(ベルギー特許第634368号)
、あるいは非担持酸化プラチナ触媒〔J.Am.Che
m,Soc.、第8鏡蓋:4948〜52頁(196仏
苧)〕、あるいは酸化アルミニウムのべしット担椿パラ
ジウム触媒(オランダ特許出願第6610936号)、
更には炭素担持パラジウム触媒(独国特許第19566
2y烏)を用いた気相接触水素還元する方法等が知られ
ている。
As a method for producing 1,1,1,3,3,3-hexafluoropropane-2-ol, ■ Sodium borohydride of hexafluoroacetone (USSR Patent No. 138604) or lithium aluminum hydride (US Pat. No. 3)
227674), and (2) hexafluoroacetone using a platinum oxide catalyst (US Pat. No. 3,607,952) or a metal palladium catalyst cocatalyzed with an alkali metal inorganic base (German Patent No. 2,113,551). Metallic steel chromium monoxide catalyst for liquid phase hydrogenation and hexafluoroacetone (Belgium patent no. 634368)
, or an unsupported platinum oxide catalyst [J. Am. Che
m, Soc. , No. 8 Mirror Cover: pp. 4948-52 (196 French)], or Aluminum Oxide Besit-supported Camellia Palladium Catalyst (Netherlands Patent Application No. 6610936),
Furthermore, carbon-supported palladium catalyst (German patent no. 19566
A method of gas-phase catalytic hydrogen reduction using 2y Karasu) is known.

これらの方法のうち工業的には■の液相水素化あるいは
■の気相接触水素化が適しているが、前者は一般に高価
な貴金属触媒を使用し、しかもかなりの高圧下で水素化
を行なわせしめる点で難点を有し、一方、後者は常圧下
で連続的に水素化を行なわせしめることが可能であるが
、例えば金属鋼と酸化クロム触媒を使用した場合は高温
、長接触時間の条件下でもへキサフルオロァセトンの1
,1,1,3,3,3ーヘキサフルオロープロパンー2
−オールへの転化率は低く、この転化率を上げるために
は高価な貴金属触媒を使用せざるを得ない点で必ずしも
満足できるものではなく、更にこれらの気相接触水素化
においては転イG率を上げるために150qo以上の高
温で反応を行うが、この場合には副生成物としてフッ素
および有機酸等の酸性化合物が発生することもあり、こ
れらの酸性化合物が触媒を失活させることから担体とし
て耐酸性物質を使用することを余儀なくされている。
Among these methods, liquid-phase hydrogenation (①) or gas-phase catalytic hydrogenation (②) are industrially suitable, but the former generally uses expensive precious metal catalysts and hydrogenation is carried out under considerably high pressure. On the other hand, in the latter case, it is possible to carry out hydrogenation continuously under normal pressure, but for example, when metal steel and a chromium oxide catalyst are used, it is difficult to carry out hydrogenation under conditions of high temperature and long contact time. But hexafluoroacetone 1
,1,1,3,3,3-hexafluoropropane-2
- The conversion rate to ol is low, and in order to increase this conversion rate, expensive noble metal catalysts have to be used, which is not necessarily satisfactory. Furthermore, in these gas phase catalytic hydrogenations, conversion In order to increase the reaction rate, the reaction is carried out at a high temperature of 150 qo or more, but in this case, acidic compounds such as fluorine and organic acids may be generated as by-products, and these acidic compounds deactivate the catalyst. It is forced to use acid-resistant substances as carriers.

本発明者等はへキサフルオロアセトンの気相接触水素化
において、上記のような問題点を解決すべ〈研究を重ね
ていたが、副生成物の酸が発生しないような隠和な条件
下、ニッケル系触媒を用いることによって、1,1,1
,3,3,3ーヘキサフルオローブロパン−2ーオール
を定量的に得られることを見出し本発明に到達したもの
である。
The present inventors have been conducting repeated research to solve the above-mentioned problems in gas-phase catalytic hydrogenation of hexafluoroacetone. By using a nickel-based catalyst, 1,1,1
, 3,3,3-hexafluoropropan-2-ol can be obtained quantitatively, and the present invention has been achieved.

即ち、本発明はへキサフルオロアセトンをニッケル触媒
の存在下、30〜14000の反応温度において、水素
と気相接触反応させることを特徴とする1,1,1,3
,3,3ーヘキサフルオロープロバンー2−オールの製
造法に関するものである。
That is, the present invention is characterized in that hexafluoroacetone is subjected to a gas phase catalytic reaction with hydrogen in the presence of a nickel catalyst at a reaction temperature of 30 to 14,000 °C.
, 3,3-hexafluoroproban-2-ol.

本発明において用いられるニッケル触媒としては炭酸ニ
ッケル、酸化ニッケル、水酸化ニッケル等を水素気体中
で還元して得られる還元ニッケル触媒、有機酸塩(例え
ば、ギ酸ニッケル、シュウ酸ニッケル、酢酸ニッケル等
)′を酸素の存在しない状態で加熱分解して得られる分
解還元ニッケル触媒、あるいはこれらのニッケル触媒を
活性炭、活性ァルミナ又は亜鉛等に担持させたニッケル
触媒、更には酸化マンガン、酸化ジルコニウムなどの助
触媒を添加し、ケィソウ士、白土などの支持物を使用し
成型して得られる広範囲のニッケル触媒の使用が可能で
ある。これら触媒の使用量は原料へキサフルオロアセト
ンに対し0.1〜5部が適当である。また工業的には広
く使用されているケィソゥ士付還元ニッケル触媒(例え
ば日揮化学社製)を使用した場合その触媒量は原料へキ
サフルオロアセトンに対し1部以下で充分である。本発
明における30〜140午○という反応温度は、30℃
未満では生成物が反応管中で凝縮するため好ましくなく
、また140qoより高い温度では副反応が引き起こさ
れ酸性化合物が劉生するため収率の低下が著しいためで
ある。本発明において用いる水素はへキサフルオロアセ
トンに対し当モル量以上あればよいが、水素をキャリア
ーガスとして過剰に使用することは何ら支障ないo本発
明における接触時間は一般に3の砂以下で、反応温度が
高いほど短くてよく、通常は5秒程度で十分であり、ほ
ぼ定量的に所望の1,1,1,3,3,3−へキサフル
オロープロパン−2−オールを製造することができる。
Examples of the nickel catalyst used in the present invention include reduced nickel catalysts obtained by reducing nickel carbonate, nickel oxide, nickel hydroxide, etc. in hydrogen gas, and organic acid salts (e.g., nickel formate, nickel oxalate, nickel acetate, etc.). Decomposition-reduction nickel catalysts obtained by thermally decomposing ’ in the absence of oxygen, or nickel catalysts in which these nickel catalysts are supported on activated carbon, activated alumina, zinc, etc., and co-catalysts such as manganese oxide and zirconium oxide. It is possible to use a wide range of nickel catalysts obtained by adding and molding using a support such as diatomaceous clay or white clay. The appropriate amount of these catalysts to be used is 0.1 to 5 parts based on the raw material hexafluoroacetone. In addition, when a reduced nickel catalyst with carbon dioxide (for example, manufactured by JGC Chemical Co., Ltd.), which is widely used in industry, is used, the amount of the catalyst is 1 part or less based on the raw material hexafluoroacetone. The reaction temperature of 30 to 140 pm in the present invention is 30°C
If the temperature is lower than 140 qo, the product will condense in the reaction tube, which is undesirable, and if the temperature is higher than 140 qo, side reactions will occur and acidic compounds will form, resulting in a significant drop in yield. The hydrogen used in the present invention may be used in an equimolar amount or more relative to hexafluoroacetone, but there is no problem in using hydrogen in excess as a carrier gas.The contact time in the present invention is generally less than 3 hours, and the reaction time is The higher the temperature, the shorter the time, usually about 5 seconds is sufficient, and it is possible to produce the desired 1,1,1,3,3,3-hexafluoropropan-2-ol almost quantitatively. can.

なお、上記の条件下においては酸性化合物が創生するこ
となく、水素化反応が選択的にほぼ定量的に進行するた
め安価なニッケル触媒の触媒寿命も顕著に長く、より安
価に所望の1,1,1,3,3,3ーヘキサフルオロー
プロパンー2オールが得られることは本発明の利点の1
つである。
Note that under the above conditions, the hydrogenation reaction proceeds selectively and almost quantitatively without the formation of acidic compounds, so the lifetime of the inexpensive nickel catalyst is significantly longer, and the desired 1, One of the advantages of the present invention is that 1,1,3,3,3-hexafluoropropane-2ol is obtained.
It is one.

以下本発明を実施例について詳細に説明するが、本発明
はこれら特別な実施例のみに限定されるものではない。
実施例 1 約185qoに加熱したパィレックス管(内径13肋)
中に還元ニッケル触媒(5側めべレツト、日揮化学社製
、Ni45〜47重量%、ケィソウ士27〜29%、C
r 2〜3%、Cu2〜3%、黒鉛4〜5%)4夕を充
填し、水素気流下で185℃で予備活性化した後、約6
0午0に冷却し、次いでへキサフルオロアセトン(10
夕/Hr)と水素(80の【/min)の混合ガスを通
す。
EXAMPLES The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these specific Examples.
Example 1 Pyrex pipe heated to about 185 qo (inner diameter 13 ribs)
Reduced nickel catalyst (5-side plate, manufactured by JGC Chemical Co., Ltd., Ni 45-47% by weight, diatomite 27-29%, C
R2~3%, Cu2~3%, graphite 4~5%) and preactivated at 185°C under a hydrogen stream, then
Cool to 0:00 and then add hexafluoroacetone (100
A mixed gas of 80 m/h) and hydrogen (80 m/min) is passed through.

還元反応は速やかに進行し、反応温度は直ちに80℃迄
上昇した後80℃に保持する。この反応に於ける接触時
間は4秒である。反応温度が8ぴ0に上昇した時のへキ
サフルオロアセトンの転化率は99.2%、1,1,1
,3,3,3−へキサフルオロ−プロパン−2−オール
の選択率は100%であった。また、2畑時間後のへキ
サフルオロアセトンの転化率は99.0%、1,1,1
,3,3,3−へキサフルオロープロ/ぐン−2ーオー
ルの選択率は100%であり、長期にわたり触媒の失活
は認められなかった。比較例 1 実施例1に記載した反応装置及び触媒を使用し、反応温
度150℃、接触時間8秒の条件下でへキサフルオロア
セトンの気相接触還元を行った結果、生成物中には副生
した水及び酸が多量に認められた。
The reduction reaction proceeds rapidly, and the reaction temperature immediately rises to 80°C and is then maintained at 80°C. The contact time in this reaction is 4 seconds. The conversion rate of hexafluoroacetone was 99.2% when the reaction temperature rose to 8.0%, 1,1,1
, 3,3,3-hexafluoro-propan-2-ol, the selectivity was 100%. In addition, the conversion rate of hexafluoroacetone after 2 field hours was 99.0%, 1,1,1
, 3,3,3-hexafluoropro/gun-2-ol was 100%, and no deactivation of the catalyst was observed over a long period of time. Comparative Example 1 Using the reaction apparatus and catalyst described in Example 1, gas phase catalytic reduction of hexafluoroacetone was carried out under conditions of a reaction temperature of 150°C and a contact time of 8 seconds. A large amount of water and acid were observed.

へキサフルオロアセトンの転化率は99.2%、1,1
,1,3,3,3ーヘキサフルオ。−プロパン−2−オ
ールの選択率は78.1%であった。実施例 2 実施例1に記載した反応装置及び触媒を用いへキサフル
オロアセトン1モルに対し水素3モルの流量で、接触時
間4秒、反応温度70qoの条件下で気相接触還元を行
った結果、ヘキサフルオロアセトンの転化率は97.5
%、1,1,1,3,3,3ーヘキサフルオロ−プロパ
ン−2−オールの選択率は100%であった。
The conversion rate of hexafluoroacetone is 99.2%, 1,1
, 1,3,3,3-hexafluor. The selectivity of -propan-2-ol was 78.1%. Example 2 Results of gas phase catalytic reduction performed using the reaction apparatus and catalyst described in Example 1 at a flow rate of 3 moles of hydrogen per mole of hexafluoroacetone, a contact time of 4 seconds, and a reaction temperature of 70 qo. , the conversion rate of hexafluoroacetone is 97.5
%, the selectivity for 1,1,1,3,3,3-hexafluoro-propan-2-ol was 100%.

実施例 3 実施例1で用いたものと同じ組成の還元ニッケル触媒4
0夕と活性炭70夕を混合し内径25柵のパィレックス
管に充填し、接触時間7秒、反応温度40℃でへキサフ
ルオロアセトン(40夕/Hr)及び水素(ヘキサフル
オロアセトンに対し3当量)を供給したところ、ヘキサ
フルオロアセトンの転化率は99.8%、1,1,1,
3,3,3ーヘキサフルオロープロパン−2−オールの
選択率は100%であり、酸性化合物の創生は全く認め
られなかった。
Example 3 Reduced nickel catalyst 4 with the same composition as that used in Example 1
A mixture of activated carbon and 70 hours of activated carbon was filled into a Pyrex tube with an inner diameter of 25 mm, and the contact time was 7 seconds and the reaction temperature was 40°C. Hexafluoroacetone (40 hours/Hr) and hydrogen (3 equivalents relative to hexafluoroacetone) were added. was supplied, the conversion rate of hexafluoroacetone was 99.8%, 1,1,1,
The selectivity of 3,3,3-hexafluoropropan-2-ol was 100%, and no generation of acidic compounds was observed.

比較例 2 銅−酸化クロム触媒(Cuo44〜46重量%、Cr2
0343〜44%、Mが024〜5%)20夕を内径1
3肌のパィレックス管に充填し、接触時間1現砂、反応
温度80qoでへキサフルオロアセトン(10夕/Hr
)及び水素(ヘキサフルオロアセトンに対し3当量)を
供給したところ、水素化は殆んど進行せず、ヘキサフル
オロアセトンの転化率は0.5%であった。
Comparative Example 2 Copper-chromium oxide catalyst (Cuo44-46% by weight, Cr2
0343~44%, M is 024~5%) 20mm inner diameter 1
Hexafluoroacetone (10 evenings/Hr) was filled into a Pyrex tube with a contact time of 1 hour and a reaction temperature of 80 qo.
) and hydrogen (3 equivalents relative to hexafluoroacetone), hydrogenation hardly proceeded and the conversion rate of hexafluoroacetone was 0.5%.

比較例 3 炭素担特0.5%パラジウム触媒10夕を内径13肋の
パィレックス管に充填し、接触時間7秒、反応温度20
000でへキサフルオロアセトン(10多/Hr)及び
水素(ヘキサフルオロアセトンに対し3当量)を供給し
たところ、ヘキサフルオロアセトンの転化率は96.5
%であったが1,1,1,3,3,3−へキサフルオロ
ープロ/ぐン−2−オールの選択率は70.4%と低く
、酸性化合物が多量副生した。
Comparative Example 3 A Pyrex tube with an inner diameter of 13 ribs was filled with 10 sheets of carbon-supported 0.5% palladium catalyst, contact time was 7 seconds, and reaction temperature was 20.
When hexafluoroacetone (10/Hr) and hydrogen (3 equivalents to hexafluoroacetone) were supplied at 000, the conversion rate of hexafluoroacetone was 96.5.
%, but the selectivity of 1,1,1,3,3,3-hexafluoropro/gun-2-ol was as low as 70.4%, and a large amount of acidic compounds were produced as by-products.

Claims (1)

【特許請求の範囲】[Claims] 1 ヘキサフルオロアセトンをニツケル触媒の存在下、
30〜140℃の反応温度において、水素と気相接触反
応させることを特徴とする、1,1,1,3,3,3−
ヘキサフルオロ−プロパン−2−オールの製造法。
1 Hexafluoroacetone in the presence of a nickel catalyst,
1,1,1,3,3,3-, characterized by carrying out a gas phase contact reaction with hydrogen at a reaction temperature of 30 to 140°C.
A method for producing hexafluoro-propan-2-ol.
JP55042808A 1980-04-03 1980-04-03 Method for producing 1,1,1,3,3,3-hexafluoro-propan-2-ol Expired JPS6036411B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP55042808A JPS6036411B2 (en) 1980-04-03 1980-04-03 Method for producing 1,1,1,3,3,3-hexafluoro-propan-2-ol
GB8108711A GB2073181B (en) 1980-04-03 1981-03-19 Preparation of 1,1,1,3,3,3-hexafluoropropane-2-ol by vapour phase hydrogenation of hexafluoroacetone with nickel catalyst
DE3111817A DE3111817C2 (en) 1980-04-03 1981-03-25 Process for the preparation of 1,1,1,3,3,3-hexafluoropropan-2-ol by vapor phase hydrogenation of hexafluoroacetone with nickel catalysts
IT20854/81A IT1136832B (en) 1980-04-03 1981-03-31 PREPARATION OF 1,1,1,3,3,3-ESAFLOUROPROPANO-2-OL FOR HYDROGENATION IN THE STEAM PHASE OF ESAFLUORACETONE WITH NICKEL CATALYST
FR8106654A FR2479803A1 (en) 1980-04-03 1981-04-02 PROCESS FOR THE PREPARATION OF 1,1,1,3,3,3-HEXAFLUOROPROPANE-2-OL BY VAPOR HYDROGENATION OF HEXAFLUOROACETONE WITH A NICKEL CATALYST

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55042808A JPS6036411B2 (en) 1980-04-03 1980-04-03 Method for producing 1,1,1,3,3,3-hexafluoro-propan-2-ol

Publications (2)

Publication Number Publication Date
JPS56139433A JPS56139433A (en) 1981-10-30
JPS6036411B2 true JPS6036411B2 (en) 1985-08-20

Family

ID=12646252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55042808A Expired JPS6036411B2 (en) 1980-04-03 1980-04-03 Method for producing 1,1,1,3,3,3-hexafluoro-propan-2-ol

Country Status (5)

Country Link
JP (1) JPS6036411B2 (en)
DE (1) DE3111817C2 (en)
FR (1) FR2479803A1 (en)
GB (1) GB2073181B (en)
IT (1) IT1136832B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041647B2 (en) * 1980-11-11 1985-09-18 セントラル硝子株式会社 Method for producing 1,1,1,3,3,3-hexafluoropropan-2-ol
JPS6059219B2 (en) * 1981-11-18 1985-12-24 セントラル硝子株式会社 Method for producing 2-trifluoromethylpropanol
JPH075490B2 (en) * 1990-03-14 1995-01-25 セントラル硝子株式会社 Process for producing 1,1,1,3,3,3-hexafluoropropan-2-d-2-ol-d
US7524995B1 (en) 2008-06-12 2009-04-28 E.I. Du Pont De Nemours And Company Continuous process to produce hexafluoroisopropanol

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB621654A (en) * 1947-02-24 1949-04-13 Eric Richard Wallsgrove Improvements in or relating to the production of 1, 1, 1-trifluoropropan-2-ol
US2824897A (en) * 1955-06-24 1958-02-25 Minnesota Mining & Mfg Perchlorofluoro alcohols
FR1190705A (en) * 1957-12-11 1959-10-14 Minnesota Mining & Mfg Polychlorofluoro alcohols
US3418337A (en) * 1961-05-03 1968-12-24 Du Pont Hexafluoro-2-propanol and its complex with tetrahydrofuran
GB963269A (en) * 1961-07-08 1964-07-08 Distillers Co Yeast Ltd Production of ketones and secondary alkanols
US3449435A (en) * 1963-05-31 1969-06-10 Kyowa Hakko Kogyo Kk Process for the catalytic vapor phase hydrogenation of an beta-unsaturated carbonyl compound with a gaseous mixture of hydrogen and a lower alkane
DE1277232B (en) * 1967-03-18 1968-09-12 Basf Ag Process for the preparation of saturated aliphatic alcohols
FR1595013A (en) * 1968-01-17 1970-06-08
JPS5550704B2 (en) * 1972-06-08 1980-12-19

Also Published As

Publication number Publication date
DE3111817A1 (en) 1982-02-18
FR2479803A1 (en) 1981-10-09
IT1136832B (en) 1986-09-03
GB2073181A (en) 1981-10-14
FR2479803B1 (en) 1984-12-21
GB2073181B (en) 1984-08-08
JPS56139433A (en) 1981-10-30
DE3111817C2 (en) 1985-06-05
IT8120854A0 (en) 1981-03-31

Similar Documents

Publication Publication Date Title
WO2012078384A1 (en) Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
JP2015048349A (en) Method for producing unsaturated alcohol
FR2928919A1 (en) PROCESS FOR THE PREPARATION OF DIFLUOROACETIC ACID AND ITS SALTS
JPS6041647B2 (en) Method for producing 1,1,1,3,3,3-hexafluoropropan-2-ol
JPS646183B2 (en)
US3948805A (en) Catalysts for converting maleic anhydride to alpha-butyrolactone
JP5225026B2 (en) Copper catalyst regeneration method
JPS6036411B2 (en) Method for producing 1,1,1,3,3,3-hexafluoro-propan-2-ol
JPH0393602A (en) Selective removing of carbon monoxide
JPS606925B2 (en) Process for producing unsaturated hydrocarbons
CN111205192A (en) Preparation method of N, N, N' -trimethyl bis (aminoethyl) ether
JPS5953249B2 (en) Production method of aromatic alcohol
CZ46697A3 (en) Process for preparing a mixture of cyclohexyl amine and dicyclohexyl amine
JPS5941974B2 (en) Hydrogenation method for α,β-unsaturated aldehydes
JP2002255941A (en) Method for producing imidazole compound
Matshwele et al. A single step low cost production of cyclohexanone from phenol hydrogenation
US2886596A (en) Process for the production of cyclohexanone oxime
JPS6059219B2 (en) Method for producing 2-trifluoromethylpropanol
JP4453790B2 (en) Method for producing cyclopentanone
JP4152505B2 (en) Process for producing unsaturated alcohols
WO2001010802A1 (en) Manufacture of cyclohexane from benzene and a hydrogen source containing impurities
RU2178781C1 (en) 2-etylhexanal-into-2-ethylhexanol hydrogenation process
JPS58133833A (en) Regenerating method of catalyst for production of indoles
JPH01301631A (en) Production of 1,1,1,3,3,3-hexafluoropropan-2-ol
JPS6039055B2 (en) Manufacturing method of resorcinol