JPS60234379A - Formation for electrode of solar cell - Google Patents

Formation for electrode of solar cell

Info

Publication number
JPS60234379A
JPS60234379A JP59089505A JP8950584A JPS60234379A JP S60234379 A JPS60234379 A JP S60234379A JP 59089505 A JP59089505 A JP 59089505A JP 8950584 A JP8950584 A JP 8950584A JP S60234379 A JPS60234379 A JP S60234379A
Authority
JP
Japan
Prior art keywords
layer
evaporated
resist layer
electrode
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59089505A
Other languages
Japanese (ja)
Inventor
Yoshiki Maeyashiki
前屋敷 芳樹
Shigeo Sasuga
流石 重雄
Hiroaki Yoshihara
吉原 弘章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59089505A priority Critical patent/JPS60234379A/en
Publication of JPS60234379A publication Critical patent/JPS60234379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To increase the thickness or wall thickness of the striped part of each of the patternized electrodes of a solar cell and to lower their series resistance values by a method wherein the evaporating material on the surface of the evaporated resist layer formed on the main surface of the photoelectric converting body according to the prescribed pattern is removed and the evaporated resist layer, which is reexposed, is performed a plating treatment as a plated resist layer. CONSTITUTION:An evaporated resist layer 4 is formed on the main surface of a photoelectric converting body 3 according to the prescribed pattern by a printing method and so forth. After that, firstly, Cr layers 51, which are respectively used as a first layer, are evaporated, then Cu layers 52, which are respectively used as a second layer, are evaporated and evaporated layers 5, which are respectively used collectively as one layer, are formed. The evaporating material adhered on the surface of the evaporated resist layer 4 is removed by a method, desirably by a mechanical grindstone grinding, and the evaporated resist layer 4 is reexposed. After that, when such a layer as a Cu layer is electroplated on each evaporated layer 5 in the thickness of 10mum, for example, as a first plated layer, and furthermore, such a layer as an Ni layer is electroplated thereon in the thickness of 2mum, for example, as a second plated layer, a plated layer 6 is formed on only each of the evaporated electrode layer parts 5 as an electrode base layer to conform to the prescribed pattern. The plated layers 60 are formed in such a manner as not to adhere on a plated resist layer 40, which is the former evaporated resist layer.

Description

【発明の詳細な説明】 本発明は太陽電池の電極形成方法に関し、殊に太陽電池
の一対の表裏面電極の中、光の入射側となる)面側に所
定のパターンに即して設けられるパターン化電極の形成
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming electrodes in a solar cell, and in particular, in a pair of front and back electrodes of a solar cell, electrodes are formed on the side (which is the light incident side) in accordance with a predetermined pattern. The present invention relates to a method for forming patterned electrodes.

pn接合やnnへテロ接合等による光電変換体を持つ太
陽電池素子では、電力を取出すために当該光電変検体の
両側主面に各−っ、計一対の電極を形成するが、その中
、光の入射面側の電極はその下の光電変換体へ効率良く
光を入射させなければならないから、光電変換体主面の
全面ではなく、寧ろなるべく主面を露出させるようなパ
ターン、例えば細幅ストライプ状部分の組合せでなる格
子状乃至櫛状パターンに形成される。
In a solar cell element having a photoelectric converter such as a pn junction or an nn heterojunction, a total of a pair of electrodes are formed on both main surfaces of the photoelectric conversion specimen in order to extract electric power. Since the electrode on the incident surface side must allow light to efficiently enter the photoelectric converter below, it is necessary to use a pattern that exposes as much of the main surface as possible, rather than the entire main surface of the photoelectric converter, such as a narrow stripe. It is formed into a lattice-like or comb-like pattern consisting of a combination of shaped parts.

然し一方、そのようにすると、このパターン化電極の直
列抵抗値はどうしても高くなり、従って今度は変換電力
を有効に取出す上で望ましくないことになる。
However, if this is done, the series resistance value of the patterned electrode inevitably becomes high, which is therefore undesirable in terms of effectively extracting the converted power.

そこで、こうした二つの要件の相反性を解消し、当該パ
ターン化電極の直列抵抗値を下げるためには、簡単な手
法としてパターン化電極の各ストライブ状部分の厚味乃
至肉厚を増すことが考えられる。
Therefore, in order to eliminate the conflict between these two requirements and lower the series resistance value of the patterned electrode, it is a simple method to increase the thickness or wall thickness of each striped portion of the patterned electrode. Conceivable.

本出願人は本願に先立ち、そのための具体的手法として
メッキ法、殊に電気メツキ法による電極厚味の増加実験
を行なった。メッキ法を採用したのは最も低廉旧つ簡便
な手法であるばかりでなく、低温プロセスで済むので、
本出願人が別途開示している SI+02 /Si太陽
電池等のように高温プロセスを採用できないものにとっ
ても有利な手法と考えられたからである。
Prior to filing this application, the applicant conducted an experiment to increase the electrode thickness by a plating method, particularly an electroplating method, as a specific method for this purpose. The plating method is not only the cheapest and simplest method, but also requires a low-temperature process.
This is because it was considered to be an advantageous method even for devices that cannot employ high-temperature processes, such as SI+02/Si solar cells, which are separately disclosed by the applicant.

然しその結果は、ただ単にメッキ法を採用するだけでは
目的を達成できないことが分かった。
However, the results showed that simply adopting a plating method could not achieve the objective.

その原因は一つには、光電変換体主面にいきなりメッキ
法で電極層を堆積すると、当該電極の最下層部分と当該
光電変検体の材料との物理的、電気的な馴染みを良好に
採ることができないと言う点にあった。単に廉価なメッ
キ処理のみによった場合、剥離等を生じることがあった
のである。
One reason for this is that when an electrode layer is suddenly deposited on the main surface of the photoelectric converter using a plating method, good physical and electrical compatibility between the bottom layer of the electrode and the material of the photoelectric converter is obtained. I was at the point where I couldn't do it. If only an inexpensive plating treatment was used, peeling or the like could occur.

従って、一つの知見として得られたことは、光電変検体
主面には先づもって下地層として蒸着による電極層を形
成し、当該光電変検体との良好なオーミック接触と機械
的固着強度を確保した上で始めて、メンキ層の堆積に掛
からなければならないということである。
Therefore, one of the findings obtained is that an electrode layer is first formed as a base layer on the main surface of the photovoltaic specimen by vapor deposition to ensure good ohmic contact and mechanical adhesion strength with the photovoltaic specimen. Only then can the deposition of the Menki layer begin.

然しまた、このように蒸着により形成された電極材料層
部分の上に、当該蒸着の際のレジスト層を除去すること
なく一連の工程でメッキ処理を施し、所望の通りのかな
りな厚味のメッキ層を形成すると、当該メッキ層は上記
蒸着層の全面に形成されるため、今度はまた別の問題と
して、その後に残存しているレジスト層を、その上の蒸
着層やメッキ層共々除去しようとしても、これは最早不
可能という問題が生起してきたのである。
However, it is also possible to perform plating treatment on the electrode material layer formed by vapor deposition in a series of steps without removing the resist layer during vapor deposition, thereby achieving a considerably thick plating as desired. When a resist layer is formed, the plated layer is formed on the entire surface of the vapor deposited layer, so another problem arises when trying to remove the remaining resist layer along with the vapor deposited layer and plating layer above it. However, the problem has arisen that this is no longer possible.

これに就き第1各図に即してより詳しく説明する。This will be explained in more detail with reference to FIGS.

第1図(A)は、一般に3インチから5インチ径のウェ
ハとして提供される基板lの上にこの基板1と相俟って
光電変換機能を営む第二層2を適当な薄膜形成装置で形
成し、光電変換体3を構成し終わった段階を示している
In FIG. 1(A), a second layer 2, which performs a photoelectric conversion function together with the substrate 1, is formed on a substrate 1, which is generally provided as a wafer with a diameter of 3 inches to 5 inches, using an appropriate thin film forming apparatus. This shows the stage at which the photoelectric converter 3 has been formed.

勿論、第一層乃至基板1と第二層2とは互いに接合を形
成することにより光電変換機能を営む関係の材料が各選
ばれる。例えば先掲のへテロ接合素子である5n02/
Si太陽電池にあっては基板1がSiであり、第二層2
が51102である。
Of course, materials are selected for the first layer to the substrate 1 and the second layer 2 so that they can perform a photoelectric conversion function by forming a bond with each other. For example, the above-mentioned heterojunction element 5n02/
In a Si solar cell, the substrate 1 is Si, and the second layer 2
is 51102.

一般に光は接合部に近い第二層2の主面側から光電変換
体3に入射するから、当該面倒にパターン電極が形成さ
れるが、この電極の最下層部分は先に述べた理由から蒸
着によって形成され、その過程は第1図(B)図示の状
態から始まる。
Generally, light enters the photoelectric converter 3 from the main surface side of the second layer 2 near the joint, so a patterned electrode is formed in this troublesome manner, but the bottom layer of this electrode is vapor-deposited for the reason mentioned above. The process starts from the state shown in FIG. 1(B).

即ち、印刷法等により所望のパターンに即して電極蒸着
用レジスト層4を付し、当該パターンに応じた部分に第
二層主面露出部21を作り、これへの電極蒸着を図る。
That is, a resist layer 4 for electrode deposition is applied according to a desired pattern by a printing method or the like, and a second layer principal surface exposed portion 21 is created in a portion corresponding to the pattern, and electrodes are deposited thereon.

その結果は第1図(C)に示されている。The results are shown in FIG. 1(C).

本図から分かるように、本来はレジスト層4の無い第二
層主面露出部21にのみ電極材料5が蒸着されれば足り
るが、結果はレジスト層表面を含めて全面に電極材料5
が付着した格好になる。
As can be seen from this figure, originally it is sufficient that the electrode material 5 is deposited only on the exposed portion 21 of the second layer main surface where there is no resist layer 4, but as a result, the electrode material 5 is deposited on the entire surface including the resist layer surface.
It looks like it has been attached.

尚、こうした蒸着層5は実際には複数層構造、例えば第
一層51.第二層52の二層構造から成る場合もある。
Incidentally, such a vapor deposited layer 5 actually has a multi-layer structure, for example, a first layer 51 . In some cases, the second layer 52 has a two-layer structure.

本出願人開発の上記5nOz /Si太陽電池の場合、
最下層51には5nOz層2どの物理的、電気的馴染み
が良好な材料としてCrを用い、次いでこのCr層51
の上にこれとの良好な接触が採れ、抵抗も低く、酸化防
止機能も呈する材料層としてCu層52を形成している
。因に各層厚に就いて言えば、最下層のOr層51は1
000人程度1次層のCu層52は3000λ程度、と
なっている。
In the case of the above 5nOz/Si solar cell developed by the applicant,
For the bottom layer 51, Cr is used as a material with good physical and electrical compatibility with the 5nOz layer 2, and then this Cr layer 51
A Cu layer 52 is formed on top of the Cu layer 52 as a material layer that has good contact with the Cu layer, has low resistance, and also exhibits an oxidation prevention function. Incidentally, in terms of the thickness of each layer, the lowest Or layer 51 is 1
The thickness of the Cu layer 52 of the primary layer is about 3000λ.

この第1図(C)に統〈段階として、即ち電極蒸着工程
と一連の工程で、先に述べた実験例のように直ぐにメン
キ法による電極厚味の増加工程を採ると、第1図(D)
に示すように、メンキ層6は蒸着層5のある所には必ず
付着するから、蒸着層5が光電変換体3の全面を覆って
いる以上、このメンキ層も光電変換体3の全面に亘って
形成される。
As shown in Fig. 1(C), if we immediately adopt the step of increasing the electrode thickness by the Menki method as in the experimental example described above in the electrode deposition process and a series of steps, Fig. 1(C) shows that D)
As shown in , since the coating layer 6 always adheres to the area where the vapor deposited layer 5 is located, as the vapor deposition layer 5 covers the entire surface of the photoelectric converter 3, this coating layer also covers the entire surface of the photoelectric converter 3. It is formed by

ところがこのようになってしまうと、その後、残存して
いるレジスト層4を除去し、その−1−の電極材料層5
,6をもその際に共に除去して所定の電極パターンを得
ようとしても、これはもう不可能である。
However, if this happens, the remaining resist layer 4 is removed and the -1- electrode material layer 5 is removed.
, 6 at the same time to obtain a predetermined electrode pattern, this is no longer possible.

というのも、一般にメッキ層6の厚みは蒸着層5の人オ
ーダに比して刺オーダとかなり厚くしなければこれを設
ける意味がなく、一方、このように厚くしてしまうと、
レジスト層4の除去の際に一緒に除去することのできる
リフト・オフ限界を遥かに越えてしまうからである。
This is because, in general, there is no point in providing the plating layer 6 unless it is considerably thicker than the thickness of the vapor deposited layer 5. On the other hand, if it is made this thick,
This is because the lift-off limit that can be removed when removing the resist layer 4 is far exceeded.

例えば本出願人の上記実験例においては、このメッキ層
6も二層構造から成るようにしたが、第一メッキ層とし
てのCu層61の厚味は略1″104、第、メ・ツキ層
としてのNi層62のそれは略C2賜、となり厚く、メ
ンキ層全体の層厚は計12pm以上に及んでいる。これ
ではレジスト層4共々のリフ・オフ処理は到底不可能で
ある。
For example, in the above-mentioned experimental example by the present applicant, the plating layer 6 was also made to have a two-layer structure, but the thickness of the Cu layer 61 as the first plating layer was approximately 1"104, and the thickness of the Cu layer 61 was approximately 1". The Ni layer 62 has a thickness of approximately C2 and is thick, with the total thickness of the entire coating layer being more than 12 pm.With this, riff-off processing of the resist layer 4 together with the resist layer 4 is completely impossible.

尚、メッキ層6をも二層構造にしたのは、第一ツキ層と
してのCu層61に主として電気抵抗を下げる働きを持
たせ、第二メンキ層としてのNi層62に酸化防止と外
部回路へ本太陽電池を接続するに際しての半田乗りを良
くする働きを持たせたことにある。
The reason why the plating layer 6 also has a two-layer structure is that the Cu layer 61 as the first coating layer mainly has the function of lowering electrical resistance, and the Ni layer 62 as the second coating layer has the function of preventing oxidation and the external circuit. This is because it has the function of improving soldering when connecting solar cells.

而して、本発明は以上のような知見に基いて成されたも
ので、パターン化電極の直列抵抗値を下げるため、その
主たる部分の肉厚を増す方法に廉価且つ簡単なメッキ法
を採用するという原則を守りながらも、記述した従来実
験例における欠点を解消せんとしたものである。そして
、その結果、光電変換体との馴染みを良くするために必
要となる電極最下層部分の蒸着層形成時の蒸着レジスト
層を、その後のメッキ・レジスト層としても流用する構
成を開示するに至ったものである。
The present invention has been made based on the above knowledge, and employs an inexpensive and simple plating method to increase the thickness of the main part of the patterned electrode in order to reduce its series resistance value. While adhering to the principle that the experiment should be carried out, it was an attempt to overcome the shortcomings of the conventional experimental examples described. As a result, we have disclosed a configuration in which the vapor-deposited resist layer used to form the vapor-deposited layer at the bottom of the electrode, which is necessary to improve compatibility with the photoelectric converter, can also be used as a subsequent plating resist layer. It is something that

以下、本発明方法の特徴的な部分を第2各図を参照して
説明する。
Hereinafter, the characteristic parts of the method of the present invention will be explained with reference to FIGS.

第1図(C)に示す工程までは従来実験例と同様の工程
で良い。即ち、蒸着レジスト層4を所定パターンに従っ
て印刷法等により光電変換体3の主面に形成した後、先
づ第一層としてのCr層51を例えば約1000人の厚
味に、続いて第二層としてのCu層52を例えば約30
00人の厚味に蒸着し、全体としての蒸着層5を形成す
る。
The steps up to the step shown in FIG. 1(C) may be the same as in the conventional experimental example. That is, after forming the vapor-deposited resist layer 4 on the main surface of the photoelectric converter 3 by a printing method or the like according to a predetermined pattern, first the Cr layer 51 as the first layer is formed to a thickness of about 1,000 mm, and then the second layer is formed to a thickness of about 1,000 mm. For example, the Cu layer 52 as a layer has a thickness of about 30
The vapor deposition layer 5 is formed as a whole by vapor deposition to a thickness of 0.00 mm.

記述のようにこの蒸着層5は光電変換体主面の所定露出
面部分21のみならず、蒸着レジスト層4の全面に亘っ
ても付着する。
As described, this vapor deposited layer 5 is deposited not only on the predetermined exposed surface portion 21 of the main surface of the photoelectric converter but also over the entire surface of the vapor deposited resist layer 4.

そこで、本発明では、第2図(A)に示すように、望ま
しくは廉価且つ簡単な手法としての機械的砥石研削によ
り、蒸着レジスト層4の表面部こ付着した蒸着材料を除
去し、蒸着レジスト層4を再び露呈させる。
Therefore, in the present invention, as shown in FIG. 2(A), the vapor deposition material adhering to the surface of the vapor deposition resist layer 4 is removed by mechanical grinding, which is preferably an inexpensive and simple method, and the vapor deposition resist layer 4 is removed. Layer 4 is exposed again.

すると、蒸着材料はノ(ターン化電極として必要な部分
にのみ残って蒸着電極層部分5を形成し、また、表面が
再露呈した薄着レジスト層44±その後のメッキ・レジ
スト層40として流用できるようになる。
Then, the vapor deposition material remains only in the part necessary as the turned electrode to form the vapor deposited electrode layer portion 5, and the thin resist layer 44 whose surface is re-exposed can be used as the subsequent plating resist layer 40. become.

即ち、その後、第一メッキ層全体として先tこ述べたC
u等を例えば1Opnの厚味に電気メ・ツキし、更tこ
その上に第二メ・ツキ層62としてのN1等を例えIf
 2脚の厚味に電気メ・ツキすると、第2図(13) 
jこ示すうに、所定パターンに沿った電極下地層として
蒸着電極層部分5の上にのみ、当該メ・ツキ層6形成さ
れ、元蒸着レジスト層であったメッキ・レジスト層40
の上には付着しなl、%ようになる。
That is, after that, the entire first plating layer is coated with the above-mentioned C.
If u, etc. are electrically plated to a thickness of, for example, 1 Opn, and N1 etc. are applied as a second metal layer 62 on top of t.
If you apply electric wire to the thickness of the two legs, Figure 2 (13)
j As shown, the metal plating layer 6 is formed only on the vapor-deposited electrode layer portion 5 as an electrode base layer along a predetermined pattern, and the plating resist layer 40, which was the original vapor-deposited resist layer, is
It will not stick to the surface.

従って各メッキ層を必要な厚さに−V分厚く形成しても
、その後、メッキ・レジスト層40だもすを取除く乙と
は容易にでき、その結果、第2図(C)1こ示すように
所定パターンに従って所望の厚味を持つパターン化電極
7を得ることができる。
Therefore, even if each plating layer is formed to the required thickness -V thick, it is easy to remove the plating/resist layer 40 afterwards, as shown in Figure 2(C)1. In this manner, a patterned electrode 7 having a desired thickness can be obtained according to a predetermined pattern.

尚、記述した各電極構成層部分51,52,81.82
の具体的材料は上記以外でも任意所望のものを用いるこ
とができ、蒸着電極層部分5もメ・ツキ電極層部分6も
、単層構造や逆にもつと多数の積層構造にしても良い。
In addition, each electrode constituent layer portion 51, 52, 81, 82 described
Any desired specific material may be used in addition to those mentioned above, and both the vapor deposited electrode layer portion 5 and the plated electrode layer portion 6 may have a single layer structure or, conversely, a multilayer structure.

以上詳記のように、本発明によればノ々ターン化′電極
の直列抵抗値を下げるためにその肉厚を増すにも簡単且
つ確実な方法が提供でき、高効率化と共1こ低廉価を達
成し、将来的に普及しなければならないこの種太陽電池
にとって極めて大きな意義を持つものとなる。
As described in detail above, according to the present invention, a simple and reliable method can be provided for increasing the wall thickness of a multi-turn electrode in order to reduce its series resistance value, thereby increasing efficiency and reducing the This is of great significance for this type of solar cell, which must achieve low cost and become popular in the future.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はパターン化電極の直列抵抗値を低下させるため
、当該電極の厚味増加を図って為された連出願人におけ
る従来実験例を説明する工程図、消2図は本発明におい
て改良された電極形成方法の特徴的部分を説明する工程
図、である。 図中、1は第一層乃至基板、2は第二層、3は光電変検
体、4は蒸着レジスト層、5は蒸着電極層部分、6はメ
ッキ電極層部分、7は完成したパターン化電極、40は
メッキ・レジスト層、である。
Figure 1 is a process diagram illustrating a conventional experiment carried out by the applicant to increase the thickness of a patterned electrode in order to reduce its series resistance value, and Figure 2 is a process diagram illustrating an example of a conventional experiment carried out by the applicant. FIG. 3 is a process diagram illustrating the characteristic parts of the electrode forming method. In the figure, 1 is the first layer or substrate, 2 is the second layer, 3 is the photoelectric change specimen, 4 is the vapor deposited resist layer, 5 is the vapor deposited electrode layer portion, 6 is the plated electrode layer portion, and 7 is the completed patterned electrode. , 40 is a plating resist layer.

Claims (1)

【特許請求の範囲】 太陽電池の一主面に所定パターンに即して形成される電
極の形成方法であって、 上記パターンに即して上記主面に形成した蒸着レジスト
層を介して蒸着処理をした後、該蒸着レジスト層表面上
に蒸着された蒸着材料を除去して該蒸着レジスト層表面
を再露呈し、該再露呈した蒸着レジスト層をメッキ・レ
ジスト層としてメッキ処理を施し、上記パターンに即し
て残っている上記蒸着電極層部分の上にのみ、メッキ電
極層部分を堆積させることを特徴とする太陽電池の電極
形成方法。
[Claims] A method for forming an electrode on one main surface of a solar cell according to a predetermined pattern, the method comprising vapor deposition through a vapor deposition resist layer formed on the main surface according to the pattern. After that, the evaporation material deposited on the surface of the evaporation resist layer is removed to re-expose the surface of the evaporation resist layer, and the re-exposed evaporation resist layer is plated as a plating resist layer to form the above pattern. A method for forming an electrode for a solar cell, comprising depositing a plated electrode layer portion only on the remaining vapor-deposited electrode layer portion.
JP59089505A 1984-05-07 1984-05-07 Formation for electrode of solar cell Pending JPS60234379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59089505A JPS60234379A (en) 1984-05-07 1984-05-07 Formation for electrode of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59089505A JPS60234379A (en) 1984-05-07 1984-05-07 Formation for electrode of solar cell

Publications (1)

Publication Number Publication Date
JPS60234379A true JPS60234379A (en) 1985-11-21

Family

ID=13972634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59089505A Pending JPS60234379A (en) 1984-05-07 1984-05-07 Formation for electrode of solar cell

Country Status (1)

Country Link
JP (1) JPS60234379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380371A (en) * 1991-08-30 1995-01-10 Canon Kabushiki Kaisha Photoelectric conversion element and fabrication method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380371A (en) * 1991-08-30 1995-01-10 Canon Kabushiki Kaisha Photoelectric conversion element and fabrication method thereof

Similar Documents

Publication Publication Date Title
US6802945B2 (en) Method of metal sputtering for integrated circuit metal routing
US5103268A (en) Semiconductor device with interfacial electrode layer
US4543443A (en) Method for manufacturing finger electrode structures forming electric contacts at amorphous silicon solar cells
GB1527108A (en) Methods of forming conductors on substrates involving electroplating
JP2001520807A (en) Decal and method for providing anti-reflective coating and metallization of solar cells
JPS59167056A (en) Silicon semiconductor electrode
JPS60234379A (en) Formation for electrode of solar cell
JPS59117115A (en) Method of producing semiconductor device
JPS5984477A (en) Formation of electrode of solar battery
JP2668375B2 (en) Circuit component electrode manufacturing method
WO2005008743A3 (en) A semiconductor device with metallic electrodes and a method for use in forming such a device
JPS63122248A (en) Manufacture of semiconductor device
JPS62113483A (en) Thin-film solar cell
EP0392695A1 (en) Semiconductor device with interfacial electrode layer
JPH0252436A (en) Manufacture of solder bump
JP2720442B2 (en) Method of manufacturing magnetoresistive element
JPS58144493A (en) Formation of metal plating layer onto metal electrode
JPS59220979A (en) Manufacture of photovoltaic device
JPH036817A (en) Manufacture of multilayer electrode of semiconductor element
JPH03214601A (en) Electrode structure of variable resistor
JPS61225839A (en) Forming method for bump electrode
JPS5835986A (en) Schottky barrier diode and manufacture thereof
JPS5938314B2 (en) Method of plating thick film paste
JPS6261334A (en) Formation of pattern
JP2750737B2 (en) Method for manufacturing semiconductor device