JPS60225279A - Fourier transform device - Google Patents

Fourier transform device

Info

Publication number
JPS60225279A
JPS60225279A JP59081420A JP8142084A JPS60225279A JP S60225279 A JPS60225279 A JP S60225279A JP 59081420 A JP59081420 A JP 59081420A JP 8142084 A JP8142084 A JP 8142084A JP S60225279 A JPS60225279 A JP S60225279A
Authority
JP
Japan
Prior art keywords
output
shifter
gain control
fourier transform
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59081420A
Other languages
Japanese (ja)
Other versions
JPH0432425B2 (en
Inventor
Teijiro Sakamoto
坂本 禎治郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59081420A priority Critical patent/JPS60225279A/en
Publication of JPS60225279A publication Critical patent/JPS60225279A/en
Publication of JPH0432425B2 publication Critical patent/JPH0432425B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/14Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Algebra (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Complex Calculations (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To prevent the occurrence of overflow during the high-speed Fourier transform operation by using a buffer memory to perform a complete gain control for input data in a saturation gain controller. CONSTITUTION:An output (c) of an arithmetic memory 8 is reduced to a half and is sent to a butterfly arithmetic part 9. The butterfly arithmetic part 9 multiplies input data by a twist factor and subjects data to two-point DFT (discrete Fourier transform) and stores the result in the arithmetic memory 8. At this time, the second saturation gain control circuit 6b monitors the output of the butterfly arithmetic part and detects a maximum value of all data of the first butterfly arithmetic output. If the number of bits of the maximum value reaches a maximum bit length, the second saturation gain control circuit 6b controls the second shifter 7b in the second butterfly arithmetic so that the shifter 7b shifts down data 1/2 times; but otherwise, the circuit 6b controls the second shifter 7b so that the shifter 7b does not shift data.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は例えばレーダ信号処理装置に用いるフーリエ
変換装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a Fourier transform device used, for example, in a radar signal processing device.

レーダ信号処理装置に用いるフーリエ変換装置は受信信
号のドツプラ成分の周波数解析を行なうことにより、不
要信号成分を抑圧しS/N 比を改善して目標検出を行
なうことに用いる。この発明は上記フーリエ変換装置に
おいて演算中のアンダーフローによる小信号データの消
失を最小限に抑える飽和利得制御装置において、バッフ
ァメモリを用いて入力データに対して完全に利得制御を
行なうことによシ、高速フーリエ変換演算中にオーバー
・フローが起こることを妨ぐことを特徴としている。
A Fourier transform device used in a radar signal processing device performs frequency analysis of the Doppler component of a received signal, suppresses unnecessary signal components, improves the S/N ratio, and detects a target. The present invention is a saturation gain control device that minimizes the loss of small signal data due to underflow during calculation in the Fourier transform device, by completely controlling the gain of input data using a buffer memory. , which is characterized by preventing overflow from occurring during fast Fourier transform operations.

第1図に上記フーリエ変換装置を用いたレーダ信号処理
装置の一例を示す。第1図においてアンテナ(!)から
発射された電波は目標から反射して。
FIG. 1 shows an example of a radar signal processing device using the above Fourier transform device. In Figure 1, the radio waves emitted from the antenna (!) are reflected from the target.

その反射エコーの一部は再びアンテナO)によって受信
され、受信機(2)によって検波される。受信機(2)
の出力であるビデオ信号は前段信号処理装置(3)に入
力される。前段信号処理装置(3)においてビデオ信号
はディジタル信号に変換され、不要信号であるクラッタ
の抑圧やパルス圧縮等の処理を行なう。前段信号処理装
置(3)の出力は本発明のフーリエ変換装置(4)へ入
力され、ここで時間窓関数を乗じたのち5 フーリエ変
換(以下FFT)演算を行ない周波数成分に分解される
。フーリエ変換装置(4)の出力は各周波数ビンに分け
られた距離方向の情報を持ったものであシ、後段信号処
理装置(5)へ入力される。後段信号処理装置(5)は
クラッタ成分を含む周波数ビンの内容を除去したのち各
周波数ビン内で目標の自動検出を行ない、目標の位置や
速度の導出を可能とする。
A part of the reflected echo is received again by the antenna O) and detected by the receiver (2). Receiver (2)
The video signal output from is input to the previous stage signal processing device (3). The video signal is converted into a digital signal in the pre-stage signal processing device (3), and processing such as suppression of clutter, which is an unnecessary signal, and pulse compression are performed. The output of the pre-stage signal processing device (3) is input to the Fourier transform device (4) of the present invention, where it is multiplied by a time window function and then subjected to 5 Fourier transform (hereinafter referred to as FFT) operations to be decomposed into frequency components. The output of the Fourier transform device (4) has distance direction information divided into frequency bins, and is input to the subsequent signal processing device (5). After removing the contents of the frequency bins containing clutter components, the subsequent signal processing device (5) automatically detects the target within each frequency bin, making it possible to derive the position and velocity of the target.

上記フーリエ変換装置(4)において、その演算は乗算
と加算の繰シ返しである。その際、レーダ信号処理等の
高速処理の場合浮動小数点演算は困難であり1通常固定
小数点演算を行なっている。そのため演算中にデータが
オーバフローする可能性があるので、加算の度にその出
力を11:+itシフトダウンすることによりオーバフ
ローを防いでいる。
In the Fourier transform device (4), the operation is a repetition of multiplication and addition. At this time, in the case of high-speed processing such as radar signal processing, floating point arithmetic is difficult, and fixed point arithmetic is usually performed. Therefore, since there is a possibility that data may overflow during calculation, overflow is prevented by shifting down the output by 11:+it every time addition is performed.

しかしながら小信号が入力されている場合は前記シフト
ダウンで1 bit切υ捨てられるととKより、演算中
に信号が消失してしまうことがある。
However, if a small signal is input, the signal may be lost during calculation because 1 bit is cut off and discarded in the shift down.

この不具合を解決するため、上記オーバフローを妨ぐと
同時に信号の消失を最小限に抑える機能を持つ飽和利得
制御回路がある。本発明はこの飽和利得制御回路に関す
るものである。
In order to solve this problem, there is a saturation gain control circuit that has a function of preventing the above-mentioned overflow and at the same time minimizing signal loss. The present invention relates to this saturation gain control circuit.

〔従来技術〕[Prior art]

第2図は従来から用いられている飽和利得制御回路を使
用した高速フーリエ変換装置の一例である。第2図にお
いて、飽和利得制御回路(6)は複素入力データ(ト)
をtap工(coherent processing
interval :フーリエ積分を行なうためのデー
タサンプル時間)間をモニタして、その間の複素人力デ
ータ0の絶対値の最大値を検出してホールドする。その
後1次のcp工において、複素人力データ(イ)がシッ
ク(7)を通過する際最大値がオーバフローしない範囲
で、複素入力データのをシフトアップする様に飽和利得
制御回路(6)の出力である制御信号0)が制御する。
FIG. 2 is an example of a fast Fourier transform device using a conventional saturation gain control circuit. In Figure 2, the saturation gain control circuit (6) receives complex input data (t).
Coherent processing
interval (data sampling time for performing Fourier integration) is monitored, and the maximum absolute value of the complex human force data 0 during that period is detected and held. After that, in the first-order CP process, the output of the saturation gain control circuit (6) is adjusted so that the complex input data is shifted up within the range where the maximum value does not overflow when the complex input data (A) passes through the thick (7). The control signal 0) is controlled.

例えば第2図において複素入力データ(ト)のデータラ
インのbit長をmとして。
For example, in FIG. 2, the bit length of the data line of complex input data (g) is m.

成るcp工間の絶対値の最大値がnhltであった )
とすると次のcp工ではシフタ(7)は(m−n) b
j、tの桁上げをする。シ7り(71の出方は演算メモ
リ(8)へ>cpI分格納され、その後バタフライ演算
部+93との間でバタフライ演算を繰り返す。例えばt
点FFTを実行する場合、演算メモリ(8)とバタフラ
イ演算部(9)との間で20g21回の演算を繰り返す
。バタフライ演算部(9)の中には加算器が有シ。
The maximum absolute value between cp workers was nhlt)
Then, in the next cp work, shifter (7) is (m-n) b
Carry j and t. The output of 71 is stored in the calculation memory (8) for > cpI, and then the butterfly calculation is repeated with the butterfly calculation unit +93. For example, t
When performing point FFT, calculations are repeated 20g21 times between the calculation memory (8) and the butterfly calculation unit (9). There is an adder in the butterfly operation section (9).

入力忙依っては出力がオーバフローすることがある。そ
のためバタフライ演算部(9)の入力は1/2ヌヶー−
yQlで、常に1/2倍に桁下げされる。
Depending on the input busyness, the output may overflow. Therefore, the input of the butterfly operation section (9) is 1/2
With yQl, the digit is always downsized by 1/2.

上記の様に第2図のフーリエ変換装置は複素入力データ
(イ)が飽和しない範囲でシフトアップしたのち、FF
T演算を行なうととKより、演算中における信号の消失
を抑えることができる。しかしながら上記の装置ではl
oPl前のデータで次のCP工の最大値を予測している
ため1次の021間に予測より大きな最大値が入力され
、シック(7)でオーバフローすることがある。
As mentioned above, the Fourier transform device shown in Fig. 2 shifts up the complex input data (a) within a range that does not saturate it, and then uses the FF
By performing T calculation, signal loss during calculation can be suppressed more than K. However, in the above device, l
Since the maximum value of the next CP is predicted using the data before oPl, a maximum value larger than the prediction is input between 021 of the first order, and overflow may occur at thick (7).

第3図は上記の不具合をloPl分のデータを一時蓄え
るバッファメモリを用いることにより解決したフーリエ
変換装置である。第3図において複素入力データのは飽
和利得制御回路(6)においてtapI間の絶対値の最
大値が検出されると同時にバッファメモリa諺へ蓄えら
れる。次のCP工にバッファメモリ6n<蓄えられた複
素入力データωは読み出され、シフタ(7)でシフト制
御される。その際、シフタ(71を制御する制御信号(
()は前記複素入力データ(イ)の最大値を用いて発生
しているので。
FIG. 3 shows a Fourier transform device that solves the above problem by using a buffer memory that temporarily stores data for loPl. In FIG. 3, the maximum absolute value of the complex input data between tapI is detected in the saturation gain control circuit (6) and simultaneously stored in the buffer memory. The complex input data ω stored in the buffer memory 6n in the next CP is read out and shifted by a shifter (7). At that time, a control signal (
() is generated using the maximum value of the complex input data (a).

シフタ(7)でデータがオーバフローすることは無い。Data never overflows in the shifter (7).

このバッファメモリ■は本来、絶え間なく送られてくる
レーダ受信信号である入力データをFFT演算のため一
時蓄えるため圧用いるものである。
This buffer memory (2) is originally used to temporarily store input data, which is a radar reception signal that is constantly sent, for FFT calculation.

〔発明の概要〕[Summary of the invention]

ところで第3図のフーリエ変換装置けF’FT演算を行
なう入力データを最大bit長まで桁上げすることによ
って、F′FT演算中演算値号の消失を防ぐものである
が1点数の多いFFT演算においてはなお演算中の桁下
げによる小信号の消失が問題となる。
By the way, the Fourier transform device shown in Fig. 3 carries the input data for performing the F'FT operation to the maximum bit length to prevent the loss of the operation value during the F'FT operation. In this case, the loss of small signals due to undercarriage during calculation is still a problem.

この発明は上記の問題を演算メモリからバタフライ演算
部への転送中に飽和利得制御を行なうζとによシ解決す
るものである。
The present invention solves the above problem by performing saturation gain control during transfer from the arithmetic memory to the butterfly arithmetic section.

〔発明の実施例〕[Embodiments of the invention]

第4図はこの発明のフーリエ変換装置の一例である。第
4図において複素入力データのは第3図の装置と同様に
第1の飽和利得制御装置(6a)で1CPI間の絶対値
の最大値が検出されると同時にバッファメモリ(II)
に格納される。第1の飽和利得制御装置(6a)は絶対
値検出回路、最大値の比較器および021間のレジスタ
から成]、cpI間の最大値をホールドして次めCP工
における第1のシフタ(7a)のシフト量を決定する。
FIG. 4 shows an example of the Fourier transform device of the present invention. In FIG. 4, the complex input data is transferred to the buffer memory (II) at the same time that the maximum absolute value between 1 CPI is detected by the first saturation gain control device (6a), similar to the device shown in FIG.
is stored in The first saturation gain control device (6a) consists of an absolute value detection circuit, a maximum value comparator, and a register between ) to determine the amount of shift.

バッファメモリα9に格納されたloPl分の複素入力
データは次のOP工で順次読み出され、第1のシック(
7a)へ送らhる。この時第1のシック(7a)の制御
信号(イ)はいま第1のシフタ(7a)へ送られている
前記複素入力データの最大値で決定されているので、第
1のシフタ(7a)の出力がオーバ70−することは無
い。
The complex input data for loPl stored in the buffer memory α9 is sequentially read out in the next OP process, and the first chic (
7a). At this time, since the control signal (A) of the first thick (7a) is determined by the maximum value of the complex input data currently being sent to the first shifter (7a), the first shifter (7a) The output will never exceed 70-.

シフタ(7a)出力は演算メモリ(8)へ送られ、バタ
フライ演算部(7)との間でFFT演算を行なう。演算
メモリ(8)の出力(ハ)は第2のシック(7b)へ送
られる。第2のシック(7b)は1/2倍又は1倍のシ
フトを行ない、演算メモリ(8)の出力←)は先ず1/
2倍され、バタフライ演算部(9)へ送られる。バタフ
ライ演算部(9)は入力データにひねシ因子を乗じたの
ち、2点DFT(離散フーリエ変換)を行い結果を演算
メモリ(81へ格納する。この時第2の飽和利得制御回
路(6b)はバタンうイ演算部出力をモニタしておき、
1回目のバタフライ演算出力の全データのうちの最大値
を検出する。2回目のバタフライ演算において第2の飽
和利得制御回路(6b)は前記最大値のbit数が最大
bit長に達している場合は、第2のシフタ(7b1が
1/2倍に桁下げする様に制御し、達していない場合は
第2のシフタ(7b)を1倍に制御する。演算メモリ(
8)とバタフライ演算部(9)間の演算回数は第2図の
説明で述べた通J)、FFTの点数が増えるに伴って増
える。したがって従来の装置ではに回の演算回数を行な
うと、1/2に倍−J?消失される信号が有シ得るが。
The output of the shifter (7a) is sent to the calculation memory (8) and performs FFT calculation with the butterfly calculation section (7). The output (c) of the arithmetic memory (8) is sent to the second chic (7b). The second thick (7b) performs a 1/2 or 1 times shift, and the output ←) of the calculation memory (8) is first shifted by 1/2 or 1 times.
It is doubled and sent to the butterfly calculation section (9). The butterfly calculation unit (9) multiplies the input data by the distortion factor, performs two-point DFT (discrete Fourier transform), and stores the result in the calculation memory (81).At this time, the second saturation gain control circuit (6b) Monitor the output of the arithmetic unit and
The maximum value of all the data of the first butterfly calculation output is detected. In the second butterfly operation, if the number of bits of the maximum value reaches the maximum bit length, the second saturation gain control circuit (6b) controls the second shifter (7b1 so that the digit is downsized to 1/2). If the value has not been reached, the second shifter (7b) is controlled to 1 times.Arithmetic memory (
8) and the butterfly calculation unit (9) increases as the number of FFT points increases, as described in the explanation of FIG. 2. Therefore, if the conventional device performs the number of operations, it becomes 1/2 times -J? Although it is possible that the signal is lost.

第4図の装置では、各演算毎にバタフライ演算部(9)
の出力が最大bit長に達しない限りはシフタは1倍で
あるので信号は減少しない。
In the device shown in Fig. 4, a butterfly calculation unit (9) is used for each calculation.
As long as the output of the shifter does not reach the maximum bit length, the signal does not decrease because the shifter is 1 times.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明では点数の多いFFT演算に対しても
演算中に信号が消失することがなく、オたオーバフロー
することもない完全な飽和利得制御が可能である。
As described above, according to the present invention, it is possible to perform complete saturation gain control without signal loss or overflow during FFT calculation with a large number of points.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明であるフーリエ変換装置を用いたレーダ
信号処理装置の一例を示す図、第2図は従来から用いc
−、hでいる飽和利得制御回路を用いたフーリエ変換装
置を示す図、第3図は第2図に示す装置を改善したフー
リエ変換装置を示す図。 第4図は飽和利得制御回路を用いたこの発明のフーリエ
変換装置を示す図であり1図中(11はアンテナ、(2
)は受信機、(3)は前段信号処理装置、(4,はフー
リエ変換装置、(5)は後段信号処理装6?、 (6)
は飽和利得制御回路、(7)はシフタ、(8)は演算メ
モリ。 (9)はバタフライ演算部、 Qlは1/2ンケ一ラ9
口1)はバッファメモリである。 々お1図中同一あるいは相当部分には同一符号を付して
示しである。 代理人大岩増雄
FIG. 1 is a diagram showing an example of a radar signal processing device using the Fourier transform device of the present invention, and FIG.
FIG. 3 is a diagram showing a Fourier transform device using a saturation gain control circuit shown in FIG. FIG. 4 is a diagram showing a Fourier transform device of the present invention using a saturation gain control circuit.
) is the receiver, (3) is the front-stage signal processing device, (4, is the Fourier transform device, (5) is the rear-stage signal processing device 6?, (6)
is a saturation gain control circuit, (7) is a shifter, and (8) is an arithmetic memory. (9) is the butterfly calculation section, Ql is the 1/2 scale unit 9
Port 1) is a buffer memory. Identical or corresponding parts in each figure are designated by the same reference numerals. Agent Masuo Oiwa

Claims (1)

【特許請求の範囲】[Claims] 実時間の複素入力データをIO2工(C!Oh8ren
tPxocessing工ntθrval)間蓄えるバ
ッファメモリと、前記複素入力データのtapI間の最
大値を検出して第1のシックを制御する第1の飽和利得
制御回路と、前記バッファメモリ出力の利得を変える第
1のシフタと、第1のシックの出力を1cp工間蓄える
演算メモリと、演算メモリとの間でFFT演算を行なう
バタフライ演算部と、このバタフライ演算部の出力の最
大値を検して制御信号を発生する第2の飽和利得制御回
路と、前記演算メモリの出力を制御する第2のシフタを
備えたことを特徴とするフーリエ変換装置。
Real-time complex input data can be converted to IO2 (C!Oh8ren)
a first saturation gain control circuit that detects the maximum value between tapI of the complex input data and controls a first thick; and a first saturation gain control circuit that changes the gain of the buffer memory output. a shifter, a calculation memory that stores the output of the first chic for 1cp, a butterfly calculation unit that performs FFT calculation between the calculation memory, and a control signal that detects the maximum value of the output of this butterfly calculation unit. A Fourier transform device comprising: a second saturation gain control circuit that generates a saturation gain; and a second shifter that controls the output of the arithmetic memory.
JP59081420A 1984-04-23 1984-04-23 Fourier transform device Granted JPS60225279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59081420A JPS60225279A (en) 1984-04-23 1984-04-23 Fourier transform device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59081420A JPS60225279A (en) 1984-04-23 1984-04-23 Fourier transform device

Publications (2)

Publication Number Publication Date
JPS60225279A true JPS60225279A (en) 1985-11-09
JPH0432425B2 JPH0432425B2 (en) 1992-05-29

Family

ID=13745861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59081420A Granted JPS60225279A (en) 1984-04-23 1984-04-23 Fourier transform device

Country Status (1)

Country Link
JP (1) JPS60225279A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107118A1 (en) * 2004-04-30 2005-11-10 Analog Devices, B.V. Improvements in multicarrier modulation systems
AU2005238983B2 (en) * 2004-04-30 2008-12-11 Analog Devices, B.V. Improvements in multicarrier modulation systems
JP2010261736A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Radar signal processing device
JP2011060177A (en) * 2009-09-14 2011-03-24 Mitsubishi Electric Corp Fast fourier transform arithmetic unit
JP2011530874A (en) * 2008-08-05 2011-12-22 クゥアルコム・インコーポレイテッド Shared time and frequency automatic gain control for wireless communication
KR20170040757A (en) * 2015-10-05 2017-04-13 아나로그 디바이시즈 인코포레이티드 Scaling fixed-point fourier transforms in radar and sonar applications

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005107118A1 (en) * 2004-04-30 2005-11-10 Analog Devices, B.V. Improvements in multicarrier modulation systems
JP2007535847A (en) * 2004-04-30 2007-12-06 アナログ デバイス,ビー.ブイ. Improvements in multi-carrier modulation systems
AU2005238983B2 (en) * 2004-04-30 2008-12-11 Analog Devices, B.V. Improvements in multicarrier modulation systems
US7835454B2 (en) 2004-04-30 2010-11-16 Analog Devices, B.V. Multicarrier modulation systems
JP4685860B2 (en) * 2004-04-30 2011-05-18 アナログ デバイス,ビー.ブイ. Improvements in multi-carrier modulation systems
JP2011530874A (en) * 2008-08-05 2011-12-22 クゥアルコム・インコーポレイテッド Shared time and frequency automatic gain control for wireless communication
US8548105B2 (en) 2008-08-05 2013-10-01 Qualcomm Incorported Joint time-frequency automatic gain control for wireless communication
JP2010261736A (en) * 2009-04-30 2010-11-18 Mitsubishi Electric Corp Radar signal processing device
JP2011060177A (en) * 2009-09-14 2011-03-24 Mitsubishi Electric Corp Fast fourier transform arithmetic unit
KR20170040757A (en) * 2015-10-05 2017-04-13 아나로그 디바이시즈 인코포레이티드 Scaling fixed-point fourier transforms in radar and sonar applications

Also Published As

Publication number Publication date
JPH0432425B2 (en) 1992-05-29

Similar Documents

Publication Publication Date Title
US5233545A (en) Time interval triggering and hardware histogram generation
US5249578A (en) Ultrasound imaging system using finite impulse response digital clutter filter with forward and reverse coefficients
US5428357A (en) High speed data acquisition system and method
US4680588A (en) Radar system with incremental automatic gain control
US5465405A (en) Apparatus and method for detecting signals
JPS60225279A (en) Fourier transform device
JPS60169782A (en) Moving target display apparatus
JPS6111380B2 (en)
EP0081556A1 (en) Adaptive techniques for automatic frequency determination and measurement
US5254999A (en) Video signal processor for radar system
US4775951A (en) Correlation function computing device
JPS62132183A (en) Digital frequency discriminator and usage of said discriminator to composite very-high-frequency omnidirectional radio range signal
US4003052A (en) Digital prefilter for clutter attenuation in MTI radars
EP0418499B1 (en) Time interval triggering and hardware histogram generation
JP2000284043A (en) Priority processing circuit, os-cfar circuit using the same, iagc circuit, cutter map circuit, and two-dimensional os- cfar circuit
US20230078775A1 (en) Frequency modulated continuous wave radar device and signal processing method thereof
JPS60176176A (en) Fast fourier transforming device
CA1241385A (en) Arrangement for determining the starting instant of the leading edge of a high-frequency pulse
US4593377A (en) High-speed processing method of line segment coordinates
JPS63187366A (en) Arithmetic unit for moving average
JPH06343635A (en) Ultrasonic doppler blood flow meter
JP2662694B2 (en) Digital protection relay device
JPH10148667A (en) Ca log/cfar system
JP2667945B2 (en) Video signal processor for radar system
US5453976A (en) Audio signal processor circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term