JPS60216804A - Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof - Google Patents

Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof

Info

Publication number
JPS60216804A
JPS60216804A JP59073006A JP7300684A JPS60216804A JP S60216804 A JPS60216804 A JP S60216804A JP 59073006 A JP59073006 A JP 59073006A JP 7300684 A JP7300684 A JP 7300684A JP S60216804 A JPS60216804 A JP S60216804A
Authority
JP
Japan
Prior art keywords
membrane
polyvinylidene fluoride
hollow fiber
solvent
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59073006A
Other languages
Japanese (ja)
Inventor
Ryozo Hasegawa
長谷川 僚三
Eiichi Murakami
瑛一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP59073006A priority Critical patent/JPS60216804A/en
Publication of JPS60216804A publication Critical patent/JPS60216804A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • B01D71/441Polyvinylpyrrolidone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To prepare a porous hollow yarn membrane comprising groups of pores resulting high void content and having superior characteristics useful for precision filtration membrane or ultra filtration membrane by blending polyvinyl pyrrolidone with polyvinylidene fluoride. CONSTITUTION:The material is a porous hollow yarn membrane comprising a polymer consisting primarily of polyvinylidene fluoride contg. 1-20wt% polyvinyl pyrrolidone blended therewith. The agglomerated body of the polymers forms a network structure having communicating pores. Further, the polyvinylidene fluoride has a II type crystal structure, and the average pore size of pores distributed on the internal and external surfaces of the hollow yarn membrane is 0.05-10mu and the void content is 60-90%. Such membrane is prepared by dissolving the polymers in a solvent to prepare feed liquid having >=100 poise viscosity at 20 deg.C and coagulating the soln. in a coagulating bath after extruding the soln. through a double tubular nozzle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は精密濾過、限外濾過など水系溶液の濃縮、物質
分離等の工業的操作および濾過型人工腎臓、血漿分離等
の医学的応用に適するポリフッ化ビニリデン系多孔中空
糸膜に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to industrial operations such as precision filtration, ultrafiltration, concentration of aqueous solutions, substance separation, etc., and medical applications such as filtration type artificial kidneys and plasma separation. The present invention relates to a suitable polyvinylidene fluoride porous hollow fiber membrane.

(従来技術) 近年、多孔膜は電子工業用等の超純水の製造、紙パルプ
排液等の工業排水処理、製糖工業等の分離精製、濾過型
人工腎臓、血漿分離、血漿アルブミン回収等の血液浄化
、除菌や脱パイロジエン用の精密濾過等の工業用ないし
医療用の分離精製技術に利用されてきている。
(Prior art) In recent years, porous membranes have been used in applications such as the production of ultrapure water for the electronic industry, the treatment of industrial wastewater such as paper pulp wastewater, separation and purification in the sugar manufacturing industry, filtration-type artificial kidneys, plasma separation, plasma albumin recovery, etc. It has been used in industrial and medical separation and purification techniques such as precision filtration for blood purification, sterilization, and depyrogenization.

この様な目的のために、従来セルロースエステル系、ポ
リカーボーネート系、ボリプOピレン系の多孔膜が用い
られている。多孔膜の製法としては、溶媒蒸発乾式法、
ミクロ相分離湿式法、フィルム延伸法、添加剤抽出法、
放射線照射後エツチイング法等が公知である。しかしな
がらポリマー素材および多孔膜構造とその安定性につい
て、とくに透過性能、機械的強度、耐熱性、耐溶剤性に
ついて必ずしも満足されるものではない。
For such purposes, cellulose ester-based, polycarbonate-based, and polypropylene-based porous membranes have conventionally been used. Porous membrane manufacturing methods include solvent evaporation drying method,
Microphase separation wet method, film stretching method, additive extraction method,
A post-irradiation etching method is well known. However, the polymer material, porous membrane structure, and stability thereof, particularly in terms of permeability, mechanical strength, heat resistance, and solvent resistance, are not always satisfied.

かかる観点から、機械的強度、耐熱性、耐溶剤性におい
てすぐれた特性を具備するポリフッ化ビニリデン系の樹
脂が注目され、その多孔膜に関していくつかの技術が開
示されている。特開昭54−16383号には単一溶媒
溶液による湿式製膜法が開示されている。特開昭55−
66935号、特開昭55−69627および特開昭5
5−99934号には製膜原液に界面活性剤を添加する
方法が示されているが、いずれも非溶媒を凝固に用いる
ためスキン層有する不拘多孔膜である。特開昭56−5
6202号はスキン層とサポート層を有する中空系多孔
膜でマクロボイドを包含する。これらの方法では均一な
細孔を有する賎が得がたく、また膜の内側にマクロボイ
ドを含むため機械的強度に問題がある。特開昭58−9
1808号には非水溶性のアルコール、特開昭58−9
3734号いは親水性無機微粉末を添加して製膜し次い
でそれらを抽出して多孔膜を得る方法が開示されている
が、抽出に特殊操作が必要であるし、添加物が膜中に異
物として残留するおそれがある。特開昭58−9173
2号には非対称構造を有さない多孔膜と溶媒を20%以
上含有する水溶液にて凝固する製法が開示されている。
From this point of view, polyvinylidene fluoride-based resins, which have excellent properties in terms of mechanical strength, heat resistance, and solvent resistance, have attracted attention, and several techniques have been disclosed regarding porous membranes thereof. JP-A-54-16383 discloses a wet film forming method using a single solvent solution. Japanese Unexamined Patent Publication 1973-
No. 66935, JP-A-55-69627 and JP-A-Sho. 5
No. 5-99934 discloses a method of adding a surfactant to a membrane forming stock solution, but in both cases, a non-solvent is used for coagulation, so the unconfined porous membrane has a skin layer. Japanese Patent Publication No. 56-5
No. 6202 is a hollow porous membrane having a skin layer and a support layer and includes macrovoids. With these methods, it is difficult to obtain a sieve with uniform pores, and since the membrane contains macrovoids inside, there is a problem in mechanical strength. Japanese Patent Publication No. 58-9
No. 1808 contains water-insoluble alcohol, JP-A-58-9
No. 3734 discloses a method of forming a membrane by adding hydrophilic inorganic fine powder and then extracting it to obtain a porous membrane, but the extraction requires special operations and the additives may not be present in the membrane. There is a risk that it may remain as a foreign substance. Japanese Patent Publication No. 58-9173
No. 2 discloses a manufacturing method in which a porous membrane having no asymmetric structure and an aqueous solution containing 20% or more of a solvent are coagulated.

ポリフッ化ビニリデンはその規則正しい分子構造と凝集
力により結晶化が速く、これらの従来技術をしても非対
称構造を有さない均一な多孔性膜を得ることはかなり難
かしいことである。またポリフッ化ビニリデンが非常に
疎水性であるため水系溶液の分離操作で膜が濡れがたい
欠点を有している。
Polyvinylidene fluoride crystallizes quickly due to its regular molecular structure and cohesive force, and even with these conventional techniques, it is quite difficult to obtain a uniform porous film without an asymmetric structure. Furthermore, since polyvinylidene fluoride is very hydrophobic, it has the disadvantage that it is difficult to wet the membrane during separation operations of aqueous solutions.

〔発明の目的および構成〕[Object and structure of the invention]

かかる状況に鑑がみ、ポリフッ化ビニリデンのすぐれた
特性を活し、均一構造の多孔性膜を得ることおよび親水
性を賦与して工業用および医療用として有益な膜を得る
ことを目的とし、鋭意研究を行い、第一段階として特願
昭58−204960号明細書に示す多孔製膜を発明し
た。即ちポリフッ化ビニリデンを主体としたポリマーの
多孔性膜であって、該ポリマーの凝集体が連通した細孔
を有する網目状組織を形成していること、該凝集体が■
型結晶構造をとり実質的に無配向であること、該多孔性
膜の表面における細孔が繰返しのある孔群または平面網
目状組織を形成し、その平均孔径が0.05〜10μで
あること、および該連通網目状組織内の空孔が多面体状
でかつ互に連通しており、その空隙率が60〜95%で
あることを特徴とするポリフッ化ビニリデン多孔性膜で
ある。さらに該発明は、ポリフッ化ビニリデンを主体と
したポリマー、該ポリマーの良溶媒、該ポリマーの貧溶
媒、および水溶性ポリマーから製lll原液を調製し、
流延し、凝固し、次いで洗浄浴にて該良溶媒、該貧溶媒
および該水溶性ポリマーを除去することを特徴とするポ
リフッ化ビニリデン多孔性膜の製造方法である。
In view of this situation, the purpose of the present invention is to utilize the excellent properties of polyvinylidene fluoride to obtain a porous membrane with a uniform structure and impart hydrophilicity to obtain a membrane useful for industrial and medical purposes. After extensive research, the first step was to invent a porous film-forming method as described in Japanese Patent Application No. 58-204960. That is, it is a porous membrane of a polymer mainly composed of polyvinylidene fluoride, and the aggregates of the polymer form a network structure having interconnected pores;
It has a type crystal structure and is substantially non-oriented, and the pores on the surface of the porous membrane form a repeating pore group or a planar network structure, and the average pore diameter is 0.05 to 10μ. and a polyvinylidene fluoride porous membrane characterized in that the pores in the continuous network structure are polyhedral and communicate with each other, and the porosity thereof is 60 to 95%. Furthermore, the invention provides a method for preparing a stock solution from a polymer mainly composed of polyvinylidene fluoride, a good solvent for the polymer, a poor solvent for the polymer, and a water-soluble polymer,
This is a method for producing a polyvinylidene fluoride porous membrane, which is characterized by casting, solidifying, and then removing the good solvent, the poor solvent, and the water-soluble polymer in a washing bath.

次いで第二段階として、実用的な多孔中空糸膜を鋭意研
究し本発11完成するに至った。即ち本発明はポリフッ
化ビニリデンを主体としてポリビニルとロリドンを1〜
20wt%含有するブレンドされたポリマーの多孔中空
糸膜てあって、該ポリマー凝集体が連通した細孔を有す
るm目状組織を形成していること、該凝集体のポリフッ
化ビニリデンが■型結晶構造をとること、該中空糸膜の
内外表面にある細孔の平均孔径が0.05〜10μであ
ること、および該連通網目状組織の空隙率が60〜90
%であることを特徴とするポリフッ化ビニリデン系多孔
中空糸膜である。さらに本発明はポリフッ化ビニリデン
およびポリビニルピロリドンを、ポリフッ化ビニリデン
の良溶媒および貧溶媒とからなる混合溶媒に溶解して2
0℃での粘度が100poise以上の製膜原液を調製
し、二重管ノズルから内部に芯液を伴なって押し出し、
気体中をへるか直接、凝固浴に導き凝固し、次いで洗浄
浴にて溶媒とポリビニルピロリドンの一部を除去するこ
とを特徴とするポリフッ化ビニリデン系多孔中空糸膜の
製造方法である。
Next, as a second step, we conducted intensive research on a practical porous hollow fiber membrane and completed this project. That is, the present invention mainly consists of polyvinylidene fluoride, polyvinyl and lolidon, and
The porous hollow fiber membrane is made of a blended polymer containing 20 wt%, and the polymer aggregates form an m-shaped structure with connected pores, and the polyvinylidene fluoride of the aggregates has a ■-type crystal. structure, the average pore diameter of pores on the inner and outer surfaces of the hollow fiber membrane is 0.05 to 10μ, and the porosity of the continuous network structure is 60 to 90.
% polyvinylidene fluoride porous hollow fiber membrane. Furthermore, the present invention can dissolve polyvinylidene fluoride and polyvinylpyrrolidone in a mixed solvent consisting of a good solvent and a poor solvent for polyvinylidene fluoride.
Prepare a film-forming stock solution with a viscosity of 100 poise or more at 0°C, extrude it with the core liquid inside from a double pipe nozzle,
This is a method for producing a porous hollow fiber membrane based on polyvinylidene fluoride, which is characterized by passing through a gas or directly leading it to a coagulation bath to coagulate it, and then removing a portion of the solvent and polyvinylpyrrolidone in a washing bath.

以下、本発明について詳細に説明する。ポリフッ化ビニ
リデンを主体としてポリビニルピロリドンを1〜20w
t%含有するブレンドされたポリマーにおける、ポリフ
ッ化ビニリデンは単独重合体であっても共重合体であっ
てもよいがフッ化ビニリデン単量体が大部分を占めるも
のである。該ポリフッ化ビニリデンの分子量としては、
例えば10万〜100万程度のものが用いられる。
The present invention will be explained in detail below. Mainly polyvinylidene fluoride and 1 to 20w of polyvinylpyrrolidone
In the blended polymer containing t%, polyvinylidene fluoride may be a homopolymer or a copolymer, but the vinylidene fluoride monomer occupies the majority. The molecular weight of the polyvinylidene fluoride is:
For example, about 100,000 to 1,000,000 is used.

ポリビニルピロリドンは製膜原液からポリフッ化ビニリ
デンと共存し、凝固、洗浄後にも一部が膜の構成物とし
て共存しているものである。その量は主体となるポリフ
ッ化ビニリデンの網目状組織および結晶構造を、本発明
の構成要件として以下に述べる如く特性化しうる範囲で
ある。
Polyvinylpyrrolidone coexists with polyvinylidene fluoride from the membrane-forming stock solution, and a portion of it coexists as a constituent of the membrane even after coagulation and washing. The amount is within a range that allows the network structure and crystal structure of polyvinylidene fluoride, which is the main component, to be characterized as described below as a component of the present invention.

即ち第一に、ポリフッ化ビニリデンの結晶構造をみださ
ないことである。ポリフッ化ビニリデンには3つの結晶
変態が存在し、本発明の膜は熱力学的にも最も安定な■
型結晶構成を有する。これが耐熱性、とくに膜特性の耐
熱性を賦与する一条件である。
That is, firstly, the crystal structure of polyvinylidene fluoride should not be exposed. Polyvinylidene fluoride has three crystal modifications, and the film of the present invention has the thermodynamically most stable modification.
It has a type crystal structure. This is one condition for imparting heat resistance, especially heat resistance to film properties.

結晶構造および安定性については下記文献がある。Regarding the crystal structure and stability, there are the following documents.

(1) R,Hasegawaetal、、Polym
er J、、3゜(5) 、591 (1972) 。
(1) R. Hasegawaetal, Polym
er J, 3゜(5), 591 (1972).

(2J R,Hasegawa etal、、Poly
mer J、、3゜(5)、600(1972)。
(2J R, Hasegawa et al., Poly
Mer J, 3°(5), 600 (1972).

(3) Y、 Takahashi and H,Ta
dokoro 。
(3) Y, Takahashi and H, Ta
dokoro.

Macromolecules 、13. 1317(
1980)本発明の躾はまた実質的に無配向である。水
膜を延伸すると細孔および網目構造が変形し、多孔膜と
し機能せず、結晶型も熱的に不安定な1型に変態する。
Macromolecules, 13. 1317(
(1980) The present invention also has substantially no orientation. When a water film is stretched, its pores and network structure are deformed, so that it does not function as a porous film, and its crystal form transforms into type 1, which is thermally unstable.

第二にポリビニルピロリドンの含有量は1〜20wt%
が好ましい。1wt%未満であると多孔膜構造が発現し
がたく、また膜の親水性が乏しい。20wt%を越える
と多孔膜組織があいまいになり、膜が弱くまた構成物と
しても流失しやすくなり不安定となる。
Second, the content of polyvinylpyrrolidone is 1 to 20 wt%
is preferred. When it is less than 1 wt%, it is difficult to develop a porous membrane structure, and the membrane has poor hydrophilicity. If it exceeds 20 wt%, the porous membrane structure becomes vague, the membrane is weak, and as a constituent, it is easily washed away and becomes unstable.

本発明の多孔中空糸膜は膜分離技術に用いるもので内径
20〜2000μ、膜厚10〜300μである。好まし
くは内径40〜1000μ、膜厚10〜300μである
The porous hollow fiber membrane of the present invention is used in membrane separation technology and has an inner diameter of 20 to 2000μ and a membrane thickness of 10 to 300μ. Preferably, the inner diameter is 40 to 1000μ and the film thickness is 10 to 300μ.

該中空糸膜の内外表面にある細孔の平均孔径は0.05
〜10μである。平均孔径とは、走査型電子顕微鏡によ
ってめられた平均孔径である。平均孔径が0.05μ(
−500人)未満の場合、本発明の目的とする多孔性膜
の特性を発揮しえない。また平均孔径が10μを越える
場合は、膜のピンホール欠陥に相当し、当然膜機能と形
態を保持できない。本発明の膜はその連通網目状組織内
に空孔群を有し、それら全体の空隙率は60〜90%で
ある。
The average pore diameter of pores on the inner and outer surfaces of the hollow fiber membrane is 0.05.
~10μ. The average pore size is the average pore size determined by a scanning electron microscope. The average pore diameter is 0.05μ (
-500 people), the characteristics of the porous membrane that are the object of the present invention cannot be exhibited. Furthermore, if the average pore diameter exceeds 10 μm, this corresponds to a pinhole defect in the membrane, and naturally the membrane function and morphology cannot be maintained. The membrane of the present invention has a group of pores within its interconnected network structure, and the total porosity thereof is 60 to 90%.

空隙率は下記式からめた。The porosity was calculated using the following formula.

ここにポリフッ化ビニリデン■型結晶試料の実測密度1
.8g/cdを用いたが、結晶化度100%の理想結晶
では1.958g/cdである(前記文献2)。
Here is the measured density of polyvinylidene fluoride ■ type crystal sample 1
.. Although 8 g/cd was used, it is 1.958 g/cd for an ideal crystal with 100% crystallinity (Reference 2).

空隙率95%を越えると膜が弱く、また60%未満では
密になり過ぎ、膜特性が劣る。
If the porosity exceeds 95%, the membrane will be weak, and if it is less than 60%, it will become too dense and the membrane properties will be poor.

膜中ポリビニルピロリドンの含量は、赤外分析法により
ポリビニルピロリドンの吸収スペクトル(1680cI
m−’ )の吸光度とポリフッ化ビニリデンの吸収スペ
クトル(1402α−1)の吸光度とを比較してめた。
The content of polyvinylpyrrolidone in the film can be determined by the absorption spectrum of polyvinylpyrrolidone (1680cI) by infrared analysis.
The absorbance of m-') was compared with the absorbance of the absorption spectrum (1402α-1) of polyvinylidene fluoride.

なお前記空隙率の算出にはポリビニルピロリドンも含め
て膜の重量とした。
In the calculation of the porosity, polyvinylpyrrolidone was also included in the weight of the membrane.

本発明の膜の製造方法は製膜原液に前記の如き特定の四
元成分を用いることによって、多孔中空糸膜として特徴
的な連通網目構造を発現するものである。四元成分の何
れをも欠いても、前記した特性を十分有した表面細孔と
組織内空孔が得られない。
The membrane manufacturing method of the present invention uses the above-mentioned specific quaternary components in the membrane-forming stock solution to develop a continuous network structure characteristic of a porous hollow fiber membrane. Even if any of the quaternary components is missing, surface pores and tissue pores with sufficient characteristics described above cannot be obtained.

即ち、ポリフッ化ビニリデンおよびポリビニルピロリド
ンを、ポリフッ化ビニリデンの良溶媒および貧溶媒とか
らなる混合溶媒に溶解して製膜原液を調整する。
That is, polyvinylidene fluoride and polyvinylpyrrolidone are dissolved in a mixed solvent consisting of a good solvent and a poor solvent for polyvinylidene fluoride to prepare a film forming stock solution.

ポリビニルピロリドンの作用は、第一に本多孔中空糸膜
の構造形成に寄与すること。第二に膜に親水性を賦与す
ることである。さらに第三に中空糸膜を製造づるにあた
り、製膜原液、即ち紡糸原液(ドープ)に高粘度と安定
性を与えその効果は著しい。一般にポリフッ化ビニリデ
ンの単独溶液の粘度は非常に低く、例えば20%溶液で
も約50p。
The action of polyvinylpyrrolidone is first to contribute to the structure formation of this porous hollow fiber membrane. The second purpose is to impart hydrophilicity to the membrane. Thirdly, in producing hollow fiber membranes, it imparts high viscosity and stability to the membrane forming solution, ie, the spinning solution (dope), which has a remarkable effect. Generally, the viscosity of a single solution of polyvinylidene fluoride is very low, for example, even a 20% solution is about 50p.

ise (20℃)程度であり、そのまま紡糸すること
は困難である。本発明における紡糸原液の粘度としては
、20℃で測定して100poise以上であり、また
約1000poise以下の範囲が好ましい。
ise (20° C.), and it is difficult to spin it as it is. The viscosity of the spinning dope in the present invention is preferably in the range of 100 poise or more and about 1000 poise or less when measured at 20°C.

水蒸気と接触することによっても誘起されて相分離が進
行し、多孔性膜としての網目構造が発現しポリビニルピ
ロリドンとしては分子量1万から36万のものを用いる
ことができる。紡糸原液の粘度調整および膜特性の点か
らは高分子量の4〜36万が好ましい。これらを単独ま
たは混合して用いる。
Phase separation is also induced by contact with water vapor, and a network structure as a porous membrane is developed. Polyvinylpyrrolidone having a molecular weight of 10,000 to 360,000 can be used. A high molecular weight of 40,000 to 360,000 is preferable from the viewpoint of adjusting the viscosity of the spinning dope and film properties. These may be used alone or in combination.

紡糸原液としてポリフッ化ビニリデン10〜30wt%
およびポリビニルピロリドン2〜30wt%を下記混合
溶媒に溶解して調整する。ポリフッ化ビニリデン濃度が
10wt%未満では原液粘度が低すぎて紡糸が困難で膜
も弱い。30W【%を越えると溶解が困難で、また原液
が不均一で不安定となりゲル化しやすい。さらに原液、
粘度、紡糸性および膜特性から好ましい範囲は15〜2
set%である。ポリビニルピロリドン濃度が2%未満
では原液粘度上昇および本膜構造発現の効果がみられな
い。3owt%を越えると原液の粘度が1ooopoi
se (20℃)を越えて高粘度になりづぎて扱いにく
く膜も不安定となる。さらに原液粘度、紡糸性および膜
特性から好ましい範囲は3〜20wt%である。
Polyvinylidene fluoride 10-30wt% as spinning stock solution
It is prepared by dissolving 2 to 30 wt% of polyvinylpyrrolidone and polyvinylpyrrolidone in the following mixed solvent. If the polyvinylidene fluoride concentration is less than 10 wt%, the viscosity of the stock solution is too low, making spinning difficult and making the film weak. If it exceeds 30W%, it will be difficult to dissolve, and the stock solution will be non-uniform and unstable, easily gelling. Furthermore, the undiluted solution,
The preferred range from viscosity, spinnability, and membrane properties is 15 to 2.
set%. When the polyvinylpyrrolidone concentration is less than 2%, no effect of increasing the viscosity of the stock solution or developing the film structure is observed. If it exceeds 3wt%, the viscosity of the stock solution will be 1ooopoi.
If the temperature exceeds se (20°C), the viscosity becomes high and difficult to handle, and the film becomes unstable. Further, from the viewpoint of stock solution viscosity, spinnability and membrane properties, the preferable range is 3 to 20 wt%.

混合溶媒に用いるポリフッ化ビニリデンの良溶媒として
は、N−メチル−2−ピロリドン、ジエチルアセI・ア
ミド、ジエチルボルムアミド、ヘキサメチルホスホルア
ミド、テトラメチル尿素、ヘクサメチルホスホルアミド
、ジメチルスルホキシドが好ましい。これらの溶媒群の
中から少なくと−も1種、必要に応じては2種以上を用
いる。溶解力が大きく、水溶性であるN−メチル−2−
ピロリドンが特に好ましい良溶媒である。
As a good solvent for polyvinylidene fluoride used in the mixed solvent, N-methyl-2-pyrrolidone, diethylace I amide, diethylborumamide, hexamethylphosphoramide, tetramethylurea, hexamethylphosphoramide, and dimethyl sulfoxide are preferable. . At least one kind, and if necessary, two or more kinds, are used from among these solvent groups. N-Methyl-2-, which has a large dissolving power and is water-soluble
Pyrrolidone is a particularly preferred good solvent.

混合溶媒に用いる貧溶媒は良溶媒および後述する水溶性
ポリマーと混和して、製膜原液中のポリマー(ポリフッ
化ビニリデン)希薄相として相分離しうるものでなGノ
ればれならない。また貧溶媒である以上、例えば高温で
はポリフッ化ビニリデンを溶解しうる親和力を持つが故
に本発明の相分離機構を円滑かつミクロに進行させてい
るものと推定できる。貧溶媒は水溶性であると水で洗浄
できる。ケトン、エステル、環状エステル類が好ましい
ことがわかった。その中で、アセトン、メチルエチルケ
トン、シクロヘキサノン、トリエチルホスフェート、ジ
メチルサクシネート、γ−ブチロラクトン、ε−カプロ
ラクトンが好ましいが、特にアセトン、メチルエチルケ
トンおよびシクロヘキサノンが、原液、紡糸、膜特性の
点から好ましい。
The poor solvent used in the mixed solvent must be one that can be mixed with a good solvent and the water-soluble polymer described below and phase-separated as a dilute phase of the polymer (polyvinylidene fluoride) in the membrane-forming stock solution. Furthermore, since it is a poor solvent, for example, it has an affinity for dissolving polyvinylidene fluoride at high temperatures, so it can be presumed that the phase separation mechanism of the present invention proceeds smoothly and microscopically. If the poor solvent is water-soluble, it can be washed with water. Ketones, esters and cyclic esters have been found to be preferred. Among them, acetone, methyl ethyl ketone, cyclohexanone, triethyl phosphate, dimethyl succinate, γ-butyrolactone, and ε-caprolactone are preferred, and acetone, methyl ethyl ketone, and cyclohexanone are particularly preferred from the viewpoint of stock solution, spinning, and membrane properties.

ポリフッ化ビニリデンおよびポリビニルピロリドンの所
定量を混合溶解し紡糸原液を調整する。
Predetermined amounts of polyvinylidene fluoride and polyvinylpyrrolidone are mixed and dissolved to prepare a spinning stock solution.

加温溶解、脱泡した原液を二重管ノズルの外環部から押
し出し、同時に内環部から芯液を吐出して中空糸の形状
に紡糸する。吐出糸条は気体中をへるか、または直接凝
固浴中に導き、凝固して中空糸膜となす。次いで洗浄浴
にて溶媒とポリビニルピロリドン、場合によっては芯液
を除去して本発明の中空糸膜な得る。さらに公知の方法
により芯液除去や中空糸膜のグリセリン付着乾燥化を行
うことができる。
The stock solution, which has been dissolved and defoamed by heating, is extruded from the outer ring part of the double tube nozzle, and at the same time, the core liquid is discharged from the inner ring part to spin into hollow fibers. The discharged thread is passed through a gas or directly introduced into a coagulation bath, where it is coagulated to form a hollow fiber membrane. Next, the solvent, polyvinylpyrrolidone, and in some cases the core liquid are removed in a washing bath to obtain the hollow fiber membrane of the present invention. Furthermore, the core liquid can be removed and the hollow fiber membranes can be dried with glycerin by known methods.

紡糸凝固浴には、水やアルコールを用いることができる
が、とくに特開昭58−91732号に開示されている
ポリフッ化ビニリデンの溶媒を20%以上含有する水溶
液を凝固浴として用いることが好ましい。流延した製膜
原液を凝固浴中にて凝固相分離を進行させ、次いで洗浄
浴にて膜構成ポリマー以外の成分を除去する製造方法も
本発明の範囲である。原液の相分離の進行を遅くした大
きな細孔および空孔が発現するが、吐出糸条が実質的な
時1例えば1分以内で凝固するべり50〜80%の溶媒
を添加した浴液を用いることが好ましい。
Although water or alcohol can be used in the spinning coagulation bath, it is particularly preferable to use an aqueous solution containing 20% or more of a polyvinylidene fluoride solvent as disclosed in JP-A-58-91732. The scope of the present invention also includes a production method in which a cast membrane forming stock solution is subjected to coagulation phase separation in a coagulation bath, and then components other than the membrane-constituting polymer are removed in a washing bath. Large pores and voids appear that slow the progress of phase separation of the stock solution, but when the discharged thread is substantial, for example, use a bath solution containing a solvent with a slippage of 50 to 80% that solidifies within 1 minute. It is preferable.

洗浄浴にはポリフッ化ビニリデン以外の三成分を溶解除
去できる液体が好ましく、ポリフッ化ビニリデンの非溶
媒から選択しうる。具体例としては、水、アルコール等
を挙げることができるが、一般的には水が好ましい。
The cleaning bath is preferably a liquid capable of dissolving and removing three components other than polyvinylidene fluoride, and can be selected from non-solvents for polyvinylidene fluoride. Specific examples include water, alcohol, etc., but water is generally preferred.

〔発明の効果〕〔Effect of the invention〕

本発明の多孔中空糸膜の構造は表面および組織内に空隙
率の高い空孔群を有するものであり、精密濾過膜ないし
限外濾過膜として優れた特性を有する。すなわち高分子
量溶質等の透過性および溶液流束が高い。ポリフッ化ビ
ニリデン■型結晶から成り熱的に安定であり、熱滅菌が
可能で食品工業、製薬工業、および医療に有用である。
The structure of the porous hollow fiber membrane of the present invention has pore groups with high porosity on the surface and within the structure, and has excellent characteristics as a microfiltration membrane or an ultrafiltration membrane. That is, the permeability and solution flux for high molecular weight solutes are high. It is composed of polyvinylidene fluoride type crystals, is thermally stable, can be heat sterilized, and is useful in the food industry, pharmaceutical industry, and medicine.

特に膜中に含有される水溶性ポリマーの働きで、親水性
の高い膜となっており水系分離に非常に適している。さ
らに細胞培養用隔膜(分離、担体も兼ねうる)としても
応用できる。また、気体の分離及び濾過清浄化に用いる
こともできる。
In particular, the water-soluble polymer contained in the membrane makes the membrane highly hydrophilic, making it extremely suitable for aqueous separation. Furthermore, it can be applied as a cell culture diaphragm (separation and can also serve as a carrier). It can also be used for gas separation and filtration and cleaning.

以下実施例を用いて説明するが、本発明はこれらの実施
例で限定されるものではない。
The present invention will be explained below using Examples, but the present invention is not limited to these Examples.

実施例1 ポリフッ化ビニリデンE以下PVDFと略す:penw
alt社、Kynar(登録商標)301F(分子量6
50000) ] 118wt%全量に対する重量%、
以下同じ)、およびポリビニルピロリドン[以下PVP
ど略す:G、A、F、社、に−30(分子量40000
 )] 112wtを良溶媒のN−メチル−2−ピロリ
ドン(以下NMPと略す)60%と貧溶媒のアセトン1
0wt%とからなる混合溶媒に加温溶解して紡糸原液を
調製した。原液粘度は150poise (20℃)で
あった。芯液にポリエチレングリコールを用いて中空糸
紡糸を行い、大気中1clRをとおしてN M P y
owt%、メタノール15wt%および水151#t%
とからなる凝固浴に導き、温水(40℃)で洗浄して中
空糸膜を得た。中空糸膜は外径500μ、内系300μ
で、走査型電子顕微鏡により外表面1:1μ、内表面0
.5μの細孔群を認めた。断面は連通細孔の網目状組織
であり、マクロボイドは認められなかった。
Example 1 Polyvinylidene fluoride E (hereinafter abbreviated as PVDF): penw
alt, Kynar (registered trademark) 301F (molecular weight 6
50000)] 118wt% weight% based on the total amount,
), and polyvinylpyrrolidone [hereinafter PVP
Omitted: G, A, F, company, Ni-30 (molecular weight 40,000
)] 112wt, 60% of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) as a good solvent and 11% of acetone as a poor solvent.
A spinning stock solution was prepared by heating and dissolving in a mixed solvent consisting of 0 wt%. The viscosity of the stock solution was 150 poise (20°C). Hollow fiber spinning is performed using polyethylene glycol as the core liquid, and NMP y is passed through 1 clR in the air.
owt%, methanol 15wt% and water 151#t%
The membrane was introduced into a coagulation bath consisting of and washed with warm water (40°C) to obtain a hollow fiber membrane. The hollow fiber membrane has an outer diameter of 500μ and an inner diameter of 300μ.
Then, using a scanning electron microscope, the outer surface was 1:1μ and the inner surface was 0.
.. A group of 5μ pores was observed. The cross section showed a network structure of communicating pores, and no macrovoids were observed.

空隙は88%であった。赤外法による膜構成ポリマー中
のPVP含量は1,6%であり大部分のPVDFは■型
結合であることをX線回折法で認めた。
The porosity was 88%. The PVP content in the membrane-constituting polymer was found to be 1.6% by infrared analysis, and it was confirmed by X-ray diffraction that most of the PVDF was a ■ type bond.

比較例1 PVPFをNMP、ジメチルアセトアミド、およびジメ
チルアセトアミドに溶解して18W【%溶液を調製した
。何れも低粘度(数10pOieS以下、20℃)で中
空糸を紡糸することは困難であった。
Comparative Example 1 A 18W% solution was prepared by dissolving PVPF in NMP, dimethylacetamide, and dimethylacetamide. In either case, it was difficult to spin hollow fibers with low viscosity (several 10 pOieS or less, 20° C.).

比較例2 P V D F 20wt%、塩化カルシウム・2水塩
2wt%、シクロヘキサノール14wt%、およびNM
P64wt%からなる原液を調製したが、溶解が十分で
なく次第にゲル化して紡糸できなかった。
Comparative Example 2 PVDF 20wt%, calcium chloride dihydrate 2wt%, cyclohexanol 14wt%, and NM
Although a stock solution consisting of P64wt% was prepared, it was not sufficiently dissolved and gradually gelled, making it impossible to spin.

比較例3 P V D F 20wt%、ポリ(エチレングリコー
ル・プロピレングリコール) 16wt%、およびNM
P64wt%からなる原液を調製し、実施例1と同様に
紡糸を行った。外径640μ、内径410μの中空糸が
得られたが、外表面および内表面に0.1μ以上の細孔
が認められず、多孔網目状組織の発現が不十分であった
Comparative Example 3 PVDF 20wt%, poly(ethylene glycol/propylene glycol) 16wt%, and NM
A stock solution containing 64 wt% of P was prepared and spun in the same manner as in Example 1. Hollow fibers with an outer diameter of 640 μm and an inner diameter of 410 μm were obtained, but no pores of 0.1 μm or more were observed on the outer and inner surfaces, and the porous network structure was insufficiently developed.

実施例2〜4 第1表に示ず製膜原液を調製し、粘度は何れも200p
oise以上で実施例1と同様に紡糸して中空糸膜を得
た。何れも多孔中空糸膜構造と優れた膜性能を示した。
Examples 2 to 4 Film forming stock solutions were prepared not shown in Table 1, and the viscosity was 200p.
oise or more in the same manner as in Example 1 to obtain a hollow fiber membrane. All exhibited porous hollow fiber membrane structures and excellent membrane performance.

実施例5 実施例1のアセトンをメチル1チレンケトンにかえて紡
糸を試みたところ、同様に多孔中空糸膜を得ることがで
きた。
Example 5 When spinning was attempted by replacing acetone with methyl-1-tyrene ketone in Example 1, a porous hollow fiber membrane could be obtained in the same manner.

(JJ、下余白)(JJ, bottom margin)

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のポリフッ化ごニリデン系多孔中空糸
膜の外表面、第2図はその断面、第3図はその内表面の
走査型電子顕微鏡写真(倍率5000倍)である。 手 続 ン13 正 書(方式) 1、事件の表示 特願昭 59−73006 号 2、発明の名称 ポリフッ化ビニリデン系多孔中空糸膜a>よびその製造
方法3、補正をする者 事件との関係 特E′[出願人 大阪府大阪市東区南本町1丁目11番地(300)帝人
株式会社 代表者 岡 本 佐 四 部 のである。即ち第1図は、」と訂正する。 以 上 手続補正間 昭和60年 5月−す日 特R午庁長宵゛殿 1、事件の表示 特願昭 59−73006 号 2、発明の名称 ポリフッ化ビニリデン系多孔中空糸膜およびその製造方
法3、補正をする者 事件との関係 特許出願人 大阪府大阪市東区南本町1丁目11番地(3()0)帝
人株式会社 代表者 岡 本 佐 四 部 4、代 理 人 東京都千代田区内幸町2丁目1番1号
5、補正の対象 (1) 明細書における特許請求の範囲を別紙の通り訂
正する。 (2同第3頁第4行の「従来セルロース」を「従来セル
ロース」と訂正する。 (3)同第3頁第5行の[ポリカーボーネート」を「ポ
リカーボネート」と訂正する。 (4)同第5頁第8行の「多孔製」を「多孔性」と訂正
する。 (四 同第9頁下から2行のr=1−(Jを「=(1−
」と訂正する。 (6)同第10頁第2行の「1.958Jを「1.92
5」と訂正する。 (力 同第10頁第3行の「95%」を「90%」と訂
正する。 (8)同第10頁下から1行、第12頁第1行、第13
頁下から2行の「調整」を各々「調製」と訂正する。 (9)同第11真下から9〜8行の「水蒸気と・・・(
中略)・・・発現し」を削除する。 (至)同第12頁第5行の「原液、粘度」を「約100
〜1000poiseの原液粘麿」と訂正する。 0v 同第12頁第6行の「25et%」を「25wt
%」と訂正する。 側 同第12真下から4行の「フサメチル」を「キサメ
チル」と訂正する。 03 同第13頁第12行の[エチルケトン・・・(中
略)・・・トリエチル]を「エチルケトン、シクロヘキ
ザノン、トリエチル」と訂正する。 圓 同第16頁第2行のrPenwaltJをI’ p
ennwalt J トiT正m’ル。 09 同第16頁下から7行の「内系」を1内径」と訂
正する。 (16)同第16頁下から6行の「1:1μ」を「1.
1μ」と訂正する。 以 上 特許請求の範囲 (1) ポリフッ化ビニリデンを主体としてポリビニル
ピロリドンを1〜20wt%含有するブレンドされたポ
リマーの多孔中空糸膜てあって、該ポリマーの凝集体が
連通した細孔を有する網目状組織を形成していること、
該凝集体のポリフッ化ビニリデンがH型結晶構造をとる
こと、該中空糸膜の内外表面にある細孔の平均孔径が0
.05〜10μであること、および該連通網目状組織の
空隙率が60〜90%であることを特徴とするポリフッ
化ビニリデン系中空糸膜。 (′2J ポリフッ化ビニリデンおよびポリビニルピロ
リドンを、ポリフッ化ビニリデンの良溶媒および貧溶媒
とからなる混合溶媒に溶解して20℃の粘度が10g 
poise以上の製膜原液を調1し、二重管ノズルから
内部に芯液を伴なって押し出し、気体中をへるか、直接
、凝固浴に導き、凝固し、次いで洗浄浴にて溶媒とポリ
ビニルピロリドンの一部を除去することを特徴とするポ
リフッ化ビニリデン系多孔中空糸膜の製造方法。 (3) 良溶媒としてN−メチル−2−ピロリドンを用
い、且つ貧溶媒としてアセトン、メチルエチルケトン、
シクロヘキサノンがら成る群から選ばれた少なくとも1
Nを用いる特許請求の範囲第2項記載の製造方法。
FIG. 1 is a scanning electron micrograph (magnification: 5000 times) of the outer surface of the polynylidene fluoride porous hollow fiber membrane of the present invention, FIG. 2 is a cross section thereof, and FIG. 3 is a scanning electron micrograph (magnification: 5000 times) of the inner surface thereof. Procedure 13 Official Document (Method) 1. Indication of the Case Patent Application No. 1987-73006 2. Name of the Invention Polyvinylidene Fluoride Porous Hollow Fiber Membrane A> and its Manufacturing Method 3. Person Making the Amendment Relationship with the Case Special E' [Applicant: 1-11 Minamihonmachi, Higashi-ku, Osaka-shi, Osaka Prefecture (300), Representative of Teijin Ltd., Sa Okamoto. In other words, Fig. 1 is corrected as ". Between the above amendments, May 1985 - Japan Patent and Trademark Agency Director General 1, Indication of Case Patent Application No. 1987-73006 2, Title of Invention Polyvinylidene Fluoride Porous Hollow Fiber Membrane and Process for Producing the Same 3. Relationship with the case of the person making the amendment Patent applicant 1-11 Minamihonmachi, Higashi-ku, Osaka-shi, Osaka Prefecture (3()0) Representative of Teijin Ltd. Sa Okamoto 4 Department 4, Agent Uchisaiwai-cho, Chiyoda-ku, Tokyo 2-chome-1-1-5, Subject of amendment (1) The scope of claims in the specification will be corrected as shown in the attached sheet. (2) Correct “conventional cellulose” in line 4 of page 3 of the same to “conventional cellulose”. (3) Correct “polycarbonate” in line 5 of page 3 of the same to “polycarbonate”. (4) Correct “porous” on page 5, line 8 of the same page to “porous.”
” he corrected. (6) “1.958J” on page 10, line 2 of the same page is “1.92J”
5,” he corrected. (Correct “95%” in line 3 of page 10 of the same document to “90%”. (8) Line 1 from the bottom of page 10 of the same document, lines 1 and 13 of page 12
Correct "adjustment" in the two lines from the bottom of the page to "preparation". (9) Lines 9 to 8 from just below No. 11, “Water vapor and...(
(omitted)...deleted. (To) Change "Standard solution, viscosity" in line 5 of page 12 to "approximately 100".
~1000poise undiluted liquid Mushimaro,” he corrected. 0v "25et%" on page 12, line 6 of the same page is changed to "25wt%".
%” and correct it. Side Correct "fusamethyl" in the 4th line from the bottom of No. 12 to "xamethyl". 03 In the same page 13, line 12, [ethyl ketone...(omitted)...triethyl] is corrected to "ethyl ketone, cyclohexanone, triethyl." En I'p rPenwaltJ on page 16, line 2
ennwalt J toiT positive m'le. 09 Correct "inner system" in the 7th line from the bottom of page 16 to read "1 inner diameter." (16) "1:1μ" in the 6th line from the bottom of page 16 is changed to "1.
1μ” is corrected. Claims (1) A porous hollow fiber membrane of a blended polymer mainly composed of polyvinylidene fluoride and containing 1 to 20 wt% of polyvinylpyrrolidone, the network having pores in which aggregates of the polymer communicate with each other. Forming a similar tissue;
The polyvinylidene fluoride of the aggregate has an H-type crystal structure, and the average pore diameter of the pores on the inner and outer surfaces of the hollow fiber membrane is 0.
.. A polyvinylidene fluoride hollow fiber membrane, characterized in that the diameter of the polyvinylidene fluoride hollow fiber membrane is 05 to 10μ, and the porosity of the continuous network structure is 60 to 90%. ('2J Polyvinylidene fluoride and polyvinylpyrrolidone are dissolved in a mixed solvent consisting of a good solvent and a poor solvent for polyvinylidene fluoride, and the viscosity at 20°C is 10 g.
Prepare a membrane forming stock solution with a poise or higher strength, extrude it with the core liquid inside through a double tube nozzle, pass through the gas or directly lead it to a coagulation bath, coagulate it, and then remove it from the solvent in a washing bath. A method for producing a porous hollow fiber membrane based on polyvinylidene fluoride, which comprises removing a portion of polyvinylpyrrolidone. (3) N-methyl-2-pyrrolidone was used as a good solvent, and acetone, methyl ethyl ketone,
At least one selected from the group consisting of cyclohexanone
The manufacturing method according to claim 2, using N.

Claims (1)

【特許請求の範囲】 (1) ポリフッ化ごニリデンを主体としてポリビニル
ビロリントンを1〜20wt%含有するブレンドされた
ポリマーの多孔中空糸膜てあって、該ポリマーの凝集体
が連通した細孔を有する網目状組織を形成していること
、該凝集体のポリフッ化ビニリデンが■型結晶構造をと
ること、該中空糸膜の内外表面にある細孔の平均孔径が
0.05〜10μであること、および該連通網目状組織
の空隙率が60〜90%であることを特徴とするポリフ
ッ化ビニリデン系中空糸膜。 (2ポリフッ化ビニリデンおよびポリビニルピロリドン
を、ポリフッ化どニリデンの良溶媒および貧溶媒とから
なる混合溶媒に溶解して20℃の粘度が100pois
e以上の製膜原液を゛調整し、二重管ノズルから内部に
芯液を伴なって押し出し、気体中をへるか、直接、凝固
浴に導き、凝固し、次いで洗浄浴にて溶媒とポリビニル
ピロリドンの一部を除去することを特徴とするポリフッ
化ビニリデン系多孔中空糸膜の製造方法。 (3) 良溶媒としてN−メチル−2−ピロリドンを用
い、且つ貧溶媒としてアセトン、メチルエチルケトン、
シクロヘキサノンから成る群から選ばれた少なくとも1
種を用いる特許請求の範囲記載の製造方法。
[Scope of Claims] (1) A porous hollow fiber membrane of a blended polymer mainly composed of polynylidene fluoride and containing 1 to 20 wt% of polyvinylpyrolinton, the membrane having pores in which aggregates of the polymer communicate with each other. The polyvinylidene fluoride of the aggregate has a ■-type crystal structure, and the average pore diameter of the pores on the inner and outer surfaces of the hollow fiber membrane is 0.05 to 10μ. and a polyvinylidene fluoride hollow fiber membrane, characterized in that the porosity of the continuous network structure is 60 to 90%. (Dissolve polyvinylidene difluoride and polyvinylpyrrolidone in a mixed solvent consisting of a good solvent and a poor solvent for polyvinylidene fluoride, and the viscosity at 20°C is 100 pois.)
Adjust the membrane forming stock solution above e, extrude it with the core liquid inside through a double tube nozzle, pass through the gas or directly lead it to a coagulation bath, coagulate it, and then remove it from the solvent in a washing bath. A method for producing a porous hollow fiber membrane based on polyvinylidene fluoride, which comprises removing a portion of polyvinylpyrrolidone. (3) N-methyl-2-pyrrolidone was used as a good solvent, and acetone, methyl ethyl ketone,
At least one selected from the group consisting of cyclohexanone
A manufacturing method according to the claims using seeds.
JP59073006A 1984-04-13 1984-04-13 Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof Pending JPS60216804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59073006A JPS60216804A (en) 1984-04-13 1984-04-13 Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59073006A JPS60216804A (en) 1984-04-13 1984-04-13 Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof

Publications (1)

Publication Number Publication Date
JPS60216804A true JPS60216804A (en) 1985-10-30

Family

ID=13505825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59073006A Pending JPS60216804A (en) 1984-04-13 1984-04-13 Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof

Country Status (1)

Country Link
JP (1) JPS60216804A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117812A (en) * 1985-11-15 1987-05-29 Nikkiso Co Ltd Hollow fiber and its production
JPS62294405A (en) * 1986-06-13 1987-12-21 Toyobo Co Ltd Hollow yarn type blood plasma separating membrane and manufacture of same
JPH03118A (en) * 1989-05-25 1991-01-07 Toray Ind Inc Membrane for concentrating aqueous solution of volatile organic liquid and its production
CN1050773C (en) * 1995-11-24 2000-03-29 天津纺织工学院膜天膜技术工程公司 Polyvinylidene fluoride hollow fibre porous membrane manufacturing method
JP2003210954A (en) * 2002-01-24 2003-07-29 Toray Ind Inc Method of manufacturing hollow fiber membrane and hollow fiber membrane
EP1483040A4 (en) * 2002-01-28 2005-04-06 Koch Membrane Systems Inc Hollow fiber microfiltration membranes and a method of making these membranes
JP2006205067A (en) * 2005-01-28 2006-08-10 Toray Ind Inc Porous membrane
JP2006239680A (en) * 2005-02-04 2006-09-14 Toray Ind Inc Polymeric separation membrane and method for manufacturing the same
JP2008062226A (en) * 2006-08-10 2008-03-21 Kuraray Co Ltd Porous membrane made from vinylidene fluoride resin and method for preparing the same
JP2009039716A (en) * 1998-05-18 2009-02-26 Pall Corp Highly porous poly(vinylidene difluoride) membrane
JP2010221218A (en) * 2001-02-16 2010-10-07 Toray Ind Inc Method of manufacturing separation membrane, and separation membrane
WO2011007714A1 (en) * 2009-07-14 2011-01-20 株式会社クレハ Vinylidene fluoride resin porous membrane, manufacturing method therefor, and method for manufacturing filtrate water
CN102658037A (en) * 2012-04-26 2012-09-12 青岛科技大学 Method for preparing polyvinylidene fluoride panel microporous membrane
JP2015101728A (en) * 2013-11-25 2015-06-04 ロッテ ケミカル コーポレーション Polymer resin composition for manufacturing hollow fiber membrane, manufacturing method of hollow fiber membrane and hollow fiber membrane
US9259690B2 (en) 2006-06-27 2016-02-16 Toray Industries, Inc. Polymer separation membrane and process for producing the same
JP2020044523A (en) * 2018-09-21 2020-03-26 株式会社クラレ Water-vapor separation membrane, and method for producing water-vapor separation membrane

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117812A (en) * 1985-11-15 1987-05-29 Nikkiso Co Ltd Hollow fiber and its production
JPS62294405A (en) * 1986-06-13 1987-12-21 Toyobo Co Ltd Hollow yarn type blood plasma separating membrane and manufacture of same
JPH03118A (en) * 1989-05-25 1991-01-07 Toray Ind Inc Membrane for concentrating aqueous solution of volatile organic liquid and its production
CN1050773C (en) * 1995-11-24 2000-03-29 天津纺织工学院膜天膜技术工程公司 Polyvinylidene fluoride hollow fibre porous membrane manufacturing method
JP2009039716A (en) * 1998-05-18 2009-02-26 Pall Corp Highly porous poly(vinylidene difluoride) membrane
JP4601699B2 (en) * 1998-05-18 2010-12-22 ポール・コーポレーション Highly porous poly (vinylidene difluoride) membrane
JP2010221218A (en) * 2001-02-16 2010-10-07 Toray Ind Inc Method of manufacturing separation membrane, and separation membrane
JP2003210954A (en) * 2002-01-24 2003-07-29 Toray Ind Inc Method of manufacturing hollow fiber membrane and hollow fiber membrane
EP1483040A4 (en) * 2002-01-28 2005-04-06 Koch Membrane Systems Inc Hollow fiber microfiltration membranes and a method of making these membranes
JP2006205067A (en) * 2005-01-28 2006-08-10 Toray Ind Inc Porous membrane
JP4626319B2 (en) * 2005-01-28 2011-02-09 東レ株式会社 Porous membrane, method for producing the same, and solid-liquid separator
JP2006239680A (en) * 2005-02-04 2006-09-14 Toray Ind Inc Polymeric separation membrane and method for manufacturing the same
US9259690B2 (en) 2006-06-27 2016-02-16 Toray Industries, Inc. Polymer separation membrane and process for producing the same
JP2008062226A (en) * 2006-08-10 2008-03-21 Kuraray Co Ltd Porous membrane made from vinylidene fluoride resin and method for preparing the same
WO2011007714A1 (en) * 2009-07-14 2011-01-20 株式会社クレハ Vinylidene fluoride resin porous membrane, manufacturing method therefor, and method for manufacturing filtrate water
JP5576866B2 (en) * 2009-07-14 2014-08-20 株式会社クレハ Method for producing vinylidene fluoride resin porous membrane
US9096957B2 (en) 2009-07-14 2015-08-04 Kureha Corporation Vinylidene fluoride resin porous membrane, manufacturing method therefor, and method for manufacturing filtrate water
CN102658037A (en) * 2012-04-26 2012-09-12 青岛科技大学 Method for preparing polyvinylidene fluoride panel microporous membrane
JP2015101728A (en) * 2013-11-25 2015-06-04 ロッテ ケミカル コーポレーション Polymer resin composition for manufacturing hollow fiber membrane, manufacturing method of hollow fiber membrane and hollow fiber membrane
JP2020044523A (en) * 2018-09-21 2020-03-26 株式会社クラレ Water-vapor separation membrane, and method for producing water-vapor separation membrane

Similar Documents

Publication Publication Date Title
US4399035A (en) Polyvinylidene fluoride type resin hollow filament microfilter and process for producing the same
JPS60216804A (en) Porous hollow yarn membrane comprising polyvinylidene fluoride and preparation thereof
CN105473214B (en) Micropore PVDF membrane
JPH02302449A (en) Preparation of microporous film
CN110079887B (en) Performance enhancing additives for fiber formation and polysulfone fibers
WO1997022405A1 (en) Hollow fiber type filtration membrane
JPH0451209B2 (en)
JPS6097001A (en) Polyvinylidene fluoride porous membrane and its preparation
JPS6356802B2 (en)
JPS61164602A (en) Hllow yarn membrane made of polysulfone resin and its preparation
KR20010078245A (en) Hollow fiber membrane and process for producing the same
JPS5916503A (en) Porous hollow yarn membrane of polyvinylidene fluoride resin and its production
JPS6138208B2 (en)
JPS62117812A (en) Hollow fiber and its production
JPS6138207B2 (en)
JPH078548B2 (en) Polyvinylidene fluoride-based resin porous membrane and method for producing the same
US4678581A (en) Polymethyl methacrylate hollow fiber type ultrafiltration membrane and process for preparation of the same
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JPH0468010B2 (en)
JP4672128B2 (en) Hollow fiber membrane and method for producing the same
JPS61200805A (en) Polyether sulfone microporous hollow yarn membrane and its production
JPH03254826A (en) Preparation of polysulfone semipermeable membrane
JPH10337456A (en) Membrane forming stock solution
JPH11179174A (en) Hollow fiber membrane for separation and manufacture thereof
JPH03174233A (en) Production of aromatic polysulfone hollow-fiber membrane