JPS60207375A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60207375A
JPS60207375A JP6457784A JP6457784A JPS60207375A JP S60207375 A JPS60207375 A JP S60207375A JP 6457784 A JP6457784 A JP 6457784A JP 6457784 A JP6457784 A JP 6457784A JP S60207375 A JPS60207375 A JP S60207375A
Authority
JP
Japan
Prior art keywords
layer
base
film
silicon film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6457784A
Other languages
Japanese (ja)
Other versions
JPH0318738B2 (en
Inventor
Tadashi Hirao
正 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6457784A priority Critical patent/JPS60207375A/en
Priority to US06/698,523 priority patent/US4665424A/en
Priority to GB08508243A priority patent/GB2157079B/en
Publication of JPS60207375A publication Critical patent/JPS60207375A/en
Priority to US06/940,607 priority patent/US4709469A/en
Publication of JPH0318738B2 publication Critical patent/JPH0318738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Abstract

PURPOSE:To prevent the increase of base-collector capacitance by directly leading out a base electrode from an active base region, forming one part of an emitter electrode by a polysilicon film and boring a contact hole for shaping a metallic silicide film in a base. CONSTITUTION:An oxide film 106 and a PSG film 401 are formed on the surface of a polysilicon film 601. An oxide film 105 as one part and the PSG film 401 are removed, a polysilicon film 602 is applied, and N<+> type layers 71 and 81 are shaped. A thick film 108 and a thin oxide film 107 are formed. A metallic layer is removed through etching. A contact hole 50 for a base electrode, a contact hole 70 for an emitter electrode and a contact hole 80 for a collector electrode are formed, and a base electrode wiring 9, an emitter electrode wiring 10 and a collector electrode wiring 11 are shaped by a low resistance metal. Since there is not external base layer in high impurity concentration, capacitance between a base and a collector can be reduced, and a transistor having excellent frequency characteristics is obtained.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は半導体装置のIF1m方法に係り、特にバイ
ポーラ型半導体集積回路装置t(以下FBIP・IC,
lという。)におけるトランジスタの電極引出部の形成
方法の改nに関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an IF1m method for a semiconductor device, and particularly relates to a bipolar semiconductor integrated circuit device t (hereinafter referred to as FBIP/IC).
It's called l. This invention relates to a modification of the method for forming an electrode lead-out portion of a transistor in (1).

[従来技術〕 ・一般に、BIP・ICにお番プるl−ランジスクは、
pnn接合分離0択択酸化技術用いた酸化膜分離。
[Prior art] - In general, the l-lan disc used in BIP/IC is
PNN junction isolation 0 Oxide film isolation using selective oxidation technology.

または3重拡散を用いる方法などによって電気的に独立
した島内に形成される。ここでは酸化膜分離法によって
npn トランジスタを形成する方法について述べる。
Alternatively, they are formed in electrically independent islands by a method using triple diffusion. Here, a method for forming an npn transistor using an oxide film separation method will be described.

もちろん、これ以外の上記各種分離法を用いる場合、さ
らにはpnp トランジスタについても適用できるもの
である。
Of course, when using the above-mentioned various separation methods other than this, it can also be applied to pnp transistors.

第1図(1)〜I)は従来の製造方法の使用工程段階に
おける状態を示す断面図である。以下この図について従
来の方法を簡単に説明する。低不純物濃度のp形(p−
形)シリコン基板1にコレクタ埋込層となる高不純物濃
度のn形(n+形)層2を選択的に形成した後、それら
の上に11−形エピタキシャルH3を成長させるL第1
図(a)]。次に、下敷酸化膜101の上に形成した窒
化鯖201をマスクとして選択酸化を施し゛(゛厚い分
離酸化膜102を形成するが、このときこの分**化膜
102の下にはチャンネルカット用のp形層4が同時に
形成される。[第1図(b ) j、次に、上述の選択
酸化用のマスクとして用いた窒化11I201を下敷酸
化膜101とともに除去して、改めてイオン注入保護用
の酸化膜103を形成し、フォトレジスト膜(この段階
での7オトレジスト膜は図示せず)をマスクとして、外
部ベース層となるp+形層5を、さらに、上記フォトレ
ジスト膜を除去(,11改めてフォトレジスト膜301
を形成し、これをマスクとして活性ベース層となるp形
層6をイオン注入法によって形成するL第1図(C)1
゜続いて、フォトレジスト1I3o1を除去し、一般に
ホスシリケートガラス(PSG)からなるパッシベーシ
ョン111401を被着させ、ベースイオン注入@5.
6のアニールとPSG膜401の炊きしめとを兼ねた熱
処理を行なって、中間段階の外部ベース層51および活
性ベース層61とした襖、PSG膜401に所要の開孔
70d3よび80を形成して、イオン注入法によって1
ミツタ曙となるべきn+形層7およびコレクタ電極取出
層となるべきn+形W8を形成する[第1図〈d)]。
FIGS. 1(1) to 1) are cross-sectional views showing the state of the conventional manufacturing method at the stage of use. The conventional method will be briefly explained below with reference to this figure. p-type (p-
After selectively forming a highly impurity-concentrated n-type (n+-type) layer 2 on a silicon substrate 1 as a collector buried layer, an 11-type epitaxial layer H3 is grown thereon.
Figure (a)]. Next, selective oxidation is performed using the nitride layer 201 formed on the underlying oxide film 101 as a mask. A p-type layer 4 is formed at the same time.[FIG. 1(b)] Next, the 11I nitride 201 used as a mask for the selective oxidation described above is removed together with the underlying oxide film 101, and ion implantation protection is again performed. Using the photoresist film (7 photoresist film is not shown at this stage) as a mask, remove the p+ type layer 5, which will become the external base layer, and then remove the photoresist film (, 11 Photoresist film 301 again
Using this as a mask, a p-type layer 6, which will become an active base layer, is formed by ion implantation.
゜Subsequently, the photoresist 1I3o1 is removed, a passivation 111401, typically made of phosphosilicate glass (PSG) is deposited, and a base ion implantation @5.
A heat treatment that also serves as the annealing in step 6 and the heating of the PSG film 401 is performed to form the required openings 70d3 and 80 in the intermediate stage external base layer 51 and the active base layer 61, and in the PSG film 401. , 1 by ion implantation method
An n+ type layer 7 to be used as the Mituta Akebono layer and an n+ type layer W8 to be used as the collector electrode extraction layer are formed [FIG. 1 (d)].

その慢、各イオン注入層をアニールして、外部ベース層
52および活性ベース層62を完成させるとともにエミ
ッタ1171.15よびコレクタ電極取出層81を形成
した優に、ベース電極取出用の需孔50を形成し、各開
孔部50.70お5− よび80に電極の突抜は防止用の金属シリサイド[白金
シリサイド(Pt −8+ )、パラジウムシリサイド
(Pd −8i )など]膜501を形成した上で、ア
ルミニウム(A1)のような低抵抗金属によってベース
電極配置1m9.エミッタ電極配線10およびコレクタ
電極配線11を形成する[第1図(e)]。
After that, each ion-implanted layer was annealed to complete the external base layer 52 and active base layer 62, and the emitter 1171.15 and collector electrode extraction layer 81 were formed. After forming a metal silicide [platinum silicide (Pt -8+), palladium silicide (Pd -8i), etc.] film 501 in each opening 50, 70, 5- and 80 to prevent electrode penetration, , base electrode arrangement 1 m9. by a low resistance metal such as aluminum (A1). Emitter electrode wiring 10 and collector electrode wiring 11 are formed [FIG. 1(e)].

第2図はこの従来方法で製造されたトランジスタの平面
パターン図である。ところで、トランジスタの周波数特
性はベース・コレクタ容量およびベース抵抗などに依存
し、周波数特性の向上にはこれらを小ざくする必要があ
る。上記構造ではベース抵抗を低下するためにp+形外
部ベースM52を設けたのであるが、これはベース・コ
レクタ容量の増大を招くという欠点がある。また、ベー
ス抵抗はエミツタ層71とベース電極取出開孔50との
距離り、にも依存し、従来のものではベース電極配線9
とエミッタ電極配線10との間隔と各電極配線9.10
の各開孔50.70からのはみ出し分どの合計距離とな
っており、フォトエッ6− チングの精度を向上して電極配線間隔を小さくしても、
上記はみ出し分はどうしても残る。
FIG. 2 is a plan pattern diagram of a transistor manufactured by this conventional method. By the way, the frequency characteristics of a transistor depend on the base-collector capacitance, base resistance, etc., and it is necessary to reduce these to improve the frequency characteristics. In the above structure, the p+ type external base M52 is provided to reduce the base resistance, but this has the drawback of increasing the base-collector capacitance. The base resistance also depends on the distance between the emitter layer 71 and the base electrode lead-out hole 50, and in the conventional case, the base electrode wiring 9
and the distance between the emitter electrode wiring 10 and each electrode wiring 9.10
What is the total distance of the protrusion from each opening 50.70?
The above protrusion will inevitably remain.

[発明の概要] この発明は以上のような点に岐みてなされたもので、ベ
ース電極をポリシリコン膜と金属シリサイド膜との重畳
層を介して活性ベース領域から直接取出すようにするこ
とどエミッタ11極の一部をポリシリコン膜で形成して
このポリシリコン膜をマスクとして上記ベースの金属シ
リサイド暎形成のためのコンタクト開けを行なうことに
よって、エミツタ層とベース電極開孔との距離の中に両
電極配線の各開孔からのはみ出し分を組入れる要がなく
、上記距離を短縮でき、しかも^不純物IFJiの外部
ベース層を用いずにベース・コレクタ容量の増大の生じ
ない半導体装置の興造方法を提供することを目的として
いる。
[Summary of the Invention] The present invention has been made in view of the points mentioned above, and it is possible to directly extract the base electrode from the active base region through a superimposed layer of a polysilicon film and a metal silicide film. By forming a part of the 11 poles with a polysilicon film and using this polysilicon film as a mask to open a contact for forming the base metal silicide, the distance between the emitter layer and the base electrode opening is made. A method for manufacturing a semiconductor device that eliminates the need to incorporate protruding portions of both electrode wirings from each hole, shortens the above-mentioned distance, and does not require an external base layer of impurity IFJi and does not cause an increase in base-collector capacitance. is intended to provide.

[発明の実施例] 第3@(a)〜(a)はこの発明の一実施例による製造
方法の主要工程段階における状態を示す断面図で、第1
図の従来例と同等部分は同一符号で示す。まず、第1図
(b)に示す状態までは従来と同様に、p−形シリコン
基板1にn+形コレクタ埋込層2.n−形エピタキシャ
ル層3.チャンネルカット用ρ形層4および分離用酸化
Il!102を形成した侵、第1図(b)における窒化
膜201および下敷酸化膜101を除去し、改めてイオ
ン注入保護用の酸化wA103を形成し、図示しないフ
ォトレジストマスクを介して活性ベース層となるp形層
6をイオン注入法によって形成し、ベース電極開孔とな
るべき領域近傍の上記酸化膜103を除去し、その除去
部分を含めて全上面にポリシリコン膜601を被着させ
る[第3図(a)]。次に、ポリシリコン1601の表
面にp形不純物を全面に導入してから、シンタリングを
行なうことによってp形層6を中間段階の活性ベース領
域61とした後、ポリシリコンfil 601を選択エ
ツチング除去し、改めて鹸化を行なって酸化膜103が
あ〕た位置に酸化111105.残されたポリシリコン
購601の上に酸化膜゛106を形成し、さらに全上面
にP S G 8440 ’I ・ど形成する[第3図
(b)]。次に、フォトレジストマスク(図示せず)を
用いた選択エツチングによって、エミツタ層およびコレ
クタ電極取出層となるべき領域の酸化11105および
PSGI1401を除去し、ポリシリコン膜602を被
着させて、このポリシリコン膜にn形不純物を高濃度に
イオン注入した後ドライブを行ない該ポリシリコン膜か
ら拡散させてエミッタ層となるべぎn+形層71および
コレクタ電極取出層となるべきn+形層81を形成する
[第3図(C)]。次に、上記拡散源となったポリシリ
コン膜部分602.803のみを残すように選択エツチ
ングした後、レジストwA302をマスクとしてベース
・コンタクトの窓開けを行なう[第3図(d)]。この
とき、レジスト賎302は上記エミツタ層形成のポリシ
リコン1!602の内部になるようにして、上記ポリシ
リコン膜を一部マスクとしてベース俸コンタクトとそれ
に続くポリシリコンll601上の酸化膜106.PS
G膜401をエツチング除去している。低温(800℃
〜900℃程痕)での酸化を行なってn十9一 層のポリシリコン膜802.603上に厚い酸化111
08を、また0層のシリ」ン基板62ど0+層のポリシ
リコン膜上に薄い酸化膜107を形成する[第3図(e
)]。これはよく知られたようにn+不純物のリンや砒
素が高濃度に入ったシリコンおよびポリシリコンでは低
温はど増速層化が行なわれることを使用し′Cいる。次
に、酸化WI4107のみをウォッシュアウトしてP 
t、P d、T I、W 。
[Embodiment of the Invention] Part 3 (a) to (a) are cross-sectional views showing states at main process steps of a manufacturing method according to an embodiment of the present invention.
Portions equivalent to those of the conventional example in the figure are indicated by the same reference numerals. First, up to the state shown in FIG. 1(b), as in the conventional case, a p- type silicon substrate 1 and an n+ type collector buried layer 2. n-type epitaxial layer 3. ρ-type layer 4 for channel cutting and oxidized Il for isolation! 102, the nitride film 201 and underlying oxide film 101 shown in FIG. A p-type layer 6 is formed by ion implantation, the oxide film 103 near the region where the base electrode hole is to be formed is removed, and a polysilicon film 601 is deposited on the entire upper surface including the removed portion [Third Figure (a)]. Next, p-type impurities are introduced into the entire surface of the polysilicon 1601, and then sintering is performed to make the p-type layer 6 an intermediate active base region 61. After that, the polysilicon film 601 is selectively etched away. Then, saponification is performed again to form oxide 111105. at the position where oxide film 103 was. An oxide film 106 is formed on the remaining polysilicon layer 601, and a PSG 8440'I film is further formed on the entire upper surface [FIG. 3(b)]. Next, by selective etching using a photoresist mask (not shown), the oxide 11105 and PSGI 1401 in the areas to become the emitter layer and the collector electrode extraction layer are removed, and a polysilicon film 602 is deposited. After ion-implanting n-type impurities into a silicon film at a high concentration, driving is performed to diffuse them from the polysilicon film to form an n+-type layer 71 that will become an emitter layer and an n+-type layer 81 that will become a collector electrode extraction layer. [Figure 3 (C)]. Next, after selectively etching is performed so as to leave only the polysilicon film portions 602 and 803 which served as the diffusion source, a window for the base contact is opened using the resist wA 302 as a mask [FIG. 3(d)]. At this time, the resist layer 302 is placed inside the polysilicon layer 1!602 forming the emitter layer, and the polysilicon film is partially used as a mask to form the base contact and the subsequent oxide film 106.602 on the polysilicon layer 11601. P.S.
The G film 401 is removed by etching. Low temperature (800℃
A thick oxide 111 is formed on the single layer polysilicon film 802 and 603 by oxidation at ~900°C.
08, and a thin oxide film 107 is formed on the silicon substrate 62 of the 0+ layer and the polysilicon film of the 0+ layer [FIG. 3(e)
)]. This is based on the well-known fact that silicon and polysilicon containing high concentrations of n+ impurities such as phosphorus and arsenic undergo speed-enhancing layering at low temperatures. Next, wash out only the oxidized WI4107 and P
t, P d, T I, W .

MOなどのシリコンおよびポリシリコン膜どの間に金属
シリ勺イドを形成する金属M(図示Uず)を全上面に蒸
着またはスパッタリングによって形成した後、シンタリ
ングを行なって金属シリサイド11501.502をシ
リコン基体の露出面およびポリシリコン躾601表面の
上に形成してから金属シリサイド膜を残して金属層を王
水などでエツチング除去する[第3図(r)]。次に、
パッシベーション用窒化wA202 (1!化膜でもよ
い)を被@させた後にこの窒化膜202および酸化膜1
08に選択エツチングを施してベースit極用コンタク
ト孔50.エミッタ電極用コンタクト孔710− Oおよびコレクタ電極用コンタクト孔80を形成した後
、たとえばAIなどの低抵抗金属によってベース電極配
置9.エミッタ電極配置110およびコレクタ電極配線
11を(れぞれ形成する[第3図(g)]。
After forming a metal M (not shown) on the entire upper surface by vapor deposition or sputtering to form a metal silicide between silicon and polysilicon films such as MO, sintering is performed to form metal silicide 11501.502 on the silicon substrate. and the surface of the polysilicon layer 601, and then the metal layer is removed by etching with aqua regia or the like, leaving the metal silicide film [FIG. 3(r)]. next,
This nitride film 202 and oxide film 1 are coated with nitride film 202 (1! oxide film may also be used) for passivation.
08 is selectively etched to form a base IT electrode contact hole 50. After forming the emitter electrode contact hole 710-O and the collector electrode contact hole 80, base electrode arrangement 9. is performed using a low resistance metal such as AI. Emitter electrode arrangement 110 and collector electrode wiring 11 are formed (FIG. 3(g)).

さらに別の一実施例としてベース電極の一部となるポリ
シリコン膜601の形成に際しc1第4図に示すように
、第3図(a)での酸化膜103のエツチングを過剰に
行なうことでシリコン島3の側壁にポリシリコン膜60
1が接するようになり、第3図((1>中のポリシリコ
ンpIi4601のベース層62との接面90が小さく
Cよくベース面積の縮小が行なえる。酸化膜のエツチン
グはポリシリコン膜601からの拡散1i163がベー
スl1i162の深さと同程度となることが耐圧の関係
から最も良い。またポリシリコン膜601の形成をベー
ス1162の形成前に行なってベース層の深さの制御と
結晶欠陥防止の向上を行なうことができる。
As another example, when forming the polysilicon film 601 that will become a part of the base electrode, as shown in FIG. 4, the oxide film 103 in FIG. A polysilicon film 60 is formed on the side wall of the island 3.
The contact surface 90 of the polysilicon pIi 4601 with the base layer 62 in FIG. It is best for the diffusion 1i 163 to be approximately the same depth as the base l1i 162 from the viewpoint of breakdown voltage.Also, the polysilicon film 601 is formed before the base 1162 is formed to control the depth of the base layer and prevent crystal defects. Improvements can be made.

第5図はこのようにしてWJI造された従来法の第2図
に対応するトランジス、夕の平面パターン図で、図に示
すように、エミッタ1171とベース電極9につながっ
ているポリシリコン膜601および金属シリサイド膜5
01との距離D2は拡散のための窓開は部(71に相当
)と拡散源となるポリシリコン膜602との重ね合わせ
部分で決まるので、従来の第2図に示した距離り、に比
して小ざくできる。ベース抵抗はその分だけ小さくなる
のみでな(、従来のp+髪形外ベース11152(数1
0Ω/口〜100Ω/口)の代わりに低非抵抗の金属シ
リサイド躾501(数Ω/口〜数10Ω/口)を用いた
ので小さくなる。さらに、p+形外部ベース層52を用
いず、ベース層62自体若干小さくなっているので、ベ
ース・コレクタ容量も小さくなり、トランジスタの周波
数特性は改良される。
FIG. 5 is a plane pattern diagram of a transistor, which corresponds to FIG. 2 of the conventional method manufactured by WJI in this way, and as shown in the figure, the polysilicon film 601 connected to the emitter 1171 and the base electrode 9 and metal silicide film 5
The distance D2 from 01 to 01 is determined by the overlapping part of the window opening for diffusion (corresponding to 71) and the polysilicon film 602 serving as the diffusion source, so it is different from the conventional distance shown in FIG. You can make it smaller. The base resistance only decreases by that amount (, the conventional p + hairstyle outside base 11152 (Math. 1
The resistance becomes small because a low resistance metal silicide 501 (several ohms/hole to several tens of ohms/hole) is used instead of 0 ohms/hole to 100 ohms/hole. Furthermore, since the p+ type external base layer 52 is not used and the base layer 62 itself is slightly smaller, the base-collector capacitance is also reduced, and the frequency characteristics of the transistor are improved.

[発明の効果] 以上説明したように、この発明によれば、ベース電極を
ポリシリコン膜と金属シリサイド躾との2重層で引出ベ
ース層に隣接する分l1lIlB!化躾上に形成しエミ
ッタ電極の一部をポリシリコン膜で形成してこのポリシ
リコン膜をマスクとして上記ベースの金属シリサイド膜
形成のためのベース・コンタクト開けを行なったので、
ベース電極取出領域とエミツタ層との距離を小さくしベ
ース抵抗を小さくできる。また、高不純物濃度の外部ベ
ース層を設けないで、ベース・コレクタ間容量を小さく
でき、周波数特性の良好なi〜ランジスタが得られるな
どの効果がある。
[Effects of the Invention] As explained above, according to the present invention, the base electrode is formed of a double layer of a polysilicon film and a metal silicide film, and the portion adjacent to the lead-out base layer is formed into a double layer of a polysilicon film and a metal silicide layer. A part of the emitter electrode was formed on the substrate with a polysilicon film, and this polysilicon film was used as a mask to open the base contact for forming the base metal silicide film.
The base resistance can be reduced by reducing the distance between the base electrode extraction region and the emitter layer. Further, without providing an external base layer with a high impurity concentration, the base-collector capacitance can be reduced, and an i~ transistor with good frequency characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は従来の製造方法の主要工程段階
における状態を示す断面図、第2図は従来方法で製造さ
れたトランジスタの平面パターン図、第3図(a)〜(
9)はこの発明の一実施例になる製造方法の主要工程段
階における状態を示す断面図、第4図は本発明の別の実
施例になる製造方法の主要工程での断面図、第5図はこ
の実施例の方法で製造されたトランジスタの平面バタ・
−ン図である。 図において、1はp−形シリコン基板、3はn−型エピ
タキシャル層(第1伝導形層)、6゜61.62はベー
ス層、7.71はエミツタ層、13− 8.81はコレクタ電極取出層、9はベース電極、10
はエミッタ電極、11はコレクタ電極、1゜2は分離酸
化膜、101,105,106,107.108はシリ
コン酸化膜、201.202は窒化膜、302はレジス
ト躾、401はPSG膜(vi縁膜)、600,601
,602はシリコン膜、500.501は金属シリサイ
ド躾である。 代理人 大 岩 増 維 14− 手続補正書(自発) 昭和59年7 19 日 ”““Ps&*” ’ J l、事件の表示 特願昭59−64577号2、発明の
名称 半導体装置の製造方法 3、補正をする者 事件との関係 特許出願人 住 所 東京都千代田区丸の内二丁目2番3号名 称 
(601)三菱電機株式会社 代表者片山仁八部 4、代理人 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 明IIA!第12頁第9行の「低非抵抗」を「低抵抗」
に訂正する。 以上
FIGS. 1(a) to (e) are cross-sectional views showing the main process steps of the conventional manufacturing method, FIG. 2 is a plane pattern diagram of a transistor manufactured by the conventional method, and FIGS. 3(a) to (e).
9) is a cross-sectional view showing the main process steps of a manufacturing method according to an embodiment of the present invention, FIG. 4 is a cross-sectional view showing the main steps of a manufacturing method according to another embodiment of the present invention, and FIG. is the flat pattern of the transistor manufactured by the method of this example.
- is a diagram. In the figure, 1 is a p-type silicon substrate, 3 is an n-type epitaxial layer (first conductivity type layer), 6°61.62 is a base layer, 7.71 is an emitter layer, and 13-8.81 is a collector electrode. Extraction layer, 9 base electrode, 10
is an emitter electrode, 11 is a collector electrode, 1゜2 is an isolation oxide film, 101, 105, 106, 107.108 are silicon oxide films, 201.202 is a nitride film, 302 is a resist layer, 401 is a PSG film membrane), 600,601
, 602 are silicon films, and 500 and 501 are metal silicide films. Agent Masuo Oiwa 14- Procedural amendment (spontaneous) July 19, 1980 "Ps &*" J l, Indication of case Patent application No. 1982-64577 2, Title of invention Method for manufacturing semiconductor devices 3. Relationship with the case of the person making the amendment Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name
(601) Mitsubishi Electric Co., Ltd. Representative Hitoshi Katayama 4, Agent 5, Detailed explanation of the invention in the specification subject to amendment 6, Contents of the amendment IIA! “Low non-resistance” in line 9 of page 12 is changed to “low resistance”
Correct. that's all

Claims (2)

【特許請求の範囲】[Claims] (1) 半導体基体の表面部に分m領域に囲まれコレク
タ領域を構成すべき第1伝導形層を形成する第1の工程
、この第1伝導形層の表面部の一部に第2伝導形のベー
ス碩を形成する第2の工程、上記ベース層上の一部から
これに接する上記分離領域の上にわたってシリコン膜を
形成する第3の工程、上記ベース層上を含む上記第1伝
導形層の表面上および上記シリコン膜の上にシリコン酸
化膜を形成する第4の工程、上記シリコン酸化膜に選択
エツチングを施してコレクタ電極取出層を形成すべき部
分およびエミツタ層を形成すべき部分の上の上記シリコ
ン酸化膜を除去する第5の工程、この工程復シリコン膜
を形成し第1伝導形の不純物を高濃度に導入した模、?
ニーリングを施して上記、]レクタ電極取出層を形成す
べき部分および上記エミツタ層を形成ずべき部分に第1
伝導形の不純物をシリコン膜から幕板ベース層内に拡散
させてエミツタ層およびコレクタ電極取出層を形成する
第6の工程、上記シリコン膜がエミツタ層およびコレク
タ電極取出層を覆い目す部分を除いて選択的に除去する
第7の工程、上記シリコン膜の一部を含めて選択的に上
記ベース層上およびシリコン膜上の酸化膜を除去する第
8の工程、第1伝導形の不純物が高amに導入された少
なくともエミツタ層上のシリコン膜上に厚い酸化膜をお
よび第8の工程でnにされたベース電極形成部上に薄い
酸化膜を比較的低温で酸化することによって形成する第
9の工程、第9の工程で形成されたべ−・スミ極形成部
上の薄い酸化膜のウォッシュアウトする第10の工程、
上記ベースTi極取出領域および上記ベース層上のシリ
コン膜の上に金属シリナイドIIUを形成する第11の
T稈、ならびに上記分離fI4域の上および上記分離領
域で囲まれ上記各工程を経た領域上に[li!1mlを
形成しそれぞれこの保護膜に設けた開孔を通1)で上記
シリコン膜上位置にベース1権、エミツタ層上位置にエ
ミッタ1(徊およびコレクタ1twA取出開上位置にコ
レラ9電極を形成する第12の工程を備えたことを特徴
とする半導体装置の製造方法。
(1) A first step of forming a first conductivity type layer which is surrounded by m regions and should constitute a collector region on the surface of the semiconductor substrate, and a second conductivity type layer is formed on a part of the surface of the first conductivity type layer. a second step of forming a base layer of the shape, a third step of forming a silicon film from a part of the base layer to the isolation region in contact therewith, and a third step of forming a silicon film over the base layer including the first conductivity type. A fourth step of forming a silicon oxide film on the surface of the layer and on the silicon film, selectively etching the silicon oxide film to form a collector electrode extraction layer and an emitter layer. In the fifth step of removing the above-mentioned silicon oxide film, a silicon film is formed after this step and impurities of the first conductivity type are introduced at a high concentration.
The first layer is applied to the area where the rectifier electrode extraction layer is to be formed and the area where the emitter layer is to be formed.
A sixth step of diffusing conductive impurities from the silicon film into the curtain base layer to form an emitter layer and a collector electrode extraction layer, except for the portion where the silicon film covers the emitter layer and the collector electrode extraction layer. an eighth step of selectively removing the oxide film on the base layer and the silicon film including a part of the silicon film; A ninth step in which a thick oxide film is formed on at least the silicon film on the emitter layer introduced in the am and a thin oxide film is formed on the base electrode formation portion which has been made n in the eighth step by oxidizing at a relatively low temperature. a tenth step of washing out the thin oxide film on the base/sumi electrode formation portion formed in the ninth step;
The eleventh T culm in which metal silinide IIU is formed on the base Ti electrode extraction region and the silicon film on the base layer, and above the isolation fI4 region and on the region surrounded by the isolation region and subjected to each of the above steps. To [li! 1 ml was formed, and through the openings provided in each of the protective films 1), a base 1 electrode was formed on the silicon film, and an emitter 1 electrode was formed on the emitter layer. A method for manufacturing a semiconductor device, comprising a twelfth step.
(2) シリコン膜に多結晶°シリコン膜を用い、第3
の工程では、多結晶シリコン膜を全、L面に形成し第2
伝導形の不純物を導入後ベターニングを施してベース層
上の一部からこれに接する分m領域の上にわたって残す
ことを特徴とする特許請求の範囲第1項記載の半導体装
置の製造方法。
(2) Using a polycrystalline silicon film as the silicon film, the third
In the process, a polycrystalline silicon film is formed entirely on the L plane, and the second
2. The method of manufacturing a semiconductor device according to claim 1, wherein the conduction type impurity is introduced and then subjected to betering to leave it from part of the base layer to over the m region in contact with the base layer.
JP6457784A 1984-03-30 1984-03-30 Manufacture of semiconductor device Granted JPS60207375A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6457784A JPS60207375A (en) 1984-03-30 1984-03-30 Manufacture of semiconductor device
US06/698,523 US4665424A (en) 1984-03-30 1985-02-05 Semiconductor device
GB08508243A GB2157079B (en) 1984-03-30 1985-03-29 Electrode arrangement for semiconductor devices
US06/940,607 US4709469A (en) 1984-03-30 1986-12-11 Method of making a bipolar transistor with polycrystalline contacts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6457784A JPS60207375A (en) 1984-03-30 1984-03-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60207375A true JPS60207375A (en) 1985-10-18
JPH0318738B2 JPH0318738B2 (en) 1991-03-13

Family

ID=13262222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6457784A Granted JPS60207375A (en) 1984-03-30 1984-03-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60207375A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269517A (en) * 1985-09-21 1987-03-30 ドイチエ・アイテイ−テイ−・インダストリ−ズ・ゲゼルシヤフト・ミト・ベシユレンクタ・ハフツンク Mounting method for contact on contact region of semiconductor substrate
JPS62114268A (en) * 1985-11-13 1987-05-26 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS63114261A (en) * 1986-09-11 1988-05-19 フェアチャイルド セミコンダクタ コーポレーション Self-aligning base shunt for transistor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563821A (en) * 1978-11-06 1980-05-14 Nec Corp Semiconductor device
JPS5928378A (en) * 1982-08-09 1984-02-15 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS5928377A (en) * 1982-08-09 1984-02-15 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS645472A (en) * 1987-06-30 1989-01-10 Snow Brand Milk Products Co Ltd Production of nutritive food

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563821A (en) * 1978-11-06 1980-05-14 Nec Corp Semiconductor device
JPS5928378A (en) * 1982-08-09 1984-02-15 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS5928377A (en) * 1982-08-09 1984-02-15 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS645472A (en) * 1987-06-30 1989-01-10 Snow Brand Milk Products Co Ltd Production of nutritive food

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269517A (en) * 1985-09-21 1987-03-30 ドイチエ・アイテイ−テイ−・インダストリ−ズ・ゲゼルシヤフト・ミト・ベシユレンクタ・ハフツンク Mounting method for contact on contact region of semiconductor substrate
JPS62114268A (en) * 1985-11-13 1987-05-26 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS63114261A (en) * 1986-09-11 1988-05-19 フェアチャイルド セミコンダクタ コーポレーション Self-aligning base shunt for transistor

Also Published As

Publication number Publication date
JPH0318738B2 (en) 1991-03-13

Similar Documents

Publication Publication Date Title
JPH0418463B2 (en)
US5268316A (en) Fabrication process for Schottky diode with localized diode well
US4803174A (en) Bipolar transistor integrated circuit and method of manufacturing the same
US4691436A (en) Method for fabricating a bipolar semiconductor device by undercutting and local oxidation
JPH0241170B2 (en)
US4740482A (en) Method of manufacturing bipolar transistor
US5150177A (en) Schottky diode structure with localized diode well
JPS60207375A (en) Manufacture of semiconductor device
JPH0254662B2 (en)
JPH0135505B2 (en)
JPH0136710B2 (en)
JPS6159775A (en) Semiconductor device
JPH0420263B2 (en)
JPH0878433A (en) Semiconductor device
JPH0136709B2 (en)
JPS5968963A (en) Semiconductor device and manufacture thereof
JPS61108169A (en) Semiconductor device
JPH0437581B2 (en)
JPH0130310B2 (en)
JPS61107772A (en) Manufacture of semiconductor device
JPS612363A (en) Manufacture of semiconductor device
JPS62114269A (en) Manufacture of semiconductor device
JPH0611055B2 (en) Method for manufacturing semiconductor device
JPS6145392B2 (en)
JPH01291461A (en) Semiconductor device and manufacture thereof