JPS60174822A - Manufacture of thick-walled seamless steel pipe of high strength - Google Patents

Manufacture of thick-walled seamless steel pipe of high strength

Info

Publication number
JPS60174822A
JPS60174822A JP2928284A JP2928284A JPS60174822A JP S60174822 A JPS60174822 A JP S60174822A JP 2928284 A JP2928284 A JP 2928284A JP 2928284 A JP2928284 A JP 2928284A JP S60174822 A JPS60174822 A JP S60174822A
Authority
JP
Japan
Prior art keywords
steel
pipe
corrosion cracking
stress corrosion
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2928284A
Other languages
Japanese (ja)
Inventor
Kuniaki Motoda
元田 邦昭
Sadao Hasuno
貞夫 蓮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2928284A priority Critical patent/JPS60174822A/en
Publication of JPS60174822A publication Critical patent/JPS60174822A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To improve the resistance to sulfide stress corrosion cracking by hardening and tempering a steel contg. prescribed percentages of C, Si, Al, Nb, Zr, Ti, P, S, Mn, Cr and Mo under prescribed conditions. CONSTITUTION:A steel contg., by weight, 0.15-0.5% C, 0.1-0.3% Si, 0.005-0.1% Al, 0.01-0.1% Nb, 0.005-0.1% in total of Zr and/or Ti, <=0.005% P, <=0.005% S, 0.12t<1/2>-0.25t<1/2>% Mn [t is the thickness (mm.) of a steel pipe as a product] and 0.4t<1/2>-0.8t<1/2>% Cr [Cr(%)/Mo(%)=1.5-2.5] is hot worked into a seamless steel pipe, and the inside and outside of the pipe are simultaneously hardened. The pipe is then tempered at 650 deg.C- the Ac1 point.

Description

【発明の詳細な説明】 この発明は、油井管やラインパイプ、化学装置用配管等
に使用される継目無鋼管の製造方法に関するものであシ
、特に耐硫化物応力腐食割れ性の、優れた、降伏強さも
しくは0.6チ耐力が75〜120 kllf/mtl
の高強度を有する厚さ9.5■以上の厚肉高強度継目無
鋼管の製造方法に関するものである。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing seamless steel pipes used for oil country tubular goods, line pipes, chemical equipment piping, etc. , yield strength or 0.6 inch proof stress is 75-120 kllf/mtl
The present invention relates to a method for manufacturing a thick-walled, high-strength seamless steel pipe having a thickness of 9.5 mm or more and having high strength.

近年に至シ、原油価格の高騰や近い将来に予想される石
油資源の枯′渇化を目前にして、従来は顧みられなかっ
たような深層油田や、開発が一旦は放棄されていたサワ
ーガス田などに対する開発意欲が高ま9つつある。特に
サワーな環境にある油井、すなわち硫化水素等の硫化物
を多量に含む環境下にある油井の開発にあたっては、耐
硫化物応力腐食割れ性の優れた油井管が不可欠であシ、
また深層油田の場合必然的に高強度の油井管が要求され
る。
In recent years, with soaring crude oil prices and the depletion of oil resources expected in the near future, deep oil fields that were previously neglected and sour gas fields whose development was once abandoned are being developed. There is a growing desire to develop such technologies. Oil country tubing with excellent sulfide stress corrosion cracking resistance is essential for the development of oil wells that are located in particularly sour environments, that is, environments that contain large amounts of sulfides such as hydrogen sulfide.
Furthermore, in the case of deep oil fields, high-strength oil country tubular goods are inevitably required.

ところで従来一般に油井管に使用されている低合金鋼に
おいては、耐硫化物応力腐食割れ性は強度の上昇ととも
に劣化するのが通常でアシ、そのため両者の兼ね合いか
ら、降伏強さ64〜74に9f/uf RのCr −M
o系鋼が実用化されている油井管用鋼のうちで最も優れ
たものとされている。しかしながら最近の油井は益々深
井戸化しているのが実情であり、そのため上述のような
従来の鋼では強度が不足し、降伏強度75 kgf/m
−以上の高強度を有する耐硫化物応力腐食割れ性の優れ
た油井管用鋼の開発が急務とされている。
By the way, in the case of low-alloy steels commonly used for oil country tubular goods, the resistance to sulfide stress corrosion cracking usually deteriorates as the strength increases.Therefore, due to the balance between the two, yield strength of 64 to 74 is 9f. /uf R's Cr-M
O-series steels are considered to be the most superior among the steels for oil country tubular goods in practical use. However, the reality is that oil wells are becoming deeper and deeper these days, and as a result, conventional steels like those mentioned above lack strength, with a yield strength of 75 kgf/m.
There is an urgent need to develop steel for oil country tubular goods that has a high strength of - or more and has excellent resistance to sulfide stress corrosion cracking.

最近、特開昭53−78917号に記載されているよう
に、従来の65 kgf/m−級のCr −Mo鋼より
Cr 、 Moを増量し、かつ■を多量に添加した、耐
硫化物応力腐食割れ性の優れた75〜90kl/f/r
s−級の鋼が開発されている。しかしながらこの鋼はV
を多量に含むため、連続鋳造により素材を製造した場合
に割れが極めて発生し易く、シたがって生産性の高一連
続鋳造法を適用することが困難であると(ハ)う問題が
あった。また一方、特開昭57−35622号において
は、鋼中のp、sを低減した高強度油井用鋼が提案され
ており、この鋼の強度は明確には示されていないが実施
例から見ると91〜98 kgf/111の降伏強度で
あって、従来と比較してかなシ高強度化されていると思
われる。しかしながらこの提案の鋼は、アルカリ性環境
でしかもtt2Sを微量にしか含有しない場合にのみ゛
しか耐応力腐食割れ性が保証されておらず、前述のよう
にH2Sを多量に含むサワーな環境の油井管としての使
用はためられざるを得な一〇また最近の油井の深井戸化
に伴なって、厚肉の油井管に対する要求が増えつつある
が、従来は管の肉厚に応じて成分を調整する試みは殆ど
なされておらず、したがって薄肉の管で優れた耐硫化物
応力腐食割れ性を示す鋼であっても、厚肉の管に圧延し
て焼入れ焼戻し処理した場合には、管厚中心まで充分に
焼入れが行なわれず、そのため耐硫化物応力腐食割れ性
が劣る場合が多かったのが実情である。
Recently, as described in JP-A No. 53-78917, a sulfide stress resistant steel with increased Cr and Mo content than the conventional 65 kgf/m-class Cr-Mo steel and a large amount of 75-90kl/f/r with excellent corrosion cracking resistance
S-class steel has been developed. However, this steel is V
Since it contains a large amount of , cracks are extremely likely to occur when the material is produced by continuous casting, and therefore it is difficult to apply the continuous casting method with high productivity. . On the other hand, in JP-A No. 57-35622, a high-strength steel for oil wells with reduced p and s in the steel is proposed, and although the strength of this steel is not clearly shown, it can be seen from the examples. It has a yield strength of 91 to 98 kgf/111, which is considered to be significantly higher than the conventional one. However, the stress corrosion cracking resistance of this proposed steel is only guaranteed in an alkaline environment containing only a trace amount of tt2S; In addition, as oil wells have become deeper in recent years, there has been an increasing demand for thick-walled oil country tubular goods, but conventionally the composition has been adjusted according to the wall thickness of the pipe. Therefore, even if a steel exhibits excellent sulfide stress corrosion cracking resistance in thin-walled pipes, when rolled into thick-walled pipes and quenched and tempered, the center of the pipe thickness The reality is that sufficient quenching has not been carried out until then, and as a result, resistance to sulfide stress corrosion cracking has often been poor.

この発明は以上の事情に鑑みてなされたものでおり、連
続鋳造にも適した成分の範囲内で、鋼管の肉厚に応じた
適切な成分組成を選ぶことによシ、肉厚9.56+以上
の厚肉鋼管においても優れた耐硫化物応力腐食割れ性を
示す75〜120kl!f/−級の高強度継目無鋼管を
製造する方法を提供することを目的とするものである。
This invention was made in view of the above circumstances, and by selecting an appropriate component composition according to the wall thickness of the steel pipe within the range of components suitable for continuous casting. 75-120kl shows excellent sulfide stress corrosion cracking resistance even in thick-walled steel pipes! The object of the present invention is to provide a method for manufacturing f/- class high-strength seamless steel pipes.

高強度鋼の耐硫化物応力腐食割れ性は完全焼入れ後充分
に焼戻すことによって向上することは公知であるが、本
発明者等はこの点に注目して、特に厚内の鋼管において
焼入れ後に完全焼入れ組織を得るべく厚肉鋼管の焼入れ
性を向上させる方法について種々実験検討を重ねた結果
、Cr敬、Mn量を肉厚に応じである適切な範囲内に調
整することKよって、厚肉の鋼管でもほぼ完全な焼入れ
組織が得られ、ひいては焼入れ後の焼戻しを、適切な温
度で行なうことによって耐硫化物応力割れ性を向上させ
得ることを見出した。また本発明者等は、Cr 、 M
oを同時に含有する系の鋼においては、CrJjlとM
o量との比をある適切な範囲内とすることによって優れ
た耐硫化物応力腐食割れ性を示すことを見出した。この
発明はこれらの知見に基いてなされたものでアシ、次に
これらの知見について°さらに具体的に説明する。
It is known that the sulfide stress corrosion cracking resistance of high-strength steel can be improved by sufficiently tempering it after complete quenching. As a result of various experimental studies on methods for improving the hardenability of thick-walled steel pipes in order to obtain a completely hardened structure, we found that by adjusting the Cr and Mn contents within appropriate ranges depending on the wall thickness, thick-walled steel pipes can be improved. It has been found that an almost perfect quenched structure can be obtained even in steel pipes of 20 to 30 degrees, and that the sulfide stress cracking resistance can be improved by tempering after quenching at an appropriate temperature. In addition, the present inventors have discovered that Cr, M
In steels containing o at the same time, CrJjl and M
It has been found that excellent resistance to sulfide stress corrosion cracking can be exhibited by setting the ratio to the amount of 0 to within a certain appropriate range. This invention has been made based on these findings.Next, these findings will be explained in more detail.

鋼の耐硫化物応力腐食割れ性は、萬強度材はど劣化する
が、同一8度の鋼の場合には、完全焼入れしかつ充分に
焼戻した組織が優れていることは、前述のように公知で
ある。そこで例えば特開昭58−164719号に示さ
れているように、焼入れ後の組織において焼入れマルテ
ンサイト比率を90−以上としたものを焼戻しパラメー
タが18000以上の条件で焼戻す方法、あるいはAP
I −C90の規格の如く、焼戻し温度を621T:以
上−とする方法などが知られている。これらの例はいず
れも降伏強度63〜741Vf/1m級の油井管につい
てのものであるが、本発明者等の研究によれば、75 
kllflRd級以上の高強度継目無鋼管の場合、優れ
た耐硫化物応力腐食割れ性を得るためには焼入れマルテ
ンサイト比率を99チ以上とし、かつ焼戻し温度を65
0℃以上とする必要があることが判明した。
As mentioned above, the sulfide stress corrosion cracking resistance of steel deteriorates as the tensile strength material deteriorates, but in the case of steel of the same 8 degree, completely quenched and sufficiently tempered structure is superior. It is publicly known. For example, as shown in Japanese Patent Application Laid-Open No. 58-164719, a method is proposed in which the structure after quenching has a quenched martensite ratio of 90 or more and is tempered under conditions where the tempering parameter is 18,000 or more, or AP
A method is known in which the tempering temperature is set to 621 T or higher, as in the I-C90 standard. All of these examples relate to oil country tubular goods with a yield strength of 63 to 741 Vf/1 m class, but according to research by the present inventors, 75
In the case of high-strength seamless steel pipes of kllflRd class or higher, in order to obtain excellent sulfide stress corrosion cracking resistance, the quenched martensite ratio should be 99 degrees or more, and the tempering temperature should be 65 degrees.
It was found that the temperature needed to be 0°C or higher.

上述のように焼入れマルテンサイト比率を99チ以上と
いう高い値まで高めるためには、管肉厚の中心部まで充
分に焼入れる必要がある。第1図に、900℃に加熱し
た管を内外面から水焼入れした場合において、管肉厚中
心部の温度が300℃以下に至るに要する冷却所要時間
を、管肉厚の関数として本発明者等が計算した結果を示
す。第1図から、例えば肉厚39wの管の場合に肉厚中
心部温度が300℃となるまで約30秒を要することが
わかる。したがって、厚肉の管の場合には冷却速度が遅
くても充分に焼きが入る成分系としなければならない。
As mentioned above, in order to increase the hardened martensite ratio to a high value of 99 inches or more, it is necessary to sufficiently harden the pipe to the center of its wall thickness. Figure 1 shows the cooling time required for the temperature at the center of the tube thickness to drop below 300℃ when a tube heated to 900℃ is water-quenched from the inner and outer surfaces as a function of the tube thickness. The results calculated by et al. It can be seen from FIG. 1 that, for example, in the case of a tube with a wall thickness of 39W, it takes about 30 seconds for the temperature at the center of the wall thickness to reach 300°C. Therefore, in the case of thick-walled tubes, the composition must be such that sufficient hardening can be achieved even if the cooling rate is slow.

このような観点から、本発明者等は焼入れ硬さと冷却速
度との関係に及ぼす合金元素の影響について種々検討を
重ねた結果、管肉厚中心部まで完全焼入れマルテンサイ
ト組織とすることのできる適切な成分添加範囲と肉厚と
の関係を見出すに至ったのである。第2図はその一例を
示すもので、0.25%C−3%Cr−1.5%Mo鋼
のMn量を種々変えて冷却速度と焼入れ硬さとの関係を
調べたものである。例えば肉厚30■の管の場合、第1
図に示すように肉厚中心部が300℃以下となるのに約
30秒を要することから、30秒かけても完全焼入れ組
織に対応する硬さを得るためにはMnを約1%添加する
必要があることが第2図かられかる。この検討結果は一
例に過ぎないが、本発明者等は同様の検討を種々の成分
系、種々の肉厚について行なった結果、管肉厚中心部ま
で完全焼入れ組織とするためには、特にCrとMnの添
加量を肉厚に応じて調整する必要があることが判明した
From this point of view, the inventors of the present invention have conducted various studies on the influence of alloying elements on the relationship between quenching hardness and cooling rate, and as a result, have found an appropriate structure that can achieve a completely quenched martensitic structure up to the center of the pipe wall thickness. They found a relationship between the addition range of ingredients and wall thickness. FIG. 2 shows an example of this, in which the relationship between cooling rate and quenching hardness was investigated by varying the amount of Mn in 0.25%C-3%Cr-1.5%Mo steel. For example, in the case of a pipe with a wall thickness of 30 cm, the first
As shown in the figure, it takes about 30 seconds for the center of the wall thickness to reach 300°C or less, so in order to obtain the hardness corresponding to a completely hardened structure even after 30 seconds, about 1% Mn must be added. It is clear from Figure 2 that this is necessary. Although the results of this study are just one example, the inventors conducted similar studies on various component systems and various wall thicknesses, and found that in order to achieve a completely hardened structure down to the center of the pipe wall thickness, it is necessary to It was found that it was necessary to adjust the amount of addition of Mn and Mn depending on the wall thickness.

上述のようにしそ完全焼入れ組織とした焼入れ材に対し
ては焼戻し処理を施すのであるが、本発明者等はさらに
焼入れ性以外の点が製品の耐硫化物応力腐食割れ性や強
度に及ぼす影響を見出すべく、焼戻し条件や成分元素に
ついて種々検討を重ねた。その結果、降伏強さもしくは
(1,6%耐力が、75 kgf/rad 〜120 
kgf/ldとナルヨウニ焼戻し、かつ優れた耐硫化物
心カ腐1食性を得るためには、焼入れ性に関係する条件
も含めて、次の(1)〜(6)の6条件が全て同時に満
足する必要があることが判明した。すなわち、 (1) Mnの添加量:0.12%/’T≦Mr+(%
)≦0.25V’T(23Crの添加量: 0.4v’
T≦cr(%)≦0.8 JT’−(3) CrとMo
との添加量の比: (4)焼戻し温度= 650℃以上、Ac1点以下(5
) Nbと、TiもしくはZrの同時添加(6)P、S
含有量:各0.005%以下とする必要がある。但しこ
こでtは管の肉厚(II−)である。
As mentioned above, the quenched material with a completely quenched structure of perilla is subjected to a tempering treatment, but the present inventors further investigated the influence of factors other than hardenability on the sulfide stress corrosion cracking resistance and strength of the product. In order to find this, various studies were conducted regarding the tempering conditions and component elements. As a result, the yield strength or (1.6% yield strength) is 75 kgf/rad ~ 120
kgf/ld, tempering, and excellent sulfide core corrosion resistance, the following six conditions (1) to (6) must be satisfied at the same time, including conditions related to hardenability. It turned out that there was a need. That is, (1) Addition amount of Mn: 0.12%/'T≦Mr+(%
)≦0.25V'T (addition amount of 23Cr: 0.4v'
T≦cr(%)≦0.8 JT'-(3) Cr and Mo
(4) Tempering temperature = 650°C or higher, Ac 1 point or lower (5
) Simultaneous addition of Nb and Ti or Zr (6) P, S
Content: Each must be 0.005% or less. However, here t is the wall thickness (II-) of the tube.

したがってこの発明の厚肉高強度継目無鋼管の製造方法
は、素材として、CO,15〜0.50チ、SiO,t
〜0.3%、AA! 0.005〜0.1 %、NbO
,01−0,1%、2【および/またはTiを合計量で
0.005〜U、 1%、p o、 o o s s以
下、So、 005%以下を含有し、かつMn 、 C
rをそれぞれ製品管の肉厚t(=m)に応じて 0.12v’T≦Mn(%)≦0.2!WT0、4 J
T≦Cr(%)≦0.8 JT−の範囲内で含有し、さ
らにMOt−Cr (%)に応じてを満足する範囲内で
含有する鋼を用い、その鋼素材に熱間加工を施して継目
無鋼管とし、次いで調質処理としての焼入れ焼戻し処理
を施すにあたって、焼入れ法として管内外面同時焼入れ
法を適用 −し、かつ焼戻し温度を650 ℃以上%A
CI点未満の範囲内とすることを特徴とするものである
Therefore, the method for manufacturing a thick-walled, high-strength seamless steel pipe of the present invention uses CO, 15 to 0.50 t, SiO, t as materials.
~0.3%, AA! 0.005-0.1%, NbO
, 01-0,1%, 2 [and/or contains Ti in a total amount of 0.005 to U, 1%, po, ooss or less, So, 005% or less, and Mn, C
r is 0.12v'T≦Mn(%)≦0.2, depending on the wall thickness t (=m) of the product tube. WT0, 4 J
T≦Cr (%)≦0.8 Using steel that contains within the range of JT- and further contains within the range that satisfies MOt-Cr (%), hot working is performed on the steel material. To make a seamless steel pipe, and then to perform quenching and tempering treatment as heat treatment, a method of simultaneously quenching the inner and outer surfaces of the tube was applied as the quenching method, and the tempering temperature was set at 650 °C or higher%A.
It is characterized by being within a range below the CI point.

以下この発明の方法にっ−てさらに詳細に説明する。The method of the present invention will be explained in more detail below.

先ずこの発明の方法に用いられる鋼素材の成分限定理由
を説明する。
First, the reason for limiting the composition of the steel material used in the method of this invention will be explained.

C: Cは強度と焼入れ性向上のために必要な元素であ
るが、0.1596未満では充分な焼入れ性が得られず
、一方0.5チを越えれば逆に焼割れ発生のおそれがあ
るから、0.15〜0.50 %の範囲内とした。
C: C is an element necessary to improve strength and hardenability, but if it is less than 0.1596, sufficient hardenability cannot be obtained, while if it exceeds 0.5, there is a risk of quench cracking. Therefore, the content was set within the range of 0.15% to 0.50%.

Si:Siは通常の製鋼過程において脱酸のために必要
であシ、また強度向上に有効であって、そのためにはo
、 11以上が必要であるが、0.3%を越えれば靭性
を低ドさせるから、0.1〜0.3−の範囲内とした。
Si: Si is necessary for deoxidation in the normal steelmaking process, and is also effective for improving strength, and for this purpose it is necessary to
, 11 or more is required, but if it exceeds 0.3%, the toughness decreases, so it was set within the range of 0.1 to 0.3-.

Mn ”、Mnは前述のように焼入れ性を向上させる元
素であって、この発明で対象とする厚肉管において完全
焼入れマルテンサイト組織を得るために重要な元素であ
る。本発明者等の実験によれば、管゛の肉厚中心部まで
完全焼入れ組織とするためには管の肉厚t(n−)に応
じて、0.12 JT (%)以上添加する必要がある
が、過剰に添加されればP。
As mentioned above, Mn is an element that improves hardenability, and is an important element for obtaining a completely hardened martensitic structure in the thick-walled pipe that is the subject of this invention. Experiments conducted by the present inventors According to the above, it is necessary to add 0.12 JT (%) or more depending on the wall thickness t(n-) of the pipe in order to obtain a completely hardened structure up to the center of the wall thickness of the pipe. P if added.

Sなどの偏析、を招き、耐硫化物応力腐食割れ性を逆に
劣化させるから、上限を0.25 v/T(S)とする
必要がある。
The upper limit needs to be set to 0.25 v/T(S) because it causes segregation of S and the like and deteriorates the resistance to sulfide stress corrosion cracking.

Cr:Crは耐食性、強度、焼入れ性、および焼戻し抵
抗を高めるために必要な元素であシ、そのためには本発
明者等の実験によれば管の肉厚t(■)に応じて0.4
 JT (%)以上添加する必要があるが、o、 8 
v’T (%)を越えれば耐硫化物応力腐食割れ性およ
び靭性を低下させるから、o、4v/T〜o、 s v
’T (チ)の範囲内とした。
Cr: Cr is an element necessary to improve corrosion resistance, strength, hardenability, and tempering resistance. According to experiments conducted by the present inventors, Cr is an element required to increase corrosion resistance, strength, hardenability, and tempering resistance. 4
It is necessary to add JT (%) or more, but o, 8
If it exceeds v'T (%), the sulfide stress corrosion cracking resistance and toughness will decrease, so o, 4v/T ~ o, s v
'T was within the range.

Mo : Moは耐食性、強度、焼戻し抵抗性を高め、
かつPの粒界偏析を防止して耐硫化物応力腐食割れ性を
向上させるためにこの発明において不可欠の元素である
が、特にCrと同時に添加されかつCrとの添加量の比
が適切な場合に、降伏強さ75に9f/−以上の高強度
鋼においても優れた耐硫化物応力腐食割れ性を付与する
ことができる。すなわち、本発明者等の実験によれば、
Cr量に応じて、Cr(%)/Mo(%)の値が1,5
以上、2.5以丁となる場合に上述の効果を最大限に発
揮でき、したがってMoatはその範囲を満足する量と
する必要がある。
Mo: Mo increases corrosion resistance, strength, and tempering resistance,
In addition, it is an essential element in this invention in order to prevent grain boundary segregation of P and improve sulfide stress corrosion cracking resistance, but especially when added at the same time as Cr and in an appropriate amount ratio with Cr. In addition, excellent sulfide stress corrosion cracking resistance can be imparted to high-strength steels with a yield strength of 75 to 9 f/- or more. That is, according to the experiments of the present inventors,
Depending on the amount of Cr, the value of Cr (%)/Mo (%) is 1.5
As mentioned above, the above-mentioned effect can be exhibited to the maximum when the number is 2.5 or more, and therefore, Moat needs to be set to an amount that satisfies this range.

Nb:NbはCr−Mo@!4に添加すれば焼戻し後の
鋼組織において炭化物を微細にして粒内に均一に分散さ
せ、またPを固定して粒界への偏析を防止することによ
って、耐硫化物応力腐食割れ性を向上させるに有効であ
シ、そのためにはO,011以上の添加が有効であるが
、o、tlを越えて添加すれば、靭性を劣化させるとと
もに、連続鋳造によって素材を製造する場合に割れが発
生し易くなるから、0.01〜0.1 %の範囲内に限
定した。
Nb: Nb is Cr-Mo@! When added to 4, it makes the carbides fine in the steel structure after tempering and disperses them uniformly within the grains, and it also fixes P and prevents segregation to the grain boundaries, thereby improving the resistance to sulfide stress corrosion cracking. For that purpose, it is effective to add more than O,011, but if it is added in excess of O,tl, the toughness will deteriorate and cracks will occur when the material is manufactured by continuous casting. The amount is limited to 0.01 to 0.1% because it makes it easier to clean.

Ti 、 Zr : これらの元素はNとの親和力が強
く、Nを固定して粒界への偏析を防止し、かつ鋼組織を
細粒化することによって、耐硫化物応力腐食割れ性を向
上させる。Ti 、 Zrはいずれか一方を単独で添加
しても、また両者を複合添加しても良いが、それらの合
計量が0.005%未満では上述の効果が得られず、ま
たそれらの合計量が0.1饅を越えれば靭性を劣化させ
るから、合計量で0、005〜0.1チの範囲内とした
Ti, Zr: These elements have a strong affinity for N, and improve sulfide stress corrosion cracking resistance by fixing N and preventing segregation to grain boundaries, and by making the steel structure finer grained. . Either one of Ti and Zr may be added alone or both may be added in combination, but if the total amount thereof is less than 0.005%, the above-mentioned effect cannot be obtained; If it exceeds 0.1 inch, the toughness will deteriorate, so the total amount was set within the range of 0,005 to 0.1 inch.

AJ:Alは通常の製鋼過程で脱酸のために必要でちシ
、またNと化合してTi、Zrと同様な効果をもたらす
が、0.005%未満ではその効果が得られず、また0
、1チを越えれば靭性を損なうから、0.005〜0.
1%の範囲内とする。
AJ: Al is necessary for deoxidation in the normal steelmaking process, and it combines with N to produce the same effect as Ti and Zr, but if it is less than 0.005%, this effect cannot be obtained, and 0
If it exceeds 1 inch, the toughness will be impaired, so it should be 0.005 to 0.
Must be within 1%.

以上のような成分のほか、この発明の製造方法における
素材鋼成分としては、Vo、005〜0,1チ、B 0
.0001〜0.005%の1種または2種が含有され
ていても良い。すなわちVは鋼の強度、焼入性を高める
ために添加することができ、特に管の肉厚が大きい場合
にはVの添加によってこの発明の効果を助長することが
できる。但しVが0、0051未満ではその効果が得ら
れず、一方Vが0.1チを越えれば靭性を劣化させ、か
つ連続鋳造による素材製造時における割れの発生原因と
なるから、■を添加する場合のV量は0.005〜o、
 1 %の範囲内とすることが好ましい。またBも焼入
れ性を向上させる元素であるから、特に管の肉厚が大き
い場合にはBの添加によってこの発明の効果を助長する
ことができる。旦しBが0.0001%未満ではその効
果が小さく、一方Bが0゜005チを越えればその効果
が飽和し、しかも靭性を劣化させることとなるから、B
を添加する場合の範囲は0.0001〜0.005%と
することが好ましい。
In addition to the above-mentioned components, the raw steel components in the manufacturing method of the present invention include Vo, 005 to 0.1 Ch, B 0
.. 0001 to 0.005% of one or two types may be contained. That is, V can be added to improve the strength and hardenability of steel, and especially when the wall thickness of the pipe is large, the effect of the present invention can be enhanced by adding V. However, if V is less than 0.0051, this effect cannot be obtained, while if V exceeds 0.1 inch, it will deteriorate the toughness and cause cracks to occur during the production of the material by continuous casting, so ``■'' is added. In this case, the V amount is 0.005~o,
It is preferably within the range of 1%. Further, since B is also an element that improves hardenability, the effect of the present invention can be enhanced by adding B, especially when the wall thickness of the pipe is large. If B is less than 0.0001%, the effect will be small, but if B exceeds 0.005%, the effect will be saturated and the toughness will deteriorate.
When added, the range is preferably 0.0001 to 0.005%.

この発明の製造方法においては、以上のように規定され
る成分の鋼を素材とし、常法に従って継目無鋼管に熱間
加工する。次いで調質処理としての焼入れ焼戻し処理を
施すのであるが、この際の焼入れ方法としては、管肉厚
中心部まで完全焼入れマルテンサイト組織とするために
、管の内外両面を同時に水冷する内外面同時焼入れ法を
適用する必要がらる。
In the manufacturing method of the present invention, steel having the composition specified above is used as a raw material, and hot worked into a seamless steel pipe according to a conventional method. Next, a quenching and tempering treatment is performed as a refining treatment, and the quenching method used at this time is to water-cool both the interior and exterior surfaces of the tube at the same time in order to achieve a completely quenched martensitic structure up to the center of the tube wall thickness. It is necessary to apply a hardening method.

また焼入れ後の焼戻しは、650℃以上、Act点未満
の温度範囲内で行なう必要がある。焼戻し温度が650
℃未満では優れた耐硫化物応力腐食割れ性を得ることは
できず、またAc1点以上の焼戻し温度では、オーステ
ナイト相が生じ、これ°が常温に冷却した際に焼戻しを
受けないマルテンサイト相となって耐硫化物応力腐食割
れ性を著しく劣化させる。
Further, tempering after quenching must be performed within a temperature range of 650° C. or higher and lower than the Act point. Tempering temperature is 650
If the tempering temperature is lower than ℃, it is not possible to obtain excellent sulfide stress corrosion cracking resistance, and if the tempering temperature is above the Ac1 point, an austenite phase is formed, and this ℃ changes into a martensite phase that does not undergo tempering when cooled to room temperature. This significantly deteriorates the resistance to sulfide stress corrosion cracking.

なおこの発明の製造方法は、管肉厚が9.5 m以上の
継目無鋼管の製造に対して特に有効である。
The manufacturing method of the present invention is particularly effective for manufacturing seamless steel pipes having a wall thickness of 9.5 m or more.

すなわち、9.51111よシ薄肉の鋼管の製造にあた
っては、この発明で規定する如く成分を肉厚に応じて厳
密に調整しなくても肉厚中心部分まで充分に完全焼入れ
マルテンサイト組織を得ることが可能である。
In other words, in manufacturing thin-walled steel pipes such as 9.51111, it is possible to obtain a fully quenched martensitic structure up to the center of the wall thickness without strictly adjusting the components according to the wall thickness as specified in this invention. is possible.

またこの発明の製造方法は、降伏強さもしくは0.6チ
酎力が75〜120 kgf/Mの範囲内にある鋼管を
製造する場合に最も効果的である。すなわち、75kg
f/−より低強度の鋼管を製造する場合には、この発明
で規定する成分範囲外、あるいは650℃未満の焼戻し
温度でも優れた耐応力腐食割れ性を有する鋼管を得るこ
とができ、また1 20 kl?’mdを越える高強度
とした場合には、この発明で規定する成分範囲内の鋼で
も耐硫化物応力腐食割れ性が著しく低丁することがある
からである。
Further, the manufacturing method of the present invention is most effective when manufacturing a steel pipe whose yield strength or 0.6-chip strength is within the range of 75 to 120 kgf/M. That is, 75 kg
When producing a steel pipe with a strength lower than f/-, it is possible to obtain a steel pipe with excellent stress corrosion cracking resistance even outside the composition range specified in this invention or at a tempering temperature of less than 650°C; 20kl? This is because, if the strength exceeds 'md, the sulfide stress corrosion cracking resistance may be significantly reduced even if the steel is within the composition range specified in the present invention.

以下にこの発明の実施例を比較例とともに記す。Examples of the present invention will be described below along with comparative examples.

第1表の試料記号1−15に示す成分の鋼を溶製して丸
ビレットに連続鋳造し、常法にしたがって熱間加工して
第1表中に示す肉厚の継目無角管とした。次いで各鋼管
に対し、9oo℃から焼入れし、さらに焼戻した。その
焼入れ法および焼戻し温度を第1表中に併せて示す。焼
戻し後の鋼・げについて、降伏強さと耐硫化物応力腐食
割れ性を調べ、その結果を第1表中に示した。なお耐硫
化物応力腐食割れ性試験は、丸棒引張型の試験片を用い
てNACE液(0,5%酢酸、5チ食塩添加飽和硫化水
素水)中で降伏強度の75%の応力を負荷して実施した
。耐硫化物応力腐食割れ性評励につぃての第1図中のO
印は、上記の試験で30日間破断しなかったものを示し
、またX印は30日の期間内で破断したものを示す。
Steel with the composition shown in sample code 1-15 in Table 1 was melted, continuously cast into round billets, and hot worked according to conventional methods to form seamless tubes with the wall thickness shown in Table 1. . Next, each steel pipe was quenched from 90°C and further tempered. The quenching method and tempering temperature are also shown in Table 1. The yield strength and sulfide stress corrosion cracking resistance of the steel and ridges after tempering were investigated, and the results are shown in Table 1. In the sulfide stress corrosion cracking resistance test, a stress of 75% of the yield strength was applied in NACE solution (saturated hydrogen sulfide water with 0.5% acetic acid and 5% sodium chloride added) using a round rod tensile test piece. It was carried out. O in Figure 1 regarding sulfide stress corrosion cracking resistance evaluation
The mark indicates that the sample did not break for 30 days in the above test, and the X mark indicates that it broke within the 30-day period.

第1表の試料記号1,5,8,11,12のものはこの
発明の方法による鋼管であシ、いずれも良好な耐硫化物
応力腐食割れ性を示している。
Sample numbers 1, 5, 8, 11, and 12 in Table 1 are steel pipes produced by the method of the present invention, and all exhibit good resistance to sulfide stress corrosion cracking.

一方、記号2,3のものは、いずれも肉厚と成分の関係
はこの発明の範囲を満たしているが、記号2のものは焼
入れ法が、記号3のものは焼戻し温度が、それぞれこの
発明の範囲を外れているため、いずれも耐硫化物応力腐
食割れ性が劣っている。また記号4のものはMn量が、
記号6のものはCr量が、それぞれこの発明において肉
厚から計算して要求される範囲に満たず、一方記号13
゜14のものはそれぞれMn量、Cr量がこの発明にお
いて肉厚から計算して要求される範囲を越えておシ、こ
れらの場゛合にもいずれも耐硫化物応力腐食割れ性が劣
っている。さらに記号7および記号15の鋼管は、Cr
とMoとの量比が、前者は約2.64、後者は約1.4
1とこの発明の範囲の上限を越える値、下限未満の値と
なっているため、耐硫化物応力腐食割れ性が劣っている
。そしてまた記号9.10の鋼管は、Mn 、 Cr 
、 Mo等の主要成分、焼入れ法、焼戻し温度はこの発
明の範囲内にあるが、記号9のものはPが、記号lOO
ものはSが、それぞれこの発明の上限を越えているため
に、耐硫化物応力腐食割れ性が劣っている。
On the other hand, the relationship between the wall thickness and the composition of the items with symbols 2 and 3 satisfies the scope of the present invention, but the quenching method of the item with the symbol 2 and the tempering temperature of the item with the symbol 3 are in accordance with the present invention. Since the values are outside the range, both have poor sulfide stress corrosion cracking resistance. In addition, for the symbol 4, the Mn content is
The Cr content of the item with symbol 6 is below the required range calculated from the wall thickness in this invention, while the item with symbol 13
The Mn content and Cr content of those with ゜14 exceeded the range required by calculating from the wall thickness in this invention, and in these cases, the sulfide stress corrosion cracking resistance was poor. There is. Furthermore, the steel pipes with symbols 7 and 15 are Cr
The quantity ratio between Mo and Mo is approximately 2.64 for the former and approximately 1.4 for the latter.
1, which exceeds the upper limit and below the lower limit of the range of this invention, resulting in poor sulfide stress corrosion cracking resistance. And the steel pipe with symbol 9.10 is Mn, Cr
, Mo, etc., quenching method, and tempering temperature are within the scope of this invention, but in the case of symbol 9, P is replaced by symbol lOO
The S content of these samples exceeds the upper limits of the present invention, and therefore the sulfide stress corrosion cracking resistance is poor.

したがって以上の実施例から、優れた耐硫化物応力腐食
割れ性を得るためには、この発明で規定−する全ての条
件を同時に満足してすなければならないことが明らかで
ある。
Therefore, from the above examples, it is clear that in order to obtain excellent sulfide stress corrosion cracking resistance, all the conditions specified in the present invention must be satisfied at the same time.

以上のようにこの発明の方法によれば、降伏強さもしく
は0.6チ耐力が75〜120 kgf/*dという高
強度を有しかつ肉厚9.5■以上という厚肉の継目無鋼
管を製造するにあたって、耐硫化物応力腐食割れ性が著
しく優れた鋼管を得ることができる。したがってこの発
明の方法は、サワーでしかも深い油井、ガス井に使用さ
れる油井管やラインパイプ、あるい紘硫化物雰囲気に曝
される化学装置用配管等の製造に好適に適用し得るもの
である。
As described above, according to the method of the present invention, a seamless steel pipe with a high yield strength or 0.6 inch proof stress of 75 to 120 kgf/*d and a thick wall thickness of 9.5 mm or more can be produced. In manufacturing the steel pipe, it is possible to obtain a steel pipe with extremely excellent resistance to sulfide stress corrosion cracking. Therefore, the method of the present invention can be suitably applied to manufacturing oil country tubular goods and line pipes used in sour and deep oil and gas wells, and piping for chemical equipment exposed to a hydrosulfide atmosphere. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼管の肉厚と、鋼管を900℃から水焼入れし
て管肉厚中心部を300℃以Fとする迄に要する冷却所
要時間との関係を示す相関図、第2図は0.25 % 
C−3% Cr −1,5S Mo鋼に対し種々の量の
Mnを添加した鋼片について、900℃から300℃ま
で冷却するに要する時間と鋼片の硬さとの関係を示す相
関図である。 出願人 川崎製鉄株式会社 代理人 弁理士豊田武人 (ほか1名) 管の自屓 (mm) 2今鯉吋聞 (抄)
Figure 1 is a correlation diagram showing the relationship between the wall thickness of a steel pipe and the cooling time required to water-quench the steel pipe from 900°C to bring the center of the pipe thickness to 300°C or higher. .25%
FIG. 2 is a correlation diagram showing the relationship between the time required for cooling from 900°C to 300°C and the hardness of steel slabs with various amounts of Mn added to C-3% Cr-1,5S Mo steel. . Applicant Kawasaki Steel Co., Ltd. Agent Patent attorney Takehito Toyota (and 1 other person) Pipe diameter (mm) 2 Ima Koi Ikun (excerpt)

Claims (1)

【特許請求の範囲】 C0,15〜0.50チ(重量%、以下同じ)、Si0
.1〜0.3チ、AJIo、 005〜0.1%、Nb
O,01〜0.1%、Zrおよび/またはTiの合計量
0.005〜0.1%、P 0.005 %以下、80
.005−以下を含有し、かつMn 、 Crをそれぞ
れ製品の鋼管の肉厚t(■)に応じて 0.12v’T≦Mn (%′)≦0.25J″v0、
4−、/T≦Cr (%)≦0.8JTの範囲内で含有
し、さらにMoをCr量に応じてを満足する範囲内で含
有する鋼を素材とし、その鋼素材に熱間加工を施して継
目無鋼管とした後、管内外面同時焼入れ法によって焼入
れし、次iで650℃以上、Ac4点未満の温度範囲内
で焼戻すことを特徴とする厚肉高強度継目無鋼管の製造
方法。
[Claims] C0.15 to 0.50 inches (weight%, same hereinafter), Si0
.. 1~0.3chi, AJIo, 005~0.1%, Nb
O, 01-0.1%, total amount of Zr and/or Ti 0.005-0.1%, P 0.005% or less, 80
.. 005- or less, and Mn and Cr are respectively 0.12v'T≦Mn (%')≦0.25J''v0, depending on the wall thickness t (■) of the product steel pipe.
4-, The steel material is made of steel containing within the range of /T≦Cr (%)≦0.8JT and further containing Mo within the range that satisfies the amount of Cr, and the steel material is subjected to hot working. A method for producing a thick-walled high-strength seamless steel pipe, which is characterized by subjecting the pipe to a seamless steel pipe, then quenching the inner and outer surfaces of the pipe by a simultaneous quenching method, and then tempering the pipe in a temperature range of 650°C or higher and less than 4 points of Ac. .
JP2928284A 1984-02-18 1984-02-18 Manufacture of thick-walled seamless steel pipe of high strength Pending JPS60174822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2928284A JPS60174822A (en) 1984-02-18 1984-02-18 Manufacture of thick-walled seamless steel pipe of high strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2928284A JPS60174822A (en) 1984-02-18 1984-02-18 Manufacture of thick-walled seamless steel pipe of high strength

Publications (1)

Publication Number Publication Date
JPS60174822A true JPS60174822A (en) 1985-09-09

Family

ID=12271901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2928284A Pending JPS60174822A (en) 1984-02-18 1984-02-18 Manufacture of thick-walled seamless steel pipe of high strength

Country Status (1)

Country Link
JP (1) JPS60174822A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470670B1 (en) * 2000-10-04 2005-03-07 주식회사 포스코 Method for Manufacturing Steel Plate for Pressure Vessel with Superior Workability and High Tensile Strength and Method for Manufacturing Pressure Vessel with High Tensile Strength Using the Steel Plate
ITMI20110179A1 (en) * 2011-02-07 2012-08-08 Dalmine Spa STEEL PIPES WITH THICK WALLS WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER TENSIONING FROM SULFUR
ITMI20110180A1 (en) * 2011-02-07 2012-08-08 Dalmine Spa HIGH RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE OF SULFUR
CN103205647A (en) * 2013-04-24 2013-07-17 内蒙古包钢钢联股份有限公司 RE (rare earth)-containing moisture and H2S corrosion resistant L415QSS pipeline seamless steel pipe and production method thereof
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470670B1 (en) * 2000-10-04 2005-03-07 주식회사 포스코 Method for Manufacturing Steel Plate for Pressure Vessel with Superior Workability and High Tensile Strength and Method for Manufacturing Pressure Vessel with High Tensile Strength Using the Steel Plate
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
ITMI20110179A1 (en) * 2011-02-07 2012-08-08 Dalmine Spa STEEL PIPES WITH THICK WALLS WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER TENSIONING FROM SULFUR
ITMI20110180A1 (en) * 2011-02-07 2012-08-08 Dalmine Spa HIGH RESISTANCE STEEL TUBES WITH EXCELLENT LOW TEMPERATURE HARDNESS AND RESISTANCE TO CORROSION UNDER VOLTAGE OF SULFUR
EP2484784A1 (en) * 2011-02-07 2012-08-08 DALMINE S.p.A. Heavy wall steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
EP2492361A3 (en) * 2011-02-07 2012-12-12 DALMINE S.p.A. High strength steel pipe with excellent toughness at low temperature and good sulfide stress corrosion cracking resistance
AU2012200698B2 (en) * 2011-02-07 2016-12-15 Dalmine S.P.A. Heavy wall steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US10378075B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378074B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
CN103205647A (en) * 2013-04-24 2013-07-17 内蒙古包钢钢联股份有限公司 RE (rare earth)-containing moisture and H2S corrosion resistant L415QSS pipeline seamless steel pipe and production method thereof
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing

Similar Documents

Publication Publication Date Title
NO343350B1 (en) Seamless steel tube for oil wells with excellent resistance to sulphide stress cracking and method for producing seamless steel tubes for oil wells
RU2763722C1 (en) SULPHUR-RESISTANT PIPE FOR A PETROLEUM BOREHOLE ATTRIBUTED TO THE KILOPOUND/INCH2 (862 MPa) STEEL STRENGTH CLASS, AND METHOD FOR MANUFACTURE THEREOF
JPS6354765B2 (en)
JPH0967624A (en) Production of high strength oil well steel pipe excellent in sscc resistance
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JPH05287381A (en) Manufacture of high strength corrosion resistant steel pipe
JP2023526739A (en) High-strength high-temperature corrosion-resistant martensitic stainless steel and method for producing the same
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPS60174822A (en) Manufacture of thick-walled seamless steel pipe of high strength
US5858128A (en) High chromium martensitic steel pipe having excellent pitting resistance and method of manufacturing
JPH02243740A (en) Martensitic stainless steel material for oil well and its manufacture
JP4289109B2 (en) High strength stainless steel pipe for oil well with excellent corrosion resistance
JPH0348261B2 (en)
JPH09118919A (en) Manufacture of steel product excellent in seawater corrosion resistance
JPH06100935A (en) Production of martensitic stainless steel type seamless steel pipe excellent in toughness and stress corrosion cracking resistance
JP2705416B2 (en) Martensitic stainless steel and manufacturing method
JPS58224116A (en) Production of seamless steel pipe having excellent resistance to sulfide stress corrosion cracking
JPH0741855A (en) Production of low yield radio and high toughness seamless steel pipe showing metallic structure essentially consisting of fine-grained ferrite
JPS61163215A (en) Manufacture of extremely thick and high strength seamless steel pipe superior in sour resistance
JPS5974221A (en) Production of high strength seamless steel pipe
BR112020020524A2 (en) STEEL RESISTANT TO SULPHIDE TENSION CRACKING, TUBULAR PRODUCT MADE FROM THAT STEEL, PROCESS TO MANUFACTURE A TUBULAR PRODUCT AND USE THE SAME
JPS61147812A (en) Production of high strength steel superior in delayed breaking characteristic
JPS6017022B2 (en) High-strength oil country tubular steel with excellent sulfide stress corrosion cracking resistance
JPS6046318A (en) Preparation of steel excellent in sulfide cracking resistance
JPS6210240A (en) Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength