JPS63230847A - Low-alloy steel for oil well pipe excellent in corrosion resistance - Google Patents

Low-alloy steel for oil well pipe excellent in corrosion resistance

Info

Publication number
JPS63230847A
JPS63230847A JP6702387A JP6702387A JPS63230847A JP S63230847 A JPS63230847 A JP S63230847A JP 6702387 A JP6702387 A JP 6702387A JP 6702387 A JP6702387 A JP 6702387A JP S63230847 A JPS63230847 A JP S63230847A
Authority
JP
Japan
Prior art keywords
corrosion resistance
steel
alloy steel
strength
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6702387A
Other languages
Japanese (ja)
Inventor
Yasutaka Okada
康孝 岡田
Akio Ikeda
昭夫 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6702387A priority Critical patent/JPS63230847A/en
Publication of JPS63230847A publication Critical patent/JPS63230847A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PURPOSE:To develop a low-alloy steel excellent in strength and corrosion resistance, by minimizing the precipitation of AlN by reducing respective contents of N and Al in a low-alloy steel for oil well pipe to traces. CONSTITUTION:A steel tube for use in oil fields and gas fields, such as oil well pipe, oil transport pipe, etc., is manufactured by using a low-alloy steel stock which has a composition containing, by weight, 0.15-0.45% C, 0.10-1.0% Si, 0.3-1.8% Mn, <0.010% sol. Al, <0.0020% N, and <0.0050% AlN or further containing one or more kinds among 0.05-2.00% Cr, 0.02-0.80% Mo, 0.005-0.20% Nb, 0.005-0.20% V, and 0.0001-0.0030% B. By the above composition, the quantity of the fine precipitates of AlN is minimized, and the low-alloy steel as an oil well pipe stock excellent in resistance to sulfide stress corrosion cracking in a high-strength region can be manufactured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、耐食性、特に耐硫化物応力腐食割れ性(以
下“耐5scc性”と略称する)に一段と優れた油井用
高強度低合金鋼に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention provides a high-strength, low-alloy steel for oil wells that has superior corrosion resistance, particularly sulfide stress corrosion cracking resistance (hereinafter abbreviated as "5 SCC resistance"). It is related to.

く背景技術〉 近年、将来的なエネルギー不安等をも踏まえて、油田や
ガス田開発の手は地層深くの、しかも腐食性物質(Hz
 S等)に汚染された資源にまで及ぶようになっている
。そのため、これらに使用される油井管や油送管には、
深井戸化傾向や輸送圧増加指向に対処すべく「薄肉化に
よる単重減少」の要求が一層強くなり、従ってより高い
強度レベルまで優れた靭性や耐5scc性を示す鋼材(
油井管用鋼)が望まれていた。
Background technology In recent years, in light of future energy concerns, oil and gas field development efforts have been focused on the development of deep underground and corrosive substances (Hz).
This has even spread to resources contaminated with S.S., etc.). Therefore, the oil country tubular goods and oil transmission pipes used for these are
In order to cope with the trend toward deeper wells and increased transport pressure, the demand for "reducing unit weight through thinner walls" has become even stronger.
steel for oil country tubular goods) was desired.

ところが、一般に鋼材は強度の上昇と共に耐食性が低下
する傾向にあり、このため耐食性が重視される油井管用
鋼としては強度上の制限を受けざるを得ず、従来、0.
2%耐力で90ksi(63kgf/amり級の鋼材が
実用材の最高強度のものであった。
However, as steel materials generally increase in strength, their corrosion resistance tends to decrease, and for this reason, steel for oil country tubular goods, where corrosion resistance is important, has no choice but to be subject to strength limitations.
A steel material with a 2% yield strength of 90 ksi (63 kgf/am) had the highest strength for practical use.

つまり、従来の耐食性油井管用鋼では、炭化物の均一分
散が耐食性(耐5scc性)向上の重要因子であるとの
観点から“焼入れ性の改善”に重点が置かれ、し、かも
靭性向上の点も加味して“ ^lキルド鋼をベースとし
これに焼入れ・焼戻しを施す”ことが基本とされており
、従って0.2z耐力はどうしても90 ksi(63
kgf/nvり級までに限定されることとなったのであ
る。
In other words, in conventional steels for corrosion-resistant oil country tubular goods, emphasis has been placed on "improving hardenability" from the viewpoint that uniform dispersion of carbides is an important factor in improving corrosion resistance (5scc resistance), and also on improving toughness. In addition, the basic method is to use killed steel as a base and then quench and temper it, so the 0.2z yield strength is inevitably 90 ksi (63 ksi).
It was decided that it would be limited to up to kgf/nvr class.

ところで、綱の耐食性を評価する方法としては様々な手
法が開発されており、例えば「厚さ1.7酊の試験片の
中央部2点に設けた0、70mφの孔の位置に各種の曲
げ応力を付加し、試験環境下(室温、0.5χCH3C
OOH、1気圧H,S)で200〜500時間の試験を
行って割れ限界を求める方法であって、割れ限界をSc
値(耐食性指数)として耐5scc性を評価する方法〔
シェル試験〕」が良く知られているが、その他のNAC
E試験〔定荷重法〕や5SRT試験〔低歪速度引張り試
験〕も傾向は同じである。ここで、Sc値を基にして強
度と耐5scc性との関係に言及すると、材料強度の上
昇と共に5scc感受性は高くなり、同程度の耐5sc
c性を保とうとするとより高い品質、高いSc値が必要
となる。
By the way, various methods have been developed to evaluate the corrosion resistance of steel. Stress was applied under the test environment (room temperature, 0.5χCH3C
This is a method to determine the cracking limit by performing a test for 200 to 500 hours at 1 atm (H, S).
Method for evaluating 5scc resistance as a value (corrosion resistance index) [
shell test] is well known, but other NAC
The tendency is the same for the E test [constant load method] and the 5SRT test [low strain rate tensile test]. Here, referring to the relationship between strength and 5scc resistance based on the Sc value, the 5scc sensitivity increases as the material strength increases, and the same level of 5scc resistance increases.
In order to maintain C properties, higher quality and higher Sc value are required.

第1図は耐食性油井管の0.2X耐力と要求されるSc
値との関係を示したものであるが(各々の強度グレード
には図中の斜線で示した強度と耐食性とが要求される)
、強度レベルが90ksi級のものではSc値が12以
上あれば耐食性油井管用鋼として満足できたのに対して
、100ksi(最小要求耐カニ 70kgf/s+I
+”)級になるとSc値13.3以上と高強度化に係わ
らず耐食性もより高いものを要求されることが分かる。
Figure 1 shows the required 0.2X proof stress and Sc of corrosion-resistant oil country tubular goods.
(Each strength grade requires strength and corrosion resistance indicated by diagonal lines in the figure)
, a steel with a strength level of 90ksi class could be satisfied as a corrosion-resistant oil country tubular steel if the Sc value was 12 or more, whereas 100ksi (minimum required crab resistance 70kgf/s+I
It can be seen that when the steel is in the +") grade, a Sc value of 13.3 or more is required, which means that even though the steel is high in strength, it is also required to have higher corrosion resistance.

この要求は非常に厳しいものであり、強度レベルが高く
なると、経済性をも考慮した実用材として該要求を十分
に満たすものは未だ見当たらないのが現状であった。
This requirement is extremely strict, and as the strength level increases, it has not yet been found that a practical material that satisfactorily satisfies this requirement in consideration of economic efficiency.

〈問題点を解決する手段〉 本発明者等は、上述のような問題点を踏まえた上で、よ
り一層耐食性に優れた油井管用鋼材を提供することによ
って一段と高い強度レベルにまで油井用鋼材の実用化範
囲を拡大し、過酷な条件への適用指向が強くなってきた
油井管や油送管の性能を更に改善すべく、耐食性と鋼中
微細析出物の関連性等にも着目した種々の観点からの研
究を重ねた結果、「油井管用鋼の耐食性には微細なA/
N析出物も重大な影響を及ぼす因子となっており、その
耐食性を改善するためには、従来のように炭化物(主と
してセメンタイト)の均一分散を図るだけでは十分でな
く、“AINの微細析出物を減少させること”が高強度
域で耐5scc性改善に欠かせない条件となっている」
との事実を見出すに至ったのである。
<Means for Solving the Problems> In view of the above-mentioned problems, the present inventors have improved the strength of oil well tubular steel materials to an even higher level by providing steel materials for oil country tubular goods with even better corrosion resistance. In order to expand the scope of practical application and further improve the performance of oil country tubular goods and oil transmission pipes, which are increasingly being applied to harsh conditions, we are developing various technologies that also focus on the relationship between corrosion resistance and fine precipitates in steel. As a result of repeated research from this perspective, we found that ``fine A/
N precipitates are also a significant factor, and in order to improve corrosion resistance, it is not enough to uniformly disperse carbides (mainly cementite) as in the past; "Reducing the 5scc resistance is an essential condition for improving 5scc resistance in the high strength range."
We have come to discover this fact.

この発明は、上記知見に基づく更なる研究によって得ら
れた「N含有量及び5oil、AIIJを特定値以下に
制限すると共に鋼の他の構成成分の調整をも行うことに
より、鋼中の微細AIN析出物を十分に少なくすること
ができ、通常の調質処理によって高い強度と優れた耐5
scc性とを兼ね備えた鋼材を安定して実現することが
可能になる」との知見事項をも加えて完成されたもので
あり、油井管用鋼を、 C:0.15〜0.45%(以降、成分割合を表わす%
は重量%とする)、 Si : 0.10〜1.0%、  Mn : 0.3
〜1.8%。
This invention has been achieved through further research based on the above knowledge. The amount of precipitates can be sufficiently reduced, and through normal heat treatment, high strength and excellent durability can be achieved.
It was completed by adding the knowledge that "it will be possible to stably produce steel materials that have both SCC properties". Hereinafter, % represents the ingredient ratio
is weight%), Si: 0.10 to 1.0%, Mn: 0.3
~1.8%.

so 1 、A j! : 0.010%以下、 N 
: 0.0020%以下。
so 1, A j! : 0.010% or less, N
: 0.0020% or less.

八/ N : 0.0050%以下 とするか、或いは更に Cr  :  0.05〜2.00 %、    Mo
  s  Q、02〜0.80 %。
8/N: 0.0050% or less, or further Cr: 0.05-2.00%, Mo
sQ, 02-0.80%.

Nb : 0.005〜0.20%、   V : 0
.005〜0.20%。
Nb: 0.005-0.20%, V: 0
.. 005-0.20%.

B : 0.0001〜0.0030%のうちの1種以
上を含有させ、 Fe及びその他の不可避的不純物:残りから成る成分組
成に構成することにより、優れた耐食性と高強度とを兼
備し得るようにした点、に特徴を有するものである。
B: By containing one or more of 0.0001 to 0.0030%, and configuring the composition to consist of Fe and other unavoidable impurities: the remainder, it is possible to have both excellent corrosion resistance and high strength. It is characterized by the following points.

次いで、この発明において鋼の成分割合を前記の如くに
数値限定した理由を説明する。
Next, the reason why the component ratio of steel is numerically limited as described above in this invention will be explained.

(al  C Cは、耐食性改善する鋼の高温焼戻しにおいて強度・靭
性を確保するために重要な成分であり、63 kgf/
mm”以上の0.2%耐力を得るにはどうしても0.1
5%以上含有せしめることが必要である。
(al C C is an important component to ensure strength and toughness during high-temperature tempering of steel to improve corrosion resistance, and 63 kgf/
In order to obtain 0.2% yield strength of 0.1 mm” or more, 0.1
It is necessary to contain 5% or more.

しかしながら、0.45%を超えて含有させると焼入れ
の際に焼割れが発生し易くなることから、C含有量は0
.15〜0.45%と定めた。
However, if the C content exceeds 0.45%, quench cracking is likely to occur during quenching, so the C content should be reduced to 0.
.. It was set at 15% to 0.45%.

Cbl   5i Siは鋼の耐食性には格別な影響を与えるものではない
が、AINを抑制して耐5scc性を改善するにはAI
添加を抑える必要があり、従って脱酸の意味からも欠か
せない成分である。そして、その含有量が0.10%未
満では十分な脱酸効果を期待することが出来ず、一方、
1.0%を超えて含有させると焼入れ後の旧オーステナ
イト粒が粗大になり靭性低下を招くことから、St含有
量は0.10〜1.0%と定めた。
Cbl 5i Si does not have a particular effect on the corrosion resistance of steel, but AI is used to suppress AIN and improve 5scc resistance.
It is necessary to suppress its addition, and therefore it is an indispensable component from the standpoint of deoxidizing. If the content is less than 0.10%, a sufficient deoxidizing effect cannot be expected;
If the St content exceeds 1.0%, the prior austenite grains after quenching will become coarse, leading to a decrease in toughness, so the St content was set at 0.10 to 1.0%.

(c)  Mn Mn成分には、鋼の焼入れ性を向上させ、焼戻し後のセ
メンタイトを均一に分散させることによって靭性を改善
させる作用があるが、その含[1が0.3%未満では焼
入れ性が不足して耐食性及び靭性が十分とはならず、一
方、1.8%を超えて含有させてもその効果が飽和して
しまうばかりか、ミクロ偏析を大きくして耐食性の劣化
を招く恐れがあることから、Mn含有量は0.3〜1.
8と定めた。
(c) Mn The Mn component has the effect of improving the hardenability of steel and improving toughness by uniformly dispersing cementite after tempering, but if the content [1] is less than 0.3%, the hardenability On the other hand, if the content exceeds 1.8%, the effect not only becomes saturated, but also increases micro-segregation, which may lead to deterioration of corrosion resistance. Therefore, the Mn content is between 0.3 and 1.
8.

(d)soiAA、N、及びAIN 従来の耐食性鋼管は、十分な焼入れ性を確保し、その後
の焼戻しで炭化物(主にセメンタイト)を均一に分散さ
せて耐食性を向上させていたものであり、細粒化もこれ
に寄与していた。しかしながら、先にも説明したように
、「更なる耐食性改善にはセメンタイトよりも一段と微
細な析出物(AIN)が重要な鍵を握っている」ことが
本発明者等の研究によって明らかとなったのである。
(d) soiAA, N, and AIN Conventional corrosion-resistant steel pipes have improved corrosion resistance by ensuring sufficient hardenability and then uniformly dispersing carbides (mainly cementite) through subsequent tempering. Granulation also contributed to this. However, as explained earlier, research by the present inventors has revealed that ``precipitates (AIN), which are even finer than cementite, hold the key to further improving corrosion resistance.'' It is.

つまり、耐5scc性の改善には鋼中のAl1N量を極
力抑える必要があり、その含有量が0.0050%(5
0ppm)を超えると所望の耐5scc性を確保するこ
とか出来なくなる。従って、AlN量は0.0050%
以下と定めた。
In other words, to improve the 5scc resistance, it is necessary to suppress the amount of Al1N in the steel as much as possible, and the content is 0.0050% (5scc).
If it exceeds 0ppm), it will not be possible to secure the desired 5scc resistance. Therefore, the amount of AlN is 0.0050%
It was determined as follows.

第2図は、Fe−0,25〜0.29%C−0,16〜
0.21%St −1,39〜1.46%Mn −0,
005〜0.060%soj、Al−0.0008〜0
.0084%Nなる組成の鋼についてAlN量とSc値
との関係を示したグラフであるが、この第2図からも、
AlN量を0.0050%以下に抑制することによって
耐5scc性の指標となるSc値を十分に高く向上でき
ることが明らかである。
Figure 2 shows Fe-0,25~0.29%C-0,16~
0.21%St-1,39~1.46%Mn-0,
005~0.060% soj, Al-0.0008~0
.. This is a graph showing the relationship between the amount of AlN and the Sc value for steel with a composition of 0084%N, and from this figure 2,
It is clear that by suppressing the amount of AlN to 0.0050% or less, the Sc value, which is an index of 5scc resistance, can be sufficiently increased.

そして、ANNilを0.0050%以下とするために
はAANを構成する八2及びNの含有量を特定値以下に
抑える必要があり、そのためsol、Al含有量をo、
oio%以下と、またN含有量を0.0020%以下と
それぞれ定めた。
In order to make ANNil 0.0050% or less, it is necessary to suppress the content of 82 and N that constitute AAN to below a specific value, so the sol, Al content should be reduced to o,
oio% or less, and the N content was determined to be 0.0020% or less.

なお、AlN量の抑制は、鋼塊凝固後の冷却途中で生じ
る割れや、製管した際の鋼管表面の欠陥防止にも有効で
ある。
Note that suppressing the amount of AlN is also effective in preventing cracks that occur during cooling of the steel ingot after it solidifies, and defects on the surface of the steel pipe during pipe production.

(e)  Cr、 Mo、 Nb、  V、及びBこれ
らの成分は鋼の強度及び靭性を改善する成分であるので
、更なる強度と靭性の改善を必要とする場合に1種また
は2種以上含有量せしめられるものであるが、以下、個
々の成分毎に含有量限定の理由を詳述する。
(e) Cr, Mo, Nb, V, and B These components are components that improve the strength and toughness of steel, so if further improvement in strength and toughness is required, one or more of these components may be included. However, the reason for limiting the content of each component will be explained in detail below.

i ) Cr、 M。i) Cr, M.

Cr及びMoは焼入れ性改善に極めて有効な成分であり
、しかもMnの場合のようにミクロ偏析を生じさせない
ために耐食性向上にも有効である。
Cr and Mo are extremely effective components for improving hardenability, and are also effective for improving corrosion resistance because they do not cause micro-segregation as in the case of Mn.

しかし、その含有量がCrの場合には0.05%を、そ
してMoの場合には0.02%をそれぞれ下回ると前記
効果が得られず、一方、Crの場合には2.0θ%を、
Moの場合には0.80%をそれぞれ上回ると焼入れ性
は更に向上するが靭性の低下を招くことから、Cr含有
量は0.05〜2.00%と、MoC含有量0.02〜
0.80%とそれぞれ定めた。
However, if the content is less than 0.05% in the case of Cr and 0.02% in the case of Mo, the above effect cannot be obtained. ,
In the case of Mo, if it exceeds 0.80%, the hardenability will further improve, but the toughness will decrease, so the Cr content is 0.05 to 2.00%, and the MoC content is 0.02 to
Each was set at 0.80%.

1i)Nb Nbは、特に細粒化によって靭性向上及び降伏比の向上
に寄与する成分であるが、その含有量が0.005%未
満では上記効果が得られず、一方、0.20%超えて含
有させても該効果が飽和してしまうばかりか、逆に靭性
の低下を招くことから、Nb含有看は0.005〜0.
20%と定めた。
1i) Nb Nb is a component that contributes to improving toughness and yield ratio especially through grain refinement, but if its content is less than 0.005%, the above effects cannot be obtained; on the other hand, if its content exceeds 0.20% Even if Nb is contained, the effect not only becomes saturated, but also causes a decrease in toughness.
It was set at 20%.

1ii)V ■は高温焼戻し時の強度上昇に有効な成分であるが、そ
の含有量が0.005%未満では上記効果が得られず、
一方、0.20%を超えて含有させると靭性が低下する
ことから、■含有量は0.005〜0.20%と定めた
1ii) V (2) is an effective component for increasing strength during high-temperature tempering, but if its content is less than 0.005%, the above effect cannot be obtained,
On the other hand, if the content exceeds 0.20%, the toughness decreases, so the content (2) was determined to be 0.005 to 0.20%.

1v)B Bは焼入れ性改善に有効な元素であるが、その含有量が
0.0001%未満では上記効果が十分ではなく、一方
、0.0030%を超えて含有させると焼戻し後の靭性
低下を招くことから、B含有量は0.0001〜0.0
030%と定めた。
1v) B B is an effective element for improving hardenability, but if its content is less than 0.0001%, the above effect is not sufficient, while if it is contained in more than 0.0030%, toughness decreases after tempering. The B content is 0.0001 to 0.0.
It was set at 0.030%.

この発明の油井管用低合金鋼は上述のような成分組成に
構成されるものであるが、その他の不可避的不純物元素
であるP、S、O,Ni及びCuについても、それぞれ
P : 0.025%以下、 S : 0.005%以
下、 O: 0.002%以下、 Cu : 0.05
%以下に抑えることが望ましい。なぜなら、P及びSの
抑制は主として靭性低下防止効果やミクロ偏析防止によ
る耐食性向上効果につながり、0の低減は靭性低下防止
効果に、そしてNiとCuの抑制は孔食等の耐食性劣化
防止効果をもたらすからである。
The low-alloy steel for oil country tubular goods of the present invention has the above-mentioned composition, but the other unavoidable impurity elements P, S, O, Ni, and Cu each have P: 0.025. % or less, S: 0.005% or less, O: 0.002% or less, Cu: 0.05
It is desirable to keep it below %. This is because the suppression of P and S mainly leads to the effect of preventing a decrease in toughness and the effect of improving corrosion resistance by preventing micro-segregation, the reduction of 0 leads to the effect of preventing a decrease in toughness, and the suppression of Ni and Cu leads to the effect of preventing deterioration of corrosion resistance such as pitting corrosion. Because it brings.

なお、この発明の鋼に必要とされる強度、靭性並びに耐
食性を付与するためには、通常熱処理が施される。
Note that in order to impart the required strength, toughness, and corrosion resistance to the steel of this invention, heat treatment is usually performed.

この熱処理としては、通常焼入れ・焼戻しの所謂“調質
”が行われる。即ち、880〜940℃で5分〜2時間
保持した後水冷し、更に要求強度に応じて600〜72
0℃で10分〜2時間保持した後空冷する焼戻しが行わ
れるが、この場合、旧オーステナイト粒の微細化を行っ
て耐食性及び靭性を向上させるため、焼入れを900〜
980℃に5分〜2時間保持後水冷し、880〜940
℃に5分〜2時間保持後水冷″の2回処理とすることも
好ましい。勿論、従来の鋼にこのような処理を施しても
この発明に係る鋼のような高い耐食性は得られないこと
は言うまでもない。なぜなら、細粒化による耐食性向上
には限界があり、成分の改良が必須だからである。
As this heat treatment, so-called "refining" of quenching and tempering is usually performed. That is, it is held at 880 to 940°C for 5 minutes to 2 hours, then cooled with water, and further heated to 600 to 72°C depending on the required strength.
Tempering is carried out by holding the temperature at 0°C for 10 minutes to 2 hours and then cooling it in air.
After holding at 980°C for 5 minutes to 2 hours, cooled with water and heated to 880-940°C.
It is also preferable to carry out a two-time treatment of ``holding at ℃ for 5 minutes to 2 hours followed by water cooling''.Of course, even if conventional steel is subjected to such treatment, it will not be possible to obtain the high corrosion resistance as the steel according to the present invention. Needless to say, this is because there is a limit to improving corrosion resistance through grain refinement, and it is essential to improve the ingredients.

上記熱処理の場合、焼入れ温度が前記した下限値を下回
るとオーステナイト化が不十分で、かつ炭化物(主にセ
メンタイト)も十分に固溶せずに所望の焼入れ効果を確
保することができない。一方、焼入れ温度が前記した上
限値を超えると結晶粒の粗大化が生じるので好ましくな
い。そして、2回の焼入れの場合に1回目の焼入れ温度
を高くするのは、焼入れ前の履歴によっては炭化物が固
溶しにくい場合があり、これを防止するためである。
In the case of the above heat treatment, if the quenching temperature is below the lower limit value described above, austenitization will be insufficient and carbides (mainly cementite) will not be sufficiently dissolved, making it impossible to secure the desired quenching effect. On the other hand, if the quenching temperature exceeds the above-mentioned upper limit, coarsening of crystal grains will occur, which is not preferable. The reason why the temperature of the first quenching is made higher in the case of quenching twice is to prevent carbides from forming a solid solution in some cases depending on the history before quenching.

また、熱処理の際の保持時間が前記下限値よりも短いと
肉厚中心部まで焼入れに必要な最低温度を確保すること
ができず、一方、前記した上限値よりも長く保持すると
結晶粒の粗大化が起きるので好ましくない。
In addition, if the holding time during heat treatment is shorter than the above lower limit, it will not be possible to secure the minimum temperature necessary for hardening to the center of the wall thickness, while on the other hand, if the holding time is longer than the above upper limit, the crystal grains will become coarse. This is not desirable because it causes oxidation.

次に、この発明を実施例により従来例と対比しながら説
明する。
Next, the present invention will be explained using examples while comparing it with a conventional example.

〈実施例〉 まず、常法により第1表に示される如き成分組成の鋼を
溶製し、熱間圧延によって厚さ:15日の板材を製造し
た。
<Example> First, steel having the composition shown in Table 1 was melted by a conventional method, and a plate material having a thickness of 15 days was produced by hot rolling.

続いて、この板材に第2表に示される条件の熱処理を施
し、これから引張り試験片(圧延方向)、シャルピー衝
撃試験片(圧延方向に直角:■ノツチでフルサイズ)及
びシェル試験片(圧延方向に直角、板厚中央)を採取し
た。そして、採取した試験片によって引張り特性、シャ
ルピー試験破面遷移温度(vTrs)  並びにSc値
を測定し、その結果を第2表に併せて示した。
Next, this plate material was subjected to heat treatment under the conditions shown in Table 2, and was then subjected to tensile test pieces (in the rolling direction), Charpy impact test pieces (perpendicular to the rolling direction: full size with ■ notches), and shell test pieces (in the rolling direction). At right angles to the center of the plate thickness). Then, the tensile properties, Charpy test fracture surface transition temperature (vTrs), and Sc value were measured using the sampled test pieces, and the results are also shown in Table 2.

第2表に示される結果からも明らかな如く、本発明に係
る鋼は600℃以上の焼戻しで60kgf/n+m”以
上の0.2%耐力と −30℃以下のvTrsと言う高
強度・高靭性を示すのに対して、従来鋼では0.2%耐
力が低いか或いはvTrsが一30℃を超えてしまうこ
とが分かる。
As is clear from the results shown in Table 2, the steel according to the present invention has high strength and toughness, with a 0.2% yield strength of 60 kgf/n+m" or more and vTrs of -30°C or less when tempered at 600°C or higher. In contrast, it can be seen that the 0.2% proof stress of conventional steel is low or vTrs exceeds 130°C.

なお、D@相当の成分組成からなる実際の鋼管について
の調査によっても、所望の強度、靭性並びに耐食性(シ
ェル試験及びNACE試験による)を満足することを確
認した。
Furthermore, by investigating actual steel pipes having a composition equivalent to D@, it was confirmed that the desired strength, toughness, and corrosion resistance (based on shell test and NACE test) were satisfied.

また、第3図は第2表に示したSc値を強度との関係で
グラフ化した図面であるが、この第3図からも、本発明
にかかる鋼は従来鋼より明らかに高いSc値を有し、耐
5scc性に優れていることが分かる。更に、成分組成
や焼戻し条件によって0.2%耐力が70〜80.5k
gf/nun2であるものは全てSc値が14.5以上
あり、100ksi級の耐食性を満足していることも明
瞭である。一方、従来鋼の場合をみると、従来鋼には9
0ksi級を満足するものはあるが 100ksi級を
満足するものはないことが確認できる。
Furthermore, Fig. 3 is a graph showing the Sc values shown in Table 2 in relation to strength, and from this Fig. 3, the steel according to the present invention clearly has a higher Sc value than the conventional steel. It can be seen that it has excellent 5scc resistance. Furthermore, depending on the composition and tempering conditions, the 0.2% proof stress is 70 to 80.5k.
It is clear that all the specimens with gf/nun2 have an Sc value of 14.5 or more, and satisfy 100 ksi class corrosion resistance. On the other hand, looking at the case of conventional steel, conventional steel has 9
It can be confirmed that there are some that satisfy the 0 ksi class, but none that satisfy the 100 ksi class.

〈効果の総括〉 以上に説明した如く、この発明によれば、高い強度を有
する上、優れた耐食性(耐5scc性)をも安定して発
揮する高強度鋼を比較的コスト安く実現することができ
、過酷な環境での使用がやむなき状況となってきた油井
管や油送管等の性能を一段と向上することが可能となる
など、産業上有用な効果がもたらされるのである。
<Summary of Effects> As explained above, according to the present invention, high-strength steel that not only has high strength but also stably exhibits excellent corrosion resistance (5 SCC resistance) can be realized at a relatively low cost. This will bring about industrially useful effects, such as making it possible to further improve the performance of oil country tubular goods, oil transmission pipes, etc., which have had to be used in harsh environments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、耐食性油井管の強度と要求耐食性指数(Sc
値)との関係を示すグラフ、 第2図は、鋼中のAlx量とSc値との関係を示すグラ
フ、 第3図は、実施例で示した鋼について、0.2%耐力と
Sc値との関係を示すグラフである。
Figure 1 shows the strength and required corrosion resistance index (Sc
Figure 2 is a graph showing the relationship between Alx content in steel and Sc value, Figure 3 is a graph showing the relationship between 0.2% proof stress and Sc value for the steel shown in the example. It is a graph showing the relationship between

Claims (2)

【特許請求の範囲】[Claims] (1)重量割合にて C:0.15〜0.45%、Si:0.10〜1.0%
、Mn:0.3〜1.8%、sol.Al:0.010
%以下、N:0.0020%以下、AlN:0.005
0%以下Fe及びその他の不可避的不純物:残り から成る成分組成に構成されたことを特徴とする、耐食
性に優れた油井管用低合金鋼。
(1) C: 0.15-0.45%, Si: 0.10-1.0% by weight
, Mn: 0.3-1.8%, sol. Al: 0.010
% or less, N: 0.0020% or less, AlN: 0.005
A low alloy steel for oil country tubular goods having excellent corrosion resistance, characterized by having a composition consisting of 0% or less Fe and other unavoidable impurities: the remainder.
(2)重量割合にて C:0.15〜0.45%、Si:0.10〜1.0%
、Mn:0.3〜1.8%、sol.Al:0.010
%以下、N:0.0020%以下、AlN:0.005
0%以下なる成分に加えて、更に Cr:0.05〜2.00%、Mo:0.02〜0.8
0%、Nb:0.005〜0.20%、V:0.005
〜0.20%、B:0.0001〜0.0030% のうちの1種以上をも含み、 Fe及びその他の不可避的不純物:残り から成る成分組成に構成されたことを特徴とする、耐食
性に優れた油井管用低合金鋼。
(2) C: 0.15-0.45%, Si: 0.10-1.0% in weight percentage
, Mn: 0.3-1.8%, sol. Al: 0.010
% or less, N: 0.0020% or less, AlN: 0.005
In addition to the components of 0% or less, Cr: 0.05 to 2.00%, Mo: 0.02 to 0.8
0%, Nb: 0.005-0.20%, V: 0.005
~0.20%, B: 0.0001~0.0030%, and Fe and other unavoidable impurities: the remaining corrosion resistance. Low alloy steel for oil country tubular goods with excellent properties.
JP6702387A 1987-03-20 1987-03-20 Low-alloy steel for oil well pipe excellent in corrosion resistance Pending JPS63230847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6702387A JPS63230847A (en) 1987-03-20 1987-03-20 Low-alloy steel for oil well pipe excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6702387A JPS63230847A (en) 1987-03-20 1987-03-20 Low-alloy steel for oil well pipe excellent in corrosion resistance

Publications (1)

Publication Number Publication Date
JPS63230847A true JPS63230847A (en) 1988-09-27

Family

ID=13332880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6702387A Pending JPS63230847A (en) 1987-03-20 1987-03-20 Low-alloy steel for oil well pipe excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JPS63230847A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989010420A1 (en) * 1988-04-30 1989-11-02 Furukawa Electric Co., Ltd. High-strength steel having excellent hydrogen-induced crack resistance, and steel wire, steel tube and flexible fluid transport pipe made by using same
JP2008150670A (en) * 2006-12-18 2008-07-03 Nippon Steel Corp Anti-weathering steel having improved rust stabilization property and manufacturing method therefor
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
US8328960B2 (en) 2007-11-19 2012-12-11 Tenaris Connections Limited High strength bainitic steel for OCTG applications
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989010420A1 (en) * 1988-04-30 1989-11-02 Furukawa Electric Co., Ltd. High-strength steel having excellent hydrogen-induced crack resistance, and steel wire, steel tube and flexible fluid transport pipe made by using same
US5117874A (en) * 1988-04-30 1992-06-02 The Furukawa Electric Co., Ltd. Flexible fluid transport pipe having hydrogen-induced cracking resistant high-strength steel
US8002910B2 (en) 2003-04-25 2011-08-23 Tubos De Acero De Mexico S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
US8926771B2 (en) 2006-06-29 2015-01-06 Tenaris Connections Limited Seamless precision steel tubes with improved isotropic toughness at low temperature for hydraulic cylinders and process for obtaining the same
JP2008150670A (en) * 2006-12-18 2008-07-03 Nippon Steel Corp Anti-weathering steel having improved rust stabilization property and manufacturing method therefor
US7862667B2 (en) 2007-07-06 2011-01-04 Tenaris Connections Limited Steels for sour service environments
US8328958B2 (en) 2007-07-06 2012-12-11 Tenaris Connections Limited Steels for sour service environments
US8328960B2 (en) 2007-11-19 2012-12-11 Tenaris Connections Limited High strength bainitic steel for OCTG applications
US8221562B2 (en) 2008-11-25 2012-07-17 Maverick Tube, Llc Compact strip or thin slab processing of boron/titanium steels
US11952648B2 (en) 2011-01-25 2024-04-09 Tenaris Coiled Tubes, Llc Method of forming and heat treating coiled tubing
US9598746B2 (en) 2011-02-07 2017-03-21 Dalmine S.P.A. High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance
US9222156B2 (en) 2011-02-18 2015-12-29 Siderca S.A.I.C. High strength steel having good toughness
US9188252B2 (en) 2011-02-18 2015-11-17 Siderca S.A.I.C. Ultra high strength steel having good toughness
US8414715B2 (en) 2011-02-18 2013-04-09 Siderca S.A.I.C. Method of making ultra high strength steel having good toughness
US9340847B2 (en) 2012-04-10 2016-05-17 Tenaris Connections Limited Methods of manufacturing steel tubes for drilling rods with improved mechanical properties, and rods made by the same
US9970242B2 (en) 2013-01-11 2018-05-15 Tenaris Connections B.V. Galling resistant drill pipe tool joint and corresponding drill pipe
US9187811B2 (en) 2013-03-11 2015-11-17 Tenaris Connections Limited Low-carbon chromium steel having reduced vanadium and high corrosion resistance, and methods of manufacturing
US11377704B2 (en) 2013-03-14 2022-07-05 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9803256B2 (en) 2013-03-14 2017-10-31 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378075B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US10378074B2 (en) 2013-03-14 2019-08-13 Tenaris Coiled Tubes, Llc High performance material for coiled tubing applications and the method of producing the same
US9644248B2 (en) 2013-04-08 2017-05-09 Dalmine S.P.A. Heavy wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US9657365B2 (en) 2013-04-08 2017-05-23 Dalmine S.P.A. High strength medium wall quenched and tempered seamless steel pipes and related method for manufacturing said steel pipes
US11105501B2 (en) 2013-06-25 2021-08-31 Tenaris Connections B.V. High-chromium heat-resistant steel
US11124852B2 (en) 2016-08-12 2021-09-21 Tenaris Coiled Tubes, Llc Method and system for manufacturing coiled tubing

Similar Documents

Publication Publication Date Title
US8216400B2 (en) High-strength steel plate and producing method therefor
AU2003227225B2 (en) Low alloy steel
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPS63230851A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPH06104849B2 (en) Method for producing low alloy high strength oil well steel excellent in sulfide stress cracking resistance
JP3106674B2 (en) Martensitic stainless steel for oil wells
JPH05287381A (en) Manufacture of high strength corrosion resistant steel pipe
JPH06116635A (en) Production of high strength low alloy steel for oil well use, excellent in sulfide stress corrosion cracking resistance
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
JP4867638B2 (en) High-strength bolts with excellent delayed fracture resistance and corrosion resistance
JPH02250941A (en) Low carbon chromium-molybdenum steel and its manufacture
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPS6164815A (en) Manufacture of high strength steel excellent in delay breakdown resistance
JPH09118919A (en) Manufacture of steel product excellent in seawater corrosion resistance
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JP2730090B2 (en) High yield ratio martensitic stainless steel
JPH0569884B2 (en)
JPS62278251A (en) Low-alloy steel excellent in stress corrosion cracking resistance
JPS5817808B2 (en) Method for producing welded steel pipes with excellent stress corrosion cracking resistance
JP2752505B2 (en) High strength low alloy oil well steel with excellent low temperature toughness and sulfide stress corrosion cracking resistance
JPS609582B2 (en) High tensile strength steel with excellent sulfide corrosion cracking resistance and corrosion resistance
JPS6240345A (en) High tension steel pipe for oil well having superior delayed fracture resistance
JPS61227129A (en) Manufacture of high strength steel having superior resistance to sulfide stress corrosion cracking
JPS58171558A (en) Tough nitriding steel