JPS60170936A - Automatic positioning inspection device - Google Patents

Automatic positioning inspection device

Info

Publication number
JPS60170936A
JPS60170936A JP59027772A JP2777284A JPS60170936A JP S60170936 A JPS60170936 A JP S60170936A JP 59027772 A JP59027772 A JP 59027772A JP 2777284 A JP2777284 A JP 2777284A JP S60170936 A JPS60170936 A JP S60170936A
Authority
JP
Japan
Prior art keywords
pattern
vernier
output
inspection
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59027772A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sato
勝広 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59027772A priority Critical patent/JPS60170936A/en
Publication of JPS60170936A publication Critical patent/JPS60170936A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable to perform an inspection in a highly accurate manner by a method wherein, when positioning accuracy is detected using a vernier pattern, a laser beam is made to irradiate in a scanning manner on the surface whereon a pattern is superposed, the signal coming from the edge of the pattern is selected by the difference in intensity of the reflected light of said laser beam, and the amount of positional deviation is found by making a calculation. CONSTITUTION:The semiconductor wafer 4 having a vernier pattern on the surface is placed on a stage 5, and a lser beam is made to irradiate on the vernier pattern through the intermediary of a lense 3. Then, the light reflected from the edge of the pattern is detected by a lser detector 6, and this output is amplified by an amplifier 7. Said detector 6 and the amplifier 7 are built in an instrumental part 9, and the output coming from the instrumental part 9 is sent to the CPU containing a memory 11 and arithmetic operational parts. Subsequently, the result of the above operation is added to an interface 14 through the intermediary of an input-output control part 13, it is led back to the instrumental part 9, and the data of the input-output control part 13 is indicated on a indicating part 15. Through these procedures, the minimum value of the amount of deviation of pattern can be read out.

Description

【発明の詳細な説明】 lal 発明の技術分野 本発明は自動位置合わせ検査装置に係り、特にバーニヤ
パターンによって位置合わせ精度を検出する検査装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION lal Technical Field of the Invention The present invention relates to an automatic alignment inspection device, and more particularly to an inspection device that detects alignment accuracy using a vernier pattern.

fbl 従来技術と問題点 周知のように、ICなどの半導体装置を製造する際には
、フォトプロセスを用いて半導体ウェハー上にパターン
エツジが繰り返えし行なわれる。
fbl Prior Art and Problems As is well known, when manufacturing semiconductor devices such as ICs, pattern edges are repeatedly formed on a semiconductor wafer using a photo process.

且つ、パターン形成後にはパターン検査が行なわれてお
り、最近のようにICが微細化、高密度化されてくると
、パターンエツジ工程後のチェック検査は品質維持のた
めに、特に重要である。又、ウェハー上に転写する媒体
としてのフォトマスクのパターン位置合わせ検査も同様
に重要で、欠かすことができないものである。
In addition, pattern inspection is performed after pattern formation, and as ICs have recently become smaller and more dense, check inspection after the pattern edge process is particularly important for maintaining quality. Furthermore, pattern alignment inspection of a photomask as a medium to be transferred onto a wafer is equally important and indispensable.

このようなパターンの重ね合わせ検査において、バーニ
ヤパターンによる位置合わせ検査が汎用化されており、
定量的な検査として広く使用されている。
In such pattern overlay inspection, alignment inspection using a vernier pattern has become widely used.
Widely used as a quantitative test.

しかしながら、従来のバーニヤパターン検査は検査者が
目視によってバーニヤのずれ量を読め取る目視検査法で
あるから、検査に個人差が生しζ必ずしも精度が良くな
い。一方、他のパターン検査、例えばパターン有無やゴ
ミ付着の検査は既に自動化されており、処理の高速化に
加えて検査ミスも減少してきている。
However, since the conventional vernier pattern inspection is a visual inspection method in which the inspector visually reads the amount of deviation of the vernier, there are individual differences in the inspection and the accuracy is not necessarily high. On the other hand, other pattern inspections, such as pattern presence and dust adhesion inspections, have already been automated, which not only speeds up processing but also reduces inspection errors.

従って、上記のバーニヤパターンによる位置合わせ検査
を自動化して高速処理すると共に、従来より懸案の目視
による個人差をなくすることが、信頼面からも望ましい
方法である。
Therefore, from the viewpoint of reliability, it is desirable to automate the alignment inspection using the vernier pattern to process it at high speed, and to eliminate the individual differences caused by visual inspection, which have been a problem in the past.

tc+ 発明の目的 本発明は、このような観点よりバーニヤパターンによる
自動位置合わせ検査装置を従業するものである。
tc+ OBJECTS OF THE INVENTION From this perspective, the present invention provides an automatic alignment inspection device using a vernier pattern.

fdl 発明の構成 その目的は、バーニヤパターンによって位置合わせ精度
を検出する位置合わせ検査方法において、前記バーニヤ
パターンを重ね合わせた面にレーザビーム光を照射して
スキャンニングし、その反RJ光の強度差によってパタ
ーンエツジからの信号を選出し、該信号の位置を計算処
理して位置ずれ量をめるようにした自動位置合わゼ検査
装置によって達成することができる。
fdl Structure of the Invention The object of the invention is to perform scanning by irradiating a surface on which the vernier patterns are overlapped with a laser beam, and to detect the intensity difference of the anti-RJ light in an alignment inspection method for detecting alignment accuracy using a vernier pattern. This can be achieved by an automatic alignment inspection device that selects a signal from a pattern edge and calculates the position of the signal to determine the amount of positional deviation.

(el 発明の実施例 以下1図面を参照して実施例によって詳細に説明する。(el Embodiments of the invention An embodiment will be described in detail below with reference to one drawing.

第1図(alおよび(blはバーニヤパターンの正面図
と断面図とを示しており、1が゛めずパターン゛。
FIG. 1 (al and (bl) show a front view and a cross-sectional view of a vernier pattern, and 1 is a rare pattern.

2が°おすパターン゛である。このようなパターンは、
何れも半導体ウェハー(被検査試料)に設けられており
、例えば′めすパターン゛ lが既にエツチング形成さ
れた第1の凸パターンとすると、“おすパターン“ 2
はその上に次工程で形成されたレジスト膜からなる第2
の凸パターンである。
2 is the preferred pattern. Such a pattern is
Both are provided on a semiconductor wafer (sample to be inspected), and for example, if the ``female pattern'' is the first convex pattern that has already been etched, then the ``male pattern'' 2
is a second resist film formed thereon in the next step.
It is a convex pattern.

尚、他側として、ウェハーに既成した2つの凸パターン
からなるバーニヤパターンの誤差を検出する場合もある
On the other hand, errors in a vernier pattern consisting of two convex patterns already formed on a wafer may be detected.

第2図は本発明にかかる検出部の概要図を示している。FIG. 2 shows a schematic diagram of the detection section according to the present invention.

本発明では、半導体ウェハー上に設りた第1図(al、
 (blのようなバーニヤパターンに、第2図のように
レンズ3を通してレーザビーム光1、を照射してスキャ
ンニング(走査)する。スキャンニングは、例えば半導
体ウェハー4を載置したステージ5を移動させる。この
ようにスキャンニングして、パターンエツジにビームが
当接すると、ビーム光が散乱してレーザ検出器6に17
−ザ光が強く入射する。そのため、その信号強度を増幅
器7を通して増幅し、しきい値によって2値化して、パ
ターンエツジからの信号のみを出力することができる。
In the present invention, the structure shown in FIG. 1 (al,
(Scanning is performed by irradiating a vernier pattern such as BL with a laser beam 1 through a lens 3 as shown in FIG. When the beam is scanned in this way and comes into contact with the pattern edge, the beam light is scattered and falls on the laser detector 6.
- The light is strongly incident. Therefore, the signal intensity is amplified through the amplifier 7 and binarized using a threshold value, so that only the signal from the pattern edge can be output.

第2図(blにはパターンとその出力信号とを例示して
おり、出力信号aとbとの間の走査時間をXとすると、
パターン幅りはレーザビームの走査速度とXとの積によ
って得られる。かくして、第1図(al、 (blのよ
うなバーニヤパターンをスキャンニングすると、第1図
FC+のような出力信号がIMられて、 ゛おずパター
ン゛、2と “めずパターン゛ lとの位置関係が判か
る。
FIG. 2 (bl shows an example of a pattern and its output signal, and if the scanning time between output signals a and b is X,
The pattern width is obtained by multiplying the scanning speed of the laser beam by X. Thus, when a vernier pattern such as shown in Fig. 1 (al, (bl) is scanned, an output signal such as FC+ shown in Fig. 1 is IMed, and the result is a combination of the "Ozu pattern", 2 and the "Nezumi pattern" l. You can understand the positional relationship.

第3面は本発明にかかる位置合わせ検査装置の概要構成
図を示しており、上記のレーザ検出器6と増幅器7は計
測部9に含まれるものである。この計測部9でレーザ光
の強度を信号としこ取り出し2値化して、その出力信号
データをデータ処理部(CPU)10のメモ1月1に記
憶さセる。その信号データは演算部12で演算処理され
て、人出力制御部13よりずれ量が出力されるが、また
人出力制御部13ではインターフェース14を通して計
測部10の制御も行なわれ、また入出力制御部13には
検査結果を表示する表示装置15が付属している。
The third page shows a schematic configuration diagram of the alignment inspection apparatus according to the present invention, in which the above-mentioned laser detector 6 and amplifier 7 are included in the measurement section 9. The measuring section 9 extracts the intensity of the laser beam as a signal, converts it into a binary value, and stores the output signal data in the memo January 1 of the data processing section (CPU) 10. The signal data is processed by the calculation unit 12, and the deviation amount is output from the human output control unit 13.The human output control unit 13 also controls the measurement unit 10 through the interface 14, and also controls input/output. The unit 13 is attached with a display device 15 for displaying test results.

この演算部12での演算処理を、第1図を参照しながら
具体例によって説明する。第1図(al、 (blに示
す5つのパターンをそれぞれ0.4μInパターン。
The arithmetic processing in the arithmetic unit 12 will be explained by a specific example with reference to FIG. The five patterns shown in Figure 1 (al, (bl) are each 0.4 μIn pattern.

0.2μmパターン、0パターン、−0,2μmパター
ン、−0,4μmパターンとし、 “おずパターン゛2
が゛めずパターン” lの中で占める位置関係を出力信
号の差の絶対値で表わす演算を行なう。
0.2μm pattern, 0 pattern, -0.2μm pattern, -0.4μm pattern, “Ozu pattern 2
An operation is performed to express the positional relationship within the pattern 1 by the absolute value of the difference between the output signals.

第1図において、左方の°めずパターン゛ 1と“おす
パターン°、2との幅をPとし、右方の“めすパターン
” ■と °おすパターン′、2との幅をQとして、図
示のように 0.4pmパターンでは、lp、’q、lO,2μmバ
クーンでは、IP2Q210μmパターンでは、1Pa
Q3 l −0,2p mパターンでは、1P4Q41−0.48
mパターンでは、1PsQslを計算して、これをグラ
フ化すると、第4図に示す実線による曲線■が48られ
る。即ち、第1図に示す関係位置は0μmパターンでの
接線の傾斜が0となっているから、本図の例はずれ量が
0である。もし、点線による曲線■が得られると、−0
,2μmパターンでの接線の傾斜が0となっているから
、ずれ量は−0,2μmとなる。
In Fig. 1, the width of the left side ゛1 and the male pattern 2 is P, and the width of the right ``female pattern'' ■ and 2 male patterns is Q. As shown in the figure, for the 0.4 pm pattern, lp, 'q, lO, for the 2 μm Bakun, for the IP2Q210 μm pattern, 1 Pa
For Q3 l -0,2p m pattern, 1P4Q41-0.48
In the m pattern, when 1PsQsl is calculated and graphed, a solid curve 48 shown in FIG. 4 is obtained. That is, in the related positions shown in FIG. 1, since the slope of the tangent line in the 0 μm pattern is 0, the amount of deviation in the example shown in this figure is 0. If a dotted curve ■ is obtained, -0
, 2 μm pattern, the slope of the tangent line is 0, so the amount of deviation is -0.2 μm.

このようにして得られた第4図に示す曲線をCRT、記
録紙などにグラフ表示するか、属る(、Qは数値に換算
する等によって、入出力制御部13に付属する表示装置
15より出力させる。尚、このような曲線は d (Flx、−x、1)−〇 ここに、d:微分演算子 F:曲線関数 なる式によって表わされ、この式を解くと数値が得られ
る。
The curve shown in FIG. 4 obtained in this way can be displayed as a graph on a CRT, recording paper, etc. Incidentally, such a curve is expressed by the formula d (Flx, -x, 1) - 〇where, d: differential operator F: curve function, and a numerical value can be obtained by solving this formula.

か(すれば、検査者による個人差がなくなって一定した
正確なずれ量がめられ、位置合わせ精度が向上し、且つ
検査処理も速くなって、検査結果が速やかに得られる。
(This eliminates individual differences between inspectors and allows a constant and accurate amount of deviation to be determined, improving alignment accuracy and speeding up inspection processing, allowing inspection results to be obtained quickly.

(fl 発明の効果 以上の実施例から明らかなように、本発明によれば位置
合わせ検査が高精度化され、半導体装置の品質向上に顕
著に貢献するものである。
(fl) Effects of the Invention As is clear from the above embodiments, the present invention improves the accuracy of alignment inspection and significantly contributes to improving the quality of semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、 (b)、 (clはバー二4・パター
ンの正面図と断面図、同図1cIはそれより得られる本
発明にかかる信号図、第2図[a)は本発明にかかる検
査装置の検出部の概要図、第2図(blはパターンと出
力信号との関係図、第3図は本発明にかかる検査装置の
概要構成図、第4図はずれ9の出力図表を示している。 図中、1は゛めすパターン゛、2は′おずパターン°、
3はレンズ、4は半導体ウェハー、5はステージ、6は
レーザ検出器、7は増幅器、9は計測部、 10データ
処理部(CPU)、11はメモリ。 12は演算部、13は入出力制御部、14はインターフ
ェース、 15は表示装置である。 第1図 第2VA 第3図 0.4μm O,2μm Opm −0,2μm−0,
4μ「nバ°−二大パター〉り読み
Figure 1 (al, (b), (cl) is a front view and cross-sectional view of the bar two pattern, Figure 1cI is a signal diagram according to the present invention obtained from it, Figure 2 [a) is a diagram according to the present invention. A schematic diagram of the detection unit of such an inspection device, FIG. 2 (bl is a diagram of the relationship between patterns and output signals, FIG. 3 is a schematic diagram of the configuration of the inspection device according to the present invention, and FIG. 4 is an output chart of 9) In the figure, 1 is the female pattern, 2 is the ozu pattern,
3 is a lens, 4 is a semiconductor wafer, 5 is a stage, 6 is a laser detector, 7 is an amplifier, 9 is a measurement section, 10 is a data processing section (CPU), and 11 is a memory. 12 is an arithmetic unit, 13 is an input/output control unit, 14 is an interface, and 15 is a display device. Figure 1 2VA Figure 3 0.4μm O, 2μm Opm -0, 2μm-0,
4μ "n bar ° - two major putters" reading

Claims (1)

【特許請求の範囲】[Claims] バーニヤパターンによって位置合わせ精度を検出する位
置合わせ検査方法において、前記バーニヤパターンを重
ね合わせた面にレーザビーム光を照射してスキャンニン
グし、その反射光の強度差によってパターンエツジから
の信号を選出し、該信号の位置を計算処理して位置ずれ
量をめるようにしたことを特徴とする自動位置合わせ検
査装置。
In an alignment inspection method that detects alignment accuracy using a vernier pattern, the surface on which the vernier patterns are superimposed is irradiated with laser beam light and scanned, and signals from pattern edges are selected based on the intensity difference of the reflected light. , an automatic alignment inspection device characterized in that the position of the signal is calculated and the amount of positional deviation is determined.
JP59027772A 1984-02-15 1984-02-15 Automatic positioning inspection device Pending JPS60170936A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59027772A JPS60170936A (en) 1984-02-15 1984-02-15 Automatic positioning inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59027772A JPS60170936A (en) 1984-02-15 1984-02-15 Automatic positioning inspection device

Publications (1)

Publication Number Publication Date
JPS60170936A true JPS60170936A (en) 1985-09-04

Family

ID=12230265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59027772A Pending JPS60170936A (en) 1984-02-15 1984-02-15 Automatic positioning inspection device

Country Status (1)

Country Link
JP (1) JPS60170936A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0566217A2 (en) * 1988-07-20 1993-10-20 Applied Materials, Inc. Method and apparatus for focussing a beam of radiant energy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0566217A2 (en) * 1988-07-20 1993-10-20 Applied Materials, Inc. Method and apparatus for focussing a beam of radiant energy

Similar Documents

Publication Publication Date Title
US7499156B2 (en) Closed region defect detection system
EP0670997B1 (en) Surface pit and mound detection and discrimination system and method
US7664310B2 (en) Advanced phase shift inspection method
US6392754B1 (en) Method and apparatus for measuring the profile of reflective surfaces
US7580124B2 (en) Dual stage defect region identification and defect detection method and apparatus
US20020054702A1 (en) Automated photomask inspection apparatus
JPH03267745A (en) Surface property detecting method
KR100876257B1 (en) Optical measuring method and device therefor
CN100397036C (en) Method and arrangement in a measuring system
JP2002267416A (en) Surface defect inspecting device
JP4968720B2 (en) Electronic device substrate shape inspection apparatus, electronic device substrate shape inspection method, and mask blank glass substrate manufacturing method
JPS60170936A (en) Automatic positioning inspection device
JPH0228541A (en) Optical concentration detector
JPH09105618A (en) Method and apparatus for inspection of defect on smooth surface of object as well as method and apparatus for measurement of roughness on surface of object
JPH0642940A (en) Method and apparatus for inspection of belt-shaped-member joint part
JPS63218847A (en) Inspection of surface flaw
JPH06118010A (en) Foreign matter inspection device and pellicle
JP4300802B2 (en) Mark position detection device, mark position detection method, overlay measurement device, and overlay measurement method
JPH0252241A (en) Surface defect inspection instrument
JP2616732B2 (en) Reticle inspection method
JPS61140804A (en) Pattern inspection instrument
JPH04361548A (en) Method and device for defect detection
KR100226904B1 (en) Detecting apparatus and method of surface fault of steel plate using laser
KR101027289B1 (en) System and method for optically detecting surface defect using time division multplexing mode
JPH03130605A (en) Inspecting apparatus for defect of molded product