JPS60166144A - Production of metallic wire - Google Patents

Production of metallic wire

Info

Publication number
JPS60166144A
JPS60166144A JP2230984A JP2230984A JPS60166144A JP S60166144 A JPS60166144 A JP S60166144A JP 2230984 A JP2230984 A JP 2230984A JP 2230984 A JP2230984 A JP 2230984A JP S60166144 A JPS60166144 A JP S60166144A
Authority
JP
Japan
Prior art keywords
molten metal
flow
magnetic field
wire
metallic wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2230984A
Other languages
Japanese (ja)
Other versions
JPH0375255B2 (en
Inventor
Kazuo Sawada
澤田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2230984A priority Critical patent/JPS60166144A/en
Publication of JPS60166144A publication Critical patent/JPS60166144A/en
Publication of JPH0375255B2 publication Critical patent/JPH0375255B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a metallic wire which decreases fluctuation in the wire diameter in the stage of spinning and producing the metallic wire from a molten metal by impressing a directional magnetic field to the molten metal flow in the position where the solidification of the molten metal ejected from a spinning port is not completed. CONSTITUTION:A molten metal 12 melted by a heater 13 in a crucible 11 is pressurized by an inert gas supplied through an introducing port 11a and is ejected as molten metal flow 14 from a nozzle 11b by which a metallic wire is produced. A directional magnetic field is impressed to the molten metal flow 14 by a means 15 for generating the magnetic field in the position where the flow 14 is not solidified yet to increase the apparent viscosity of the flow 14 and to suppress the oscillation of the surface tension wave. The jet flow of the molten metal is thus stabilized and the metallic wire which decreases the fluctuation in the wire diameter is obtd.

Description

【発明の詳細な説明】 発明の分野 この発明は、金属線を溶融金属から紡糸して製造する、
いわゆる溶融紡糸法と呼ばれる金属線の製造方法の改良
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention This invention relates to the production of metal wire by spinning from molten metal.
This invention relates to an improvement in a metal wire manufacturing method called the so-called melt spinning method.

先行技術の説明 従来、金属細線は、鋳造→熱間加工→冷間加工の工程を
基本とする加工方法により製造されるのが常であった。
Description of the Prior Art Conventionally, thin metal wires have been manufactured by a processing method based on the steps of casting, hot working, and cold working.

もらろん、このような加工方法は、バッチ式あるいは連
続式などの様々な方式で行なわれており、能率の改善に
も注力されてきた。
Of course, such processing methods are carried out in various ways, such as batch or continuous methods, and efforts have been made to improve efficiency.

しかしながら、従来の金属線の製造方法では、鋳造機、
圧延機、伸線機および熱処理炉などが必要であり、また
大きなサイズの金属線を鋳造したり加工したりするには
、大きな設備を必要とし、したがって巨額な設備投資と
大きな製造スペースとを必要とする。また、大きなサイ
ズの金属線を作り、所望のサイズに加工するものである
ため、熱間加工のための加熱処理、ならびに冷間加工度
を大きくとれない場合の中間熱処理などの多数の処理工
程を必要とし、加熱→冷却を繰返し行なわなければなら
ない。したがって加工に大きなエネルギを要し、また工
程が多くなると工程間で損失が発生するため、さらに大
きなエネルギを必要とするという問題があった。また、
伸縮加工などの加工が必要であるため、難加工性金属材
料では製造が極めて困難であった。
However, in the conventional metal wire manufacturing method, a casting machine,
Rolling mills, wire drawing machines, heat treatment furnaces, etc. are required, and casting and processing of large-sized metal wires requires large equipment, thus requiring huge capital investment and large manufacturing space. shall be. In addition, since large-sized metal wires are made and processed into the desired size, many processing steps are required, such as heat treatment for hot working and intermediate heat treatment when a large degree of cold working cannot be achieved. heating and cooling must be repeated. Therefore, there is a problem in that a large amount of energy is required for processing, and as the number of steps increases, losses occur between the steps, which requires even more energy. Also,
Because it requires processing such as expansion and contraction, it has been extremely difficult to manufacture using difficult-to-process metal materials.

上述の問題を解決するために、近年、溶融金属を直接凝
固し、最終所望サイズの長尺I!月を1qる、いわゆる
溶融紡糸法が提案されている。この溶融紡糸法は、溶融
金属に不活性ガスなどにより圧ツノを加え、溶融金属の
ジェット流を形成し、鋳型を用いずに長尺部材に凝固さ
才る方法が提案されている。この溶融紡糸法によれば断
面はぼ円形の金属線材を得ることができる。しかしなが
ら、有機織1などとは異なり、表面張力、粘性および比
重などの関係で、第1図に示すように、溶融金属ジェッ
トAが極めて不安定な形状を有し、図示のようにIgi
線しやJく、かつ均一な線径の金属線を連続的に得るこ
とが難しいという欠点がある。
In order to solve the above-mentioned problems, in recent years, molten metal is directly solidified to obtain a long I! A so-called melt-spinning method has been proposed that involves spinning 1 q of moon. As the melt spinning method, a method has been proposed in which a pressure point is applied to the molten metal using an inert gas or the like to form a jet stream of the molten metal, and the molten metal is solidified into a long member without using a mold. According to this melt spinning method, a metal wire rod having a substantially circular cross section can be obtained. However, unlike the organic woven fabric 1, the molten metal jet A has an extremely unstable shape due to surface tension, viscosity, specific gravity, etc., as shown in FIG.
The disadvantage is that it is difficult to continuously obtain metal wires that are easy to wire and have a uniform wire diameter.

上述の溶融紡糸法の問題を解消するために、第2図に示
すように、溶融金属1と、加熱により軟化した高粘性の
ガラス管3を同時に引出し、凝固させる方法(テーラ−
法と呼ばれている)も提案されている。しかしながら、
テーラ−法では、ガラスが余分に消費され、また製線後
ガラスを除去する必要があり、工業的生産に好ましいも
のとは到底言えなかった。
In order to solve the problems of the above-mentioned melt spinning method, as shown in FIG.
A new law has also been proposed. however,
In the Taylor method, extra glass was consumed and it was necessary to remove the glass after the wire was formed, so it could not be said to be preferable for industrial production.

発明の目的 それゆえに、この発明の目的は、上述の溶融紡糸法の欠
点を解消し、ジェット流の安定化を果たすことができ、
線径の変動の少ない金属線を得ることが可能な金属線の
製造方法を提供することである。
OBJECTS OF THE INVENTION Therefore, an object of the present invention is to overcome the drawbacks of the above-mentioned melt spinning method and to stabilize the jet stream.
It is an object of the present invention to provide a method for manufacturing a metal wire, which makes it possible to obtain a metal wire with little variation in wire diameter.

発明の構成 この発明は、要約すれば、溶融金属を紡糸口から噴出し
、凝固させて金属線を製fiする方法において、紡糸口
から噴出された溶融金属流が凝固を完了しない位置にお
いて、該溶融金属流に方向性磁場を印加することを特徴
とする、金属線の製造方法である。
SUMMARY OF THE INVENTION To summarize, the present invention provides a method for manufacturing a metal wire by jetting molten metal from a spinneret and solidifying the metal wire at a position where the molten metal flow jetted from the spinneret does not complete solidification. A method for manufacturing a metal wire, characterized by applying a directional magnetic field to a molten metal flow.

この発明により製造される金属線としては、CLl、A
Jlf、A(1,Au、Pbなとの金属、またはそれら
の合金よりなる線であり、従来特にジェット流が不安定
となりやずかった高純度のCI、Apl、△Q 、AU
 、Pbなどが、この発明の方法により安定に生産する
ことができる。また、この発明の方法によれば、通常の
結晶性金属線のほか、冷却条件を適当に制御することに
より非晶質金属線の製造も可能である。上記したように
、この発明Cは、溶融金属流に、凝固未了の位置におい
て方向性磁場が印加される。この方向性磁場の印加によ
り、線径変動の少ない金属線を得ることができるのは、
溶融金属流が導電性を有するため、磁場を与えると磁気
流体効果により、見か【プ上の粘性が高められること、
および溶融金属流が乱流化するのを防止することに基づ
くと考えられる。この粘性が大きくなることおよび溶融
金属流の乱流が減少りることにより、溶融金属流の表面
張力波の振幅が抑制され、線径の変動の抑制が果たされ
ることになる。
The metal wires manufactured by this invention include CLl, A
Jlf, A (1, A wire made of metals such as Au, Pb, or their alloys, and is a wire made of high-purity CI, Apl, △Q, AU, which has been particularly prone to unstable jet flow.
, Pb, etc. can be stably produced by the method of the present invention. Further, according to the method of the present invention, in addition to ordinary crystalline metal wires, it is also possible to manufacture amorphous metal wires by appropriately controlling cooling conditions. As described above, in invention C, a directional magnetic field is applied to the molten metal flow at a position where solidification is not completed. By applying this directional magnetic field, it is possible to obtain a metal wire with little variation in wire diameter.
Since the molten metal flow has electrical conductivity, when a magnetic field is applied, the viscosity on the surface increases due to the magnetohydrodynamic effect.
This is thought to be based on preventing the molten metal flow from becoming turbulent. By increasing this viscosity and reducing turbulence in the molten metal flow, the amplitude of surface tension waves in the molten metal flow is suppressed, and fluctuations in the wire diameter are suppressed.

なお、この発明にお1プる方向性磁場は、溶融金属流を
含む面に垂直方向に印加した場合、溶融金属流の児か【
)上の粘性の増大に最も大きく寄与するが、さらに回転
磁場あるいは他方向から磁場を印加しても、溶融金属流
の見かけ上の粘性をより一層増大させることができる場
合がある。また、溶融金属流を、溶融金属流と同一方向
に層流をなして流れる気体まは液体中を通過さVlその
状態で方向性磁場を印加すれば、溶融金属流の児かけ上
の粘性が磁場の印加により増大されるだけでなく、層流
による冷却により溶融金属流のより一層の安定化を果た
すことができる。
In addition, the directional magnetic field that is one of the features of this invention is that when applied in a direction perpendicular to a surface containing a molten metal flow, the directional magnetic field will cause a drop in the molten metal flow.
) makes the largest contribution to increasing the viscosity of the molten metal flow, but even if a rotating magnetic field or a magnetic field is applied from another direction, it may be possible to further increase the apparent viscosity of the molten metal flow. In addition, if a molten metal flow is passed through a gas or liquid flowing in a laminar flow in the same direction as the molten metal flow, and a directional magnetic field is applied in that state, the viscosity of the molten metal flow will be reduced. In addition to being increased by applying a magnetic field, cooling by laminar flow can further stabilize the molten metal flow.

発明の効果 上記したように、この発明では、紡糸口から噴出された
溶融金属流が凝固を完了しない位置において、該溶融金
属流に方向性磁場を印加するものであるため、磁気流体
効果により、溶融金属流の見か【ノ上の粘性が増大し、
したがって溶融金属流の表面張力波の振幅が小さくなり
ジェット流が安定化し、線径変動の少ない金属線を4!
?ることが可能となり、結果、凝固した俊直らに実用に
供することができ、サイジングを行なう場合であっても
簡単な工程を施すのみで所望径の金属線を得ることがで
きる。さらに、溶融金属流が安定化するため、冷却・凝
固されるまぐの距離あるいは時間゛を良くとることがで
きるので、製造装置の設n1にあたり、股上!の自由度
が大きくなるという効果も有する。
Effects of the Invention As described above, in this invention, since a directional magnetic field is applied to the molten metal flow ejected from the spinneret at a position where the molten metal flow has not yet completed solidification, due to the magnetic fluid effect, The viscosity of the molten metal flow increases,
Therefore, the amplitude of the surface tension waves of the molten metal flow becomes smaller, the jet flow is stabilized, and the metal wire with less wire diameter fluctuation is produced.
? As a result, the solidified wire can be put to practical use, and even when sizing is performed, a metal wire of a desired diameter can be obtained by only performing a simple process. Furthermore, since the molten metal flow is stabilized, it is possible to take a good distance or time for cooling and solidifying the metal, which makes it possible to set up the manufacturing equipment in a more convenient manner. It also has the effect of increasing the degree of freedom.

以下、図面を参照しつつ実施例を説明するこむにJ:す
、この発明の特徴を明らかにする。
Hereinafter, embodiments will be described with reference to the drawings to clarify the features of the present invention.

実施例の説明 第3図ないし第5図は、この発明を実施するだめの金属
線製造装置を示す各部分切欠縦断面図である。
DESCRIPTION OF THE EMBODIMENTS FIGS. 3 to 5 are partially cutaway longitudinal sectional views showing a metal wire manufacturing apparatus for carrying out the present invention.

第3図に示した装置では、るつぼ11内に金属が充填さ
れ、該るつぼ11の周囲には金属を溶融させ−C溶融金
属12とするためのヒータ133が配回されている。ま
た、るつぼ11の上方には不活性ガス導入[Jl 1a
が設けられており、該導入口11aより、たとえばA 
rなどの加圧不活性ガスが供給され、該不活性ガスによ
り溶融金属12がるつぼ11の先端のノズル11bより
溶融金属流14として噴出される。溶融金属流14は、
紡糸口11bから噴出された後、下方で人気下で凝固さ
れ金属線となるが、第3図に示した装置では、この溶融
金属流14が未だ凝固しない位置に、磁場発生手段15
が配置される。磁場発生手段15は、磁石または直流磁
場を発生づる電磁石により構成することができる。第3
図に示した装置では、この磁場発生手段15により、溶
融金属流14に方向性磁場が印加されるため、上記しI
ζように、溶融金属流14の見かけ上の粘性が増大し、
表面張力波の振幅が抑えられる。しIζがって、線径変
動の少ない安定な溶融金属流14を実現することができ
る。
In the apparatus shown in FIG. 3, a crucible 11 is filled with metal, and a heater 133 is arranged around the crucible 11 to melt the metal into -C molten metal 12. In addition, an inert gas is introduced above the crucible 11 [Jl 1a
is provided, and from the introduction port 11a, for example, A.
A pressurized inert gas such as R is supplied, and the inert gas causes the molten metal 12 to be ejected as a molten metal stream 14 from the nozzle 11b at the tip of the crucible 11. The molten metal flow 14 is
After being ejected from the spinneret 11b, the molten metal flow 14 is coagulated downward to form a metal wire, but in the apparatus shown in FIG.
is placed. The magnetic field generating means 15 can be composed of a magnet or an electromagnet that generates a DC magnetic field. Third
In the apparatus shown in the figure, a directional magnetic field is applied to the molten metal flow 14 by the magnetic field generating means 15.
ζ, the apparent viscosity of the molten metal flow 14 increases,
The amplitude of surface tension waves is suppressed. Therefore, it is possible to realize a stable molten metal flow 14 with little variation in wire diameter.

第4図に示す装置では、溶融金属流14の周囲に、層流
をなして水が溶融金属流14と同一方向に流れるように
構成されている。この水流の方向を破線X、Yで示づ。
The apparatus shown in FIG. 4 is constructed so that water flows around the molten metal stream 14 in a laminar flow in the same direction as the molten metal stream 14. The direction of this water flow is shown by broken lines X and Y.

このような水流を生じさせるために、第4図に示した装
置では、中心開口21を有づる容器22が用いられる。
To create such a water flow, the device shown in FIG. 4 uses a container 22 with a central opening 21.

中心開口21を取囲む円筒壁23の周囲に磁場発生手段
15が配置されており、また円筒壁23と外壁24との
間の空間に水導入口25J:り供給された水が貯留され
る。ところで・、中空円筒壁23は外壁24 J:りら
低く構成されているため、図示のJこうに、貯留された
水はA−バフローして中心間[121内に層流となり流
れる。したがって、前述のように溶融金属流14と同一
方向に水が層流どして流過し、該水により溶融金属流1
4が凝固される。この凝固の際に、磁場発生手段15に
より方向性磁場が印加されるため溶融金属流14の児か
1)」この粘性が増大し、線径変動の少ない金属線を得
ることができる。
A magnetic field generating means 15 is arranged around a cylindrical wall 23 surrounding the central opening 21, and water supplied through a water inlet 25J is stored in the space between the cylindrical wall 23 and the outer wall 24. By the way, since the hollow cylindrical wall 23 is configured to have a low outer wall 24, the stored water flows as a laminar flow between the centers [121] as shown in the figure. Therefore, as described above, water flows in a laminar manner in the same direction as the molten metal flow 14, and the water causes the molten metal flow 14 to flow past.
4 is solidified. During this solidification, since a directional magnetic field is applied by the magnetic field generating means 15, the viscosity of the molten metal flow 14 increases and a metal wire with less variation in wire diameter can be obtained.

第5図は、回転液中紡糸法と叶ばれる金属線製造方法に
この発明の方法を応用づるための装置を示1゜第5図に
示した装置では、紡糸口11bより噴出された溶融金属
流14は回転ドラム31の内壁に遠心力により張付【ノ
られ 水層32内で凝固され金属線となる。ここでは、
溶融金属流14が未だ凝固しない位置に、磁場発生手段
15が配置されている。他の構造については、上記第3
図に示した装置と同様であるため、相当の参照番号を付
づることにより、その説明を省略づる。
FIG. 5 shows an apparatus for applying the method of the present invention to a metal wire manufacturing method realized by spinning in a rotating liquid.1 In the apparatus shown in FIG. The stream 14 is stuck to the inner wall of the rotating drum 31 by centrifugal force and solidified in the water layer 32 to become a metal wire. here,
A magnetic field generating means 15 is arranged at a position where the molten metal flow 14 has not yet solidified. For other structures, see Section 3 above.
Since the devices are similar to those shown in the figures, their description will be omitted by adding corresponding reference numerals.

実施例1 第3図に示した装置において、鉛を溶解し、紡糸口とし
てのノズル111) J:り溶融鉛をアルゴンガス圧力
により大気中に噴出させ、該溶融鉛が凝固しない位置で
、fit場発生手段15により5000ガウスの磁場を
印加し、直径0.5mmの線状体を製造した。磁場発生
手段15により磁場を印加した場合には、磁場を印加し
ない場合に比べて、長子方向の線径の変動が約3分の1
に減少したことが確められた。
Example 1 In the apparatus shown in FIG. 3, lead was melted and the molten lead was spouted into the atmosphere using argon gas pressure, and the molten lead was spouted into the atmosphere at a position where the molten lead would not solidify. A magnetic field of 5000 Gauss was applied by the field generating means 15 to produce a linear body with a diameter of 0.5 mm. When a magnetic field is applied by the magnetic field generating means 15, the variation in the wire diameter in the longitudinal direction is approximately one-third of that when no magnetic field is applied.
It was confirmed that there was a decrease in

実施例2 第4図に示した装置において、電気銅を溶解し、上から
下へ層流をなしC流れる水の外側から磁場発生手段15
により3000ガウスの磁場を印加し、溶解銅をアルゴ
ンガス圧力により紡糸口11bから水流中へ噴出させた
ところ、直径Q、3mmの線状体を得ることができた。
Example 2 In the apparatus shown in FIG. 4, a magnetic field generating means 15 is applied from the outside of the water that melts electrolytic copper and forms a laminar flow from top to bottom.
When a magnetic field of 3000 Gauss was applied and the molten copper was jetted out from the spinneret 11b into the water stream under argon gas pressure, a linear body with a diameter Q of 3 mm could be obtained.

この線状体の長子方向の線径の変動は、磁場を印加しな
い場合の約2分の1に低減されていることが確められた
It was confirmed that the variation in the wire diameter in the longitudinal direction of this linear body was reduced to about half of that in the case where no magnetic field was applied.

実施例3 第5図に示した装置を用い、電気銅を溶解し、回転する
ドラム内壁に遠心力により保持された流水中に噴出さじ
、線状体を得た。紡糸口と流水表面との間の溶融鋼が凝
固しない位置に、Δrガス雰囲気下に;J3いて、磁場
発生手段15により6000ガウスの磁場を印加して製
造したところ、流水表面と紡糸口11bとの間の距I1
1150glIlにしても、磁場の印加がない場合であ
りかつ該距離が51とした場合と同程度の線径のばらつ
きの少ない線状体を得ることができIζ。したがって1
製造設備の設計自由瓜を大きくとることが可能であり、
作業性も良好であることがわかる。
Example 3 Using the apparatus shown in FIG. 5, electrolytic copper was melted and spouted into running water held by centrifugal force on the inner wall of a rotating drum to obtain a linear body. When manufacturing was carried out by applying a magnetic field of 6000 Gauss by the magnetic field generating means 15 in a Δr gas atmosphere at a position between the spinning nozzle and the surface of the flowing water where the molten steel does not solidify, the surface of the flowing water and the spinning nozzle 11b were distance I1 between
Even if the distance is 1150glIl, a linear body with as little variation in wire diameter as when no magnetic field is applied and the distance is 51 can be obtained Iζ. Therefore 1
It is possible to have a large flexibility in the design of manufacturing equipment,
It can be seen that the workability is also good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、紡糸口から噴出され1=溶融金属流の状態を
示1゛略図的縦断面図である。第2図は、従来の金属線
製造方法の一例を説明するだめの縦断面図である。第3
図は、この発明の第1の実施例を実施りるための装置の
縦断面図である。第4図は、この発明の第2の実施例を
実施するための装置の縦断面図を示す。第5図は、この
発明の第3の実施例を実施するだめの製造装置の略図的
断面図である。 図において、11bは紡糸[1,12は溶融金属、14
は溶融金属流、15は磁場を印加するだめの磁場発生手
段を示す。 特許出願人 住友電気工業株式会社 め1図 第2図
FIG. 1 is a schematic longitudinal cross-sectional view showing the state of a molten metal flow ejected from a spinneret. FIG. 2 is a longitudinal sectional view illustrating an example of a conventional metal wire manufacturing method. Third
The figure is a longitudinal sectional view of an apparatus for carrying out a first embodiment of the invention. FIG. 4 shows a longitudinal sectional view of an apparatus for carrying out a second embodiment of the invention. FIG. 5 is a schematic cross-sectional view of a pot manufacturing apparatus for carrying out a third embodiment of the present invention. In the figure, 11b is spinning [1, 12 is molten metal, 14
Reference numeral 15 indicates a molten metal flow, and 15 indicates a magnetic field generating means for applying a magnetic field. Patent applicant: Sumitomo Electric Industries, Ltd. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1) ill金金属紡糸口から噴出し、凝固させて金
属線を製造する方法において、 紡糸口から噴出された溶融金g流が凝固を完了しない位
置において、該溶融金a流に方向性磁場を印加り−るこ
とを特徴とする、金属線の製造方法。
(1) In a method of producing a metal wire by spouting gold from a metal spinneret and solidifying it, a directional magnetic field is applied to a flow of molten gold at a position where the flow of molten gold g jetted from a spinneret does not complete solidification. 1. A method of manufacturing a metal wire, characterized by applying:
(2) 前記方向性磁場を、前記溶融金属流を含む面に
垂直方向に印加する、特許請求の範囲第1項記載の金属
線の製造方法。
(2) The method for manufacturing a metal wire according to claim 1, wherein the directional magnetic field is applied in a direction perpendicular to a surface containing the molten metal flow.
(3) 前記溶融金属流を、冷却流体中を通過させた状
態で、前記方向性磁場を印加づる、特許請求の範囲第1
項または第2項記載の金属線の製造方法。
(3) The directional magnetic field is applied to the molten metal flow while passing through a cooling fluid.
The method for manufacturing a metal wire according to item 1 or 2.
JP2230984A 1984-02-08 1984-02-08 Production of metallic wire Granted JPS60166144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2230984A JPS60166144A (en) 1984-02-08 1984-02-08 Production of metallic wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2230984A JPS60166144A (en) 1984-02-08 1984-02-08 Production of metallic wire

Publications (2)

Publication Number Publication Date
JPS60166144A true JPS60166144A (en) 1985-08-29
JPH0375255B2 JPH0375255B2 (en) 1991-11-29

Family

ID=12079135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2230984A Granted JPS60166144A (en) 1984-02-08 1984-02-08 Production of metallic wire

Country Status (1)

Country Link
JP (1) JPS60166144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852454A (en) * 1987-11-10 1989-08-01 Batchelder J Samuel Method and apparatus for delivering electric currents to remote targets
EP0545097A2 (en) * 1991-12-04 1993-06-09 Thyssen Edelstahlwerke AG Process and apparatus for wire casting

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224128A (en) * 1975-07-04 1977-02-23 Anvar Electomagnetic apparatus for compression of metal melts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224128A (en) * 1975-07-04 1977-02-23 Anvar Electomagnetic apparatus for compression of metal melts

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852454A (en) * 1987-11-10 1989-08-01 Batchelder J Samuel Method and apparatus for delivering electric currents to remote targets
EP0545097A2 (en) * 1991-12-04 1993-06-09 Thyssen Edelstahlwerke AG Process and apparatus for wire casting
EP0545097A3 (en) * 1991-12-04 1994-06-01 Thyssen Edelstahlwerke Ag Process and apparatus for wire casting

Also Published As

Publication number Publication date
JPH0375255B2 (en) 1991-11-29

Similar Documents

Publication Publication Date Title
US5160532A (en) Direct processing of electroslag refined metal
US5649992A (en) Methods for flow control in electroslag refining process
JPH02205232A (en) Method and apparatus for drawing-up continuous casting
JP2639669B2 (en) Granulator for molten material
US4665970A (en) Method of producing a metallic member having a unidirectionally solidified structure
JPS60166144A (en) Production of metallic wire
JP2005105326A (en) Method and apparatus for manufacturing coated metal wire
JPS58177403A (en) Method and device for manufacturing ceramic-free high purity metal powder
WO1993022085A1 (en) Method of obtaining double-layered cast piece
JP2001108376A (en) Bottom casting type float melting apparatus
CN204934550U (en) A kind of casting apparatus
EP1312244B1 (en) Formation of metal wire
JPH02217142A (en) Continuous method and device of thin wire
JPS6116219B2 (en)
JPS60121044A (en) Production of metallic wire
JP2938215B2 (en) Continuous dissolution and outflow of materials
JPH0530542B2 (en)
JP2914776B2 (en) Continuous dissolution and outflow control method for materials
JPH01313152A (en) Manufacture of metallic thin sheet
JPS59130654A (en) Device for producing fine wire
JPH01143745A (en) Method and apparatus for producing metal fine wire
JPH02247304A (en) Nozzle for pouring molten nd alloy
DE2121439B2 (en) Process for remelting blocks using plasma jets
JPH04127941A (en) Production of metal fine wire
KR100718407B1 (en) Hollows casting systems and methods