JPS60121044A - Production of metallic wire - Google Patents

Production of metallic wire

Info

Publication number
JPS60121044A
JPS60121044A JP22863283A JP22863283A JPS60121044A JP S60121044 A JPS60121044 A JP S60121044A JP 22863283 A JP22863283 A JP 22863283A JP 22863283 A JP22863283 A JP 22863283A JP S60121044 A JPS60121044 A JP S60121044A
Authority
JP
Japan
Prior art keywords
molten metal
fluid
flow
frequency
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22863283A
Other languages
Japanese (ja)
Inventor
Kazuo Sawada
澤田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP22863283A priority Critical patent/JPS60121044A/en
Publication of JPS60121044A publication Critical patent/JPS60121044A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/01Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces
    • B22D11/015Continuous casting of metals, i.e. casting in indefinite lengths without moulds, e.g. on molten surfaces using magnetic field for conformation, i.e. the metal is not in contact with a mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To stabilize the flow of a molten metal and to produce easily a metallic wire having a uniform wire diameter in the stage of extruding a molten metal from a spinning port and solidifying said metal to form a metallic wire by passing the molten metal in a high frequency magnetic field in the stage when the molten metal flow does not complete yet the solidification. CONSTITUTION:Pressure P is exerted to the molten metal 1 contained in a vessel 5 and is extruded in the form of molten metal flow 4 from a lower spinning port 6. Alternating high-frequency current I1 is passed to a high-frequency coil 7 provided around the molten metal flow 4 in the unstable stage when said metal flow does not complete yet the solidification right after the extrusion. The coil 7 creates a high-frequency magnetic field H around the fluid and generates eddy current I2 in the flow, thereby stabilizing the molten metal fluid 4 to a uniform wire diameter. The frequency and electric power thereof are adequately selected according to the kind, wire diameter, etc. of the fluid 4 and the penetration depth of the current I2 is made preferably <=1/5 the outside diameter of the fluid 4.

Description

【発明の詳細な説明】 (技術分野) 本発明は金属線を溶融金属から紡糸して製造する製線法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a wire manufacturing method for manufacturing a metal wire by spinning it from molten metal.

(背景技補) 従来、金属細線は、通常鋳造→熱間加工→冷間加工を基
本にした加工方法を採用することが予力・つた。勿論こ
れにはバッチ式、連続式等があり、能率の改善にも努力
されてきた。
(Background technical assistance) Traditionally, thin metal wires have been processed using a processing method based on casting, hot working, and cold working. Of course, there are batch types, continuous types, etc., and efforts have been made to improve efficiency.

しかしこの方法では、鋳造機、圧延機、伸線機、熱処理
炉などが必要で、又大寸法のものを鋳造したり、加工し
たりするには大きな設備を必要とし、巨額な設備投資と
製造面積を必要とする。又大寸法のものを作って加工し
て行くため、熱間加工のための加熱や、冷間加工度を大
きくとれなり)場合の中間熱処理等を必要とし、加熱→
冷却が多く、加工エネルギーが大きいので、エネルギー
ロスが大きい欠点がある。又工程が多くなると、その間
のロス発生が多い欠点も有していた。さらに伸線加工な
どの加工が必要なため、難加工性拐料では製造が困難で
あった。
However, this method requires casting machines, rolling mills, wire drawing machines, heat treatment furnaces, etc., and also requires large equipment to cast and process large-sized items, requiring huge capital investment and manufacturing. Requires area. In addition, since large-sized items are manufactured and processed, heating for hot working and intermediate heat treatment when the degree of cold working is required is required.
Since there is a lot of cooling and processing energy is large, there is a drawback of large energy loss. Moreover, when the number of steps is increased, there is a drawback that a large amount of loss occurs during the steps. Furthermore, since processing such as wire drawing is required, it has been difficult to manufacture using hard-to-process wires.

そこで、この対策として溶融金属を直接急冷凝固して最
終所望サイズの長尺物を得る、いわゆる急冷凝固法が提
案されている。一つの方法は回転する金属ロールへ溶融
金属を一定量供給して急冷凝固する方法があり、テープ
材の工業的生産に利用され初めている。しかしこの方法
は断面形状が円形の線材が製造できないなどの欠点を有
している。
Therefore, as a countermeasure to this problem, a so-called rapid solidification method has been proposed in which a long product of a desired final size is obtained by directly rapidly solidifying the molten metal. One method is to supply a fixed amount of molten metal to a rotating metal roll and rapidly solidify it, and this method is beginning to be used in the industrial production of tape materials. However, this method has drawbacks such as the inability to produce wire rods with circular cross-sections.

又第1図に例を示すように、溶融紡糸法と呼ばれ、溶融
金属1に圧力Pを加えて大気中、雰囲気ガス中又は流体
中において溶融金属のジェット流2を作り、鋳型を用い
ず凝固させる方法がある。
Also, as shown in Fig. 1, it is called the melt spinning method, in which a pressure P is applied to the molten metal 1 to create a jet stream 2 of the molten metal in the atmosphere, atmospheric gas, or fluid, without using a mold. There is a way to solidify it.

しかしこの方法では有機せんいなどとは異なり、溶融金
属のジェット流2が表面張力、粘性、比重などの関係で
不安定であり、図のように断線し易く、均一な線径の金
属線を工業的に連続して得ることには必らずしも成功し
ていない。
However, in this method, unlike organic fibers, the jet flow 2 of molten metal is unstable due to surface tension, viscosity, specific gravity, etc., and it is easy to break as shown in the figure, making it difficult to manufacture metal wires of uniform diameter industrially. They have not necessarily been successful in obtaining successive results.

この問題を解決する方法として、第2図に例を示すよう
に、溶融金属lと、加熱により軟化した高粘性のガラス
管3を一所に引き出し、凝固させる方法(テーラ−法と
呼ぶ)も提案されている。
As a method to solve this problem, as shown in Fig. 2, there is a method (called the Taylor method) in which the molten metal l and the highly viscous glass tube 3 softened by heating are drawn out in one place and solidified. Proposed.

しかしこの方法では、本質的にガラスが消費されるし、
製線後ガラスを除去する必要があり、工業的な生産に好
適とは言えなかった。
However, this method essentially consumes glass;
It was necessary to remove the glass after the wire was made, so it could not be said to be suitable for industrial production.

(発明の開2示) 本発明は、上述の溶融紡糸法の問題点を解決するため成
されたもので、溶融金属流体を磁場により安定化し、線
径の均一な金属線を容易に製造する方法を提供せんとす
るものである。
(Disclosure 2 of the Invention) The present invention was made in order to solve the problems of the above-mentioned melt spinning method, and it stabilizes the molten metal fluid with a magnetic field and easily produces a metal wire with a uniform wire diameter. The purpose is to provide a method.

本発明は溶融金属を紡糸1」から押出し、凝固させて金
属線を製造する方法にふ・いて、溶融金属流を、凝固が
完了しない段階で高周波磁場内を通過させ、上記溶融金
属流を安定化することを特徴とする金属線の製造法であ
る。
The present invention is based on a method of manufacturing a metal wire by extruding molten metal from a spinning thread 1 and solidifying it.The molten metal flow is made to pass through a high-frequency magnetic field before solidification is completed, thereby stabilizing the molten metal flow. This is a method of manufacturing metal wire characterized by the following.

本発明方法により製造される金属線はCu、Ag。The metal wires manufactured by the method of the present invention are Cu and Ag.

Ag r Au等の金属、又はそれらの合金より成る線
であり、従来特に純度の良いCu、Aj’はジェット流
が不安定となり易かったが、本発明方法を適用すれば安
定生産が可能となる。又本発明によれば、通常の結晶性
の金属線の他、冷却条件を適当にすれば非晶質の金)U
%(アモルファス金属)線の製造も可能である。
It is a wire made of metals such as Ag r Au, or alloys thereof. Conventionally, the jet flow was likely to be unstable with Cu and Aj', which had particularly high purity, but by applying the method of the present invention, stable production is possible. . Furthermore, according to the present invention, in addition to ordinary crystalline metal wires, amorphous gold wires can be formed by using suitable cooling conditions.
% (amorphous metal) wire is also possible.

次に、本発明の機構について説明する。Next, the mechanism of the present invention will be explained.

第3図に示すように溶融金属流体4の外側に交番高周波
電流11が流されると、その周りに磁場Hができ、溶融
金属流体4の中には逆位相の渦電流■2が誘導きれる。
As shown in FIG. 3, when an alternating high frequency current 11 is passed outside the molten metal fluid 4, a magnetic field H is created around it, and an opposite phase eddy current 2 is induced in the molten metal fluid 4.

この磁場Hと渦電流I2の相互作用により、右図に示す
ようにフレミングの左手の法則に従がう電磁力Fが働ら
く。溶融金属流体4が乱れず、安定化するような電磁力
Fは溶融金属流体4の表層に働らくのが良く、従って渦
電流I2の浸透深さが溶融金属流体40種類や線径に応
じて適当になるように交番高周波電流■1の周波数が選
定される。この渦電流■2の浸透深さは溶融金属流体外
径の%以下が望ましい。%を越えると、溶融金属流体の
安定に効果が少ない恐れがある。
The interaction between the magnetic field H and the eddy current I2 causes an electromagnetic force F that follows Fleming's left-hand rule as shown in the figure on the right. The electromagnetic force F that stabilizes the molten metal fluid 4 without disturbing it is best to act on the surface layer of the molten metal fluid 4, so that the penetration depth of the eddy current I2 depends on the type of molten metal fluid 40 and the wire diameter. The frequency of the alternating high frequency current ■1 is selected to be appropriate. The penetration depth of this eddy current (2) is preferably less than % of the outer diameter of the molten metal fluid. %, there is a possibility that the effect on stabilizing the molten metal fluid will be small.

又電磁力Fの太きさも溶融金属密度などにより決められ
、これは交番高周波電流1.の電流値で調整される。
The thickness of the electromagnetic force F is also determined by the molten metal density, etc., and this is determined by the alternating high frequency current 1. It is adjusted by the current value.

以下、本発明を図面を用いて実施例により説明する。Hereinafter, the present invention will be explained by examples using the drawings.

第4図、第5図、第6図はそれぞれ本発明方法の実施例
を説明するための縦断面図である。図に、j、・いて、
容器5に収容された溶融金属1は圧力Pをかけられ、下
方のノズル部(紡糸1コ)6より溶融金属流体4として
押出される。溶融金属流体4 J’ll+出し直後の凝
固が完了しない不安定な段階では、その周りに高周波コ
イル7が設けられている。この高周波コイル7は、前述
のように、金属流体4の周りに高周波磁場を作り、金属
流体4の中に渦電流を発生きせ、溶融金属流体4を均一
な線径に安定化させて急冷凝固させるもので、その周波
数、電力は溶融金属流体4の種類、線径等に応じて適当
に選定きれる。
FIG. 4, FIG. 5, and FIG. 6 are longitudinal cross-sectional views for explaining embodiments of the method of the present invention, respectively. In the figure, there is j,
A pressure P is applied to the molten metal 1 contained in the container 5, and it is extruded as a molten metal fluid 4 from a lower nozzle section (spinning 1 piece) 6. At an unstable stage where the solidification is not completed immediately after the molten metal fluid 4 J'll+ is discharged, a high frequency coil 7 is provided around the molten metal fluid 4 J'll+. As described above, this high-frequency coil 7 creates a high-frequency magnetic field around the metal fluid 4, generates eddy currents in the metal fluid 4, stabilizes the molten metal fluid 4 to a uniform wire diameter, and rapidly solidifies it. The frequency and power can be appropriately selected depending on the type of molten metal fluid 4, the wire diameter, etc.

第4図は溶融金属流体4が大気、Ar、N2等の雰囲気
ガス中で冷却される場合を示す。
FIG. 4 shows a case where the molten metal fluid 4 is cooled in the atmosphere, Ar, N2, or other atmospheric gas.

第5図では、水等の液体8内で溶融金属流体4が冷却さ
れ、高周波コイル7は液体8内に設けられている。
In FIG. 5, a molten metal fluid 4 is cooled in a liquid 8 such as water, and a high frequency coil 7 is provided within the liquid 8.

第6図では、水等の液体8はオーバーフローして冷却バ
イブ9内を層流となって流下し5、溶融金属流体4は層
流をなす流体8′中を通過して冷却され、1t−周波コ
イル7は冷却パイプ9の外側に設けられている。このよ
うな層流にすると、溶融金属流体の一層の安定化に効果
があり、好結果をもたらす。
In FIG. 6, a liquid 8 such as water overflows and flows down in a cooling vibe 9 in a laminar flow 5, and a molten metal fluid 4 passes through a laminar flow 8' and is cooled. The frequency coil 7 is provided outside the cooling pipe 9. Such a laminar flow is effective in further stabilizing the molten metal fluid and brings about good results.

第4〜6図に示すように溶融金属流体4を高周波磁場内
で急冷することにより、溶融金属流体は安定化され、均
一・な線径を保持しながら冷却凝固されるので、線径の
均一な長尺の金属線が容易に得られる。
As shown in Figures 4 to 6, by rapidly cooling the molten metal fluid 4 in a high-frequency magnetic field, the molten metal fluid is stabilized and solidified by cooling while maintaining a uniform wire diameter, so that the wire diameter is uniform. A long metal wire can be easily obtained.

(実方也例 1 ) 電気用アルミニウムを溶解し、第4図に示すような方法
により、溶融アルミニウムをアルゴンガス圧力Pにて高
周波磁場内の大気中に噴出させ、凝固させた所、直径5
00μmの線径のばらつきの少ないアルミニウム線状体
が得られた。高周波コイル7の周波数は1000KHz
であった。
(Jitsukata Example 1) Electrical aluminum was melted, and by the method shown in Figure 4, the molten aluminum was ejected into the atmosphere within a high frequency magnetic field at argon gas pressure P, and solidified.
An aluminum linear body having a wire diameter of 00 μm with little variation was obtained. The frequency of high frequency coil 7 is 1000KHz
Met.

(実施例2) ・電気銅を溶解し、第6図に示すような方法により、溶
鋼をアルゴンガス圧力Pにて、層流なす水流内の高周波
磁場内に噴出させ、凝固させた所、直径100μmの線
径のばらつきの少ない銅線状体が得られた。高周波コイ
ル7の周波数は3000KHzであった。
(Example 2) - Electrolytic copper was melted, and the molten steel was ejected at argon gas pressure P into a high-frequency magnetic field in a laminar water stream and solidified using the method shown in Figure 6. A copper wire-shaped body having a wire diameter of 100 μm with little variation was obtained. The frequency of the high frequency coil 7 was 3000 KHz.

(発明の効果) 上述のように構成された本発明の金属線の製造法は次の
ような効果がある。
(Effects of the Invention) The metal wire manufacturing method of the present invention configured as described above has the following effects.

(イ)溶融金属からの溶融紡糸製線法において、溶融金
属流を、凝固が完了しない段階で高周波磁場内を通過さ
せるため、溶融金属流のJ、層に発生ずる渦電流と磁場
との相互作用による電磁力が上記表層に働らき、溶融金
属流を安定化させた状jルで凝固させるので、従来の磁
場を用いない溶融紡糸製線法に比べ、線径の均一な金属
線が得られる。
(a) In the melt-spinning wire manufacturing method from molten metal, the molten metal flow is passed through a high-frequency magnetic field before solidification is completed, so that the interaction between the eddy currents generated in the J layer of the molten metal flow and the magnetic field is The electromagnetic force exerted on the surface layer solidifies the molten metal flow in a stabilized manner, making it possible to produce metal wire with a uniform diameter compared to the conventional melt-spinning wire-making method that does not use a magnetic field. It will be done.

特に溶融金属流の不安 定な金属でも、高周波磁場によ
り安定化されるので、種々の金属、合金の溶湯から均一
な線径の丸線を直接製造できる。
In particular, even unstable molten metal flows can be stabilized by the high-frequency magnetic field, making it possible to directly manufacture round wires of uniform diameter from molten metals and alloys.

(ロ)溶融金属から簡単な設備で直接紡糸して製線でき
るため、従来の鋳造→熱間加工→冷間加工法に比べて省
エネルギー、拐料ロスの低減、設備小型化が達成でき、
製造コストが安くなる。
(b) Since wire can be made by directly spinning molten metal with simple equipment, it is possible to save energy, reduce waste material loss, and downsize equipment compared to the conventional casting → hot working → cold working method.
Manufacturing costs are lower.

(ハ)従来の磁場を用いない溶融紡糸製線法では線径は
ノズル径などによる変動は当然として流速(加圧力)、
その他などの多くの変動要因により変化したが、本発明
方法では高周波磁場の強さを笈動させて線径制御も成る
程度性なえるので、線径の制御が容易であり、又従来の
テーラ−法に比べて、ガラスを消費したり、ガラスを除
去したりするとdった面倒な操作も必要でないので、作
業管理が容易で、作業性が良い。
(c) In the conventional melt spinning wire making method that does not use a magnetic field, the wire diameter naturally fluctuates depending on the nozzle diameter, etc., but also the flow rate (pressure force),
However, in the method of the present invention, the wire diameter can be easily controlled by varying the strength of the high-frequency magnetic field, and the wire diameter can be easily controlled. Compared to the method, there is no need for complicated operations such as consuming glass or removing glass, so work management is easy and workability is good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれ従来の直接製線法の例を説明
するための縦断面図である。 第3図は本発明方法の機構を説明する図である。 第4図、第5図、第6図はそれぞれ本発明方法の実施例
を説明するための縦断面図である。 1 ・溶融金属、2 ・ジェット流、3 ガラス管、4
・・溶融金属流体、5 容器、6 ノズル部(紡糸口)
、7・高周波コイル、8・液体、8′ 流体、9・冷却
パイプ、F 電磁力、H磁場、I、高周波電流、I2・
渦電流。 ″に1閏 祥2図 P 方4図 片5図 片3図 片6図 件
FIGS. 1 and 2 are longitudinal cross-sectional views for explaining examples of the conventional direct wire manufacturing method, respectively. FIG. 3 is a diagram illustrating the mechanism of the method of the present invention. FIG. 4, FIG. 5, and FIG. 6 are longitudinal cross-sectional views for explaining embodiments of the method of the present invention, respectively. 1 ・Molten metal, 2 ・Jet stream, 3 Glass tube, 4
... Molten metal fluid, 5 container, 6 nozzle part (spinneret)
, 7. High frequency coil, 8. Liquid, 8' fluid, 9. Cooling pipe, F electromagnetic force, H magnetic field, I. High frequency current, I2.
Eddy current. ``1 leap, 2 figures, P, 4 figures, 5 pieces, 3 pieces, 6 pieces.

Claims (4)

【特許請求の範囲】[Claims] (1)溶融金属を紡糸口から押出し、凝固させて金属線
を製造する方法において、溶融金属流を、凝固が完了し
ない段階で高周波磁場内を通過させ、上記溶融金属流を
安定化することを特徴とする金属線の製造法。
(1) In a method of manufacturing metal wire by extruding molten metal from a spinneret and solidifying it, the molten metal flow is stabilized by passing it through a high-frequency magnetic field before solidification is completed. Characteristic metal wire manufacturing method.
(2)高周波磁場を作る高周波電流の周波数が、溶融金
属流体内の渦電流の浸透深さが上記金属流体外径の先具
下になるように選定される特許請求の範囲第1項記載の
金属線の製造法。
(2) The frequency of the high-frequency current that creates the high-frequency magnetic field is selected such that the penetration depth of the eddy current in the molten metal fluid is below the tip of the outer diameter of the metal fluid. Method of manufacturing metal wire.
(3)高周波磁場内を通過する溶融金属流が、層流をな
す冷却流体中を通過する特許請求の範囲第1項又は第2
項記載の金属線の製造法。
(3) Claim 1 or 2 in which the molten metal flow passing through a high-frequency magnetic field passes through a laminar cooling fluid.
Method for manufacturing metal wire described in Section 1.
(4)金属線が、非晶質の金属線である特許請求の範囲
第1項、第2項又は第3項記載の金属線の製造法。
(4) The method for manufacturing a metal wire according to claim 1, 2 or 3, wherein the metal wire is an amorphous metal wire.
JP22863283A 1983-12-02 1983-12-02 Production of metallic wire Pending JPS60121044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22863283A JPS60121044A (en) 1983-12-02 1983-12-02 Production of metallic wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22863283A JPS60121044A (en) 1983-12-02 1983-12-02 Production of metallic wire

Publications (1)

Publication Number Publication Date
JPS60121044A true JPS60121044A (en) 1985-06-28

Family

ID=16879378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22863283A Pending JPS60121044A (en) 1983-12-02 1983-12-02 Production of metallic wire

Country Status (1)

Country Link
JP (1) JPS60121044A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868454A (en) * 1971-12-21 1973-09-18
JPS5224128A (en) * 1975-07-04 1977-02-23 Anvar Electomagnetic apparatus for compression of metal melts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868454A (en) * 1971-12-21 1973-09-18
JPS5224128A (en) * 1975-07-04 1977-02-23 Anvar Electomagnetic apparatus for compression of metal melts

Similar Documents

Publication Publication Date Title
JPH0372375B2 (en)
CN101513699B (en) Aluminum alloy welding wire surface scraping method and device
CN105154697A (en) Production system of intermediate alloy wires and production technology of intermediate alloy wires
JP3244546B2 (en) Method for producing rolled material of oxygen-free copper
US4665970A (en) Method of producing a metallic member having a unidirectionally solidified structure
JPS60121044A (en) Production of metallic wire
CN204934550U (en) A kind of casting apparatus
CN1026957C (en) Horizontal continuous casting method for metal wire stock
JPS59190336A (en) Production of aluminum alloy wire
JPH07124736A (en) Production of copper or copper alloy covered steel wire
US3145842A (en) Process for the extrusion of fine wire
JPH0375255B2 (en)
GB1345565A (en) Method and apparatus for the continuous casting of metal by the dip-forming process
JPH04284947A (en) Continuous casting method
JPS6021149A (en) Production of metallic wire
EP0149063A1 (en) Continuous molten copper cladding of ferrous alloys
JPH07124705A (en) Production of grain-oriented solidified material of aluminum base alloy
JPH02251338A (en) Method for casting metal for plastic working
JP3338943B2 (en) Metal continuous casting equipment
EP0149064A1 (en) Continuous molten copper cladding of ferrous alloys
RU2021076C1 (en) Round section wire manufacturing method
Kim et al. Operating parameters for the continuous unidirectional solidification of the Al-1wt.% Si alloy drawn to fine wire
JPS60248833A (en) Production of metallic bar having unidirectionally solidified structure
JPH07144265A (en) Production device of copper or copper alloy coated steel wire
CN102179489A (en) Manufacturing device of metal wires