JPS60153023A - Beam splitter device for high output laser - Google Patents

Beam splitter device for high output laser

Info

Publication number
JPS60153023A
JPS60153023A JP975884A JP975884A JPS60153023A JP S60153023 A JPS60153023 A JP S60153023A JP 975884 A JP975884 A JP 975884A JP 975884 A JP975884 A JP 975884A JP S60153023 A JPS60153023 A JP S60153023A
Authority
JP
Japan
Prior art keywords
light
laser
mirror
beam splitter
arrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP975884A
Other languages
Japanese (ja)
Inventor
Shigenori Fujiwara
藤原 重徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP975884A priority Critical patent/JPS60153023A/en
Publication of JPS60153023A publication Critical patent/JPS60153023A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0972Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/143Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Abstract

PURPOSE:To obtain an inexpensive beam splitter device for a high-output laser which divides regular single-lateral-mode laser light into plural beams without using any partial transmission mirror and has high reliability and light resistance by dividing the laser light into numbers of laser beams through a total reflecting mirror. CONSTITUTION:Regular high-output laser light 12(5') in single lateral mode such as TM01 emitted from a laser oscillator 1 travels straight as shown by an arrow 13 through a pipe-shaped optical path cover 4 to strike the small-sized total reflecting mirror 9 and is split into two at a wave trough, and the lower half part is reflected as shown by an arrow 14 and made incident on a condenser lens 8. The upper half part, on the other hand, is reflected by a total reflecting mirror 3 as shown by an arrow 16 to enter the condenser lens 8. Consequently, the beam splitter device for high-output laser light which attain plural-beam splitting without any expensive partial transmission mirror and has high reliability and light resistance is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、高出力のレーデ光を2分割以上する高出力
レーザ用ビームスノリツタ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a beam snorniter device for a high-power laser that divides a high-power laser beam into two or more parts.

〔発明の技術的背景〕[Technical background of the invention]

従来から、高出力のレーデ光を2分割して、2箇所で利
用することが試みられてきたが、その−例を示すと第1
図に示すように構成されている。
Up until now, attempts have been made to divide high-power Raded light into two parts and use them in two places.
It is configured as shown in the figure.

即ち、レーデ発振器1から出たレーデ光5は光路カバー
4を通シ、部分透過ミラー(ビームスシリツタ)2によ
シ、反射光7と透過光6に分割される。そして、反射光
7は1番目のステーションで用いられ、透過光6は更に
全反射ミラー3によシ反射されて、2番目のステーショ
ンで利用される。図中、8は集光レンズである。
That is, Rade light 5 emitted from Rade oscillator 1 passes through optical path cover 4 and is split into reflected light 7 and transmitted light 6 by partially transmitting mirror (beam sinter) 2. The reflected light 7 is used at the first station, and the transmitted light 6 is further reflected by the total reflection mirror 3 and used at the second station. In the figure, 8 is a condenser lens.

更に、2分割以上の場合、例えば3分割の場合を示すと
第2図のように構成され、第1図と同一箇所は同一符号
を付しである。この例からも明らかなように、部分透過
ミラー2を用いてn分割する場合、n−1個の部分透過
ミラー2が必要である。
Furthermore, in the case of two or more divisions, for example, in the case of three divisions, the configuration is shown in FIG. 2, and the same parts as in FIG. 1 are given the same reference numerals. As is clear from this example, when dividing into n using partially transmitting mirrors 2, n-1 partially transmitting mirrors 2 are required.

〔背景技術の問題点〕[Problems with background technology]

上記のようにレーザ光を分割する場合、必ず部分透過ミ
ラー2が必要となる。この部分透過ミラー2は一般に高
価なものとなる。例えば、IKWのCO,レーデを2分
割するために、Zn5e基板に部分反射コーティング(
部分透過コーティング)をしたものを用いる。この場合
、この部分透過ミラー2は金属基板からなる全反射ミラ
ー306倍程度の価格となる。
When splitting the laser beam as described above, the partially transmitting mirror 2 is always required. This partially transmitting mirror 2 is generally expensive. For example, in order to divide IKW's CO and LED into two parts, a partially reflective coating (
(partially transparent coating) is used. In this case, the partially transmitting mirror 2 is approximately 6 times as expensive as the total reflecting mirror made of a metal substrate.

又、部分透過ミラー2であるため、レーザ光がその反射
コーテイング面、基板内部そして透過コーテイング面に
吸収されるため、ミラー自身が温度上昇し、ミラーの性
質が変化し、一般に言われる熱レンズ効果(温度上昇等
、熱的変化によシミラーが光学的な熱歪を受ける効果)
を起こし、レーザ光に対して光学的な歪を与えてしまう
In addition, since it is a partially transmitting mirror 2, the laser beam is absorbed by its reflective coating surface, the inside of the substrate, and the transmitting coating surface, causing the temperature of the mirror itself to rise and the properties of the mirror to change, resulting in the commonly referred to thermal lens effect. (Effect of similar being subjected to optical thermal distortion due to thermal changes such as temperature rise)
This causes optical distortion to the laser beam.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、部分透過ミラーを用いることなく2
分割以上に分割することができ、安価にして光学部品の
信頼性が高く、耐光強度が向上した高出力レーザ用ビー
ムスプリッタ装置を提供することである。
The purpose of this invention is to provide two
It is an object of the present invention to provide a beam splitter device for a high-power laser, which can be divided into more than 10 parts, is inexpensive, has high reliability of optical components, and has improved light resistance.

〔発明の概要〕[Summary of the invention]

この発明は、部分透過ミラーを用いず全反射ミラーを用
いてビームを多数に分割し、そのときレーデ光に対して
殆ど光学的な歪を与えない高出力レーザ用ビームスシリ
ツタ装置である。
The present invention is a beam sintering device for a high-power laser, which splits a beam into a large number of parts using a total reflection mirror without using a partially transmitting mirror, and does not give almost any optical distortion to the Raded light.

〔発明の実施例〕[Embodiments of the invention]

この発明の高出力レーザ用ビームスプリッタ装置は第3
図に示すように構成され、その原理説明図を第4図に示
す。
The beam splitter device for high power laser of this invention is the third
It is constructed as shown in the figure, and a diagram illustrating its principle is shown in FIG.

従来例(第1図)と同一箇所は同一符号を付すと、レー
ザ発振器1から発射されたレーザ光5′は、保護と安全
のための・千イゾ状光路カバー4を通して、後述のよう
に下半分の部分だけ小形のビーム折曲げ用全反射ミラー
9へ導かれる。
The same parts as in the conventional example (Fig. 1) are given the same reference numerals, and the laser beam 5' emitted from the laser oscillator 1 passes through the optical path cover 4 for protection and safety, and is directed downward as described later. Only half of the beam is guided to a small total reflection mirror 9 for beam bending.

そして、この全反射ミラー9によシ、レーデ光5′の下
半分の部分は90°折曲げられ、この折曲げられた反射
光10は集光レンズ8に導かれる。
Then, the lower half portion of the Radhe light 5' is bent by 90 degrees by this total reflection mirror 9, and this bent reflected light 10 is guided to the condenser lens 8.

一方、レーデ光5′の上半分の部分は、上記全反射ミラ
ー9に触れることなく光路カバー4内を透過光11とし
て直進し、通常の大きさの全反射ミラー3へ導かれる。
On the other hand, the upper half of the Rede light 5' travels straight through the optical path cover 4 as transmitted light 11 without touching the total reflection mirror 9, and is guided to the total reflection mirror 3 of a normal size.

そして、この全反射ミラー3により、透過光11は90
0折曲げられ、この折曲げられた透過光11は集光レン
ズ8に導かれる。
Then, due to this total reflection mirror 3, the transmitted light 11 becomes 90
This bent transmitted light 11 is guided to a condenser lens 8.

さて、第3図のレーザ光5′は、この発明によるビーム
スノリット方法を用いるため調整きれたTEMo、モー
ドのレーザ光12(第4図参照)である。第4図の矢印
13は、レーザ光12の進行方向を示している。そして
、ビームスf IJノットラーである小形の全反射ミラ
ー9は、レーデ光路中においてレーザ光12の半分を反
射し、矢印14の方へ光路を変更する。反射されなかっ
た部分については、矢印15の方向へ直進し、全反射ミ
ラー3によシ反射され、矢印16の方向へ光路を変更さ
れる。
Now, the laser beam 5' in FIG. 3 is a TEMo mode laser beam 12 (see FIG. 4) which has been adjusted to use the beam snorrit method according to the present invention. An arrow 13 in FIG. 4 indicates the direction in which the laser beam 12 travels. Then, the small total reflection mirror 9, which is a beam f IJ knotler, reflects half of the laser beam 12 in the Radhe optical path and changes the optical path in the direction of the arrow 14. The unreflected portion travels straight in the direction of arrow 15, is reflected by total reflection mirror 3, and has its optical path changed in the direction of arrow 16.

このようにして、レーザ光12はその上半分の部分と下
半分の部分について分けられて、2箇所で利用すること
ができる。
In this way, the laser beam 12 is divided into its upper half and lower half and can be used at two locations.

次にこの発明の原理について述べるが、この発明は次の
ようなレーザ光の有する特性による。
Next, the principle of this invention will be described. This invention is based on the following characteristics of laser light.

即ち、一般にレーザ光は非常によく直進し、又そのレー
ザ光の波面は揃っている。そこで、そのレーザ光の波面
に対して大きな擾乱を与えない限シ、その特性は変化し
ない。
That is, in general, laser light travels in a straight line very well, and the wavefronts of the laser light are aligned. Therefore, unless a large disturbance is caused to the wavefront of the laser beam, its characteristics will not change.

ことでは、そのレーザ光の発振横モードに注目し、その
発振横モードにおける谷の部分において、レーザ光を2
つに分割する。そのとき、とのレーザ光の発振横モード
における谷の部分においては、そのエネルギーが殆ど零
(理論上は零)であるため、その部分におけるレーザ光
の分割がレーザ光の波面に対して大きな影響を与えない
Now, we will focus on the oscillation transverse mode of the laser beam, and in the valley part of the oscillation transverse mode, we will
Divide into. At that time, in the valley part of the oscillation transverse mode of the laser beam, the energy is almost zero (theoretically zero), so splitting the laser beam in that part has a large effect on the wavefront of the laser beam. not give.

その原理説明図と理論的計算結果を第5図に示す。即ち
、第5図(a)にはレーデ発振横モードTEMo、を示
し、■○は電界の方向である。又、第5図(b)には、
この発振横モードを計算機によシ高速フーリエ変換(F
FT)を施しだ結果を示しだ。この結果は、フーリエ光
学の原理によシ無限遠方の光の状態、成るいはレンズに
より集光した場合の焦点−面における光の状態(エネル
ギー分布)に相当することが証明されている。
An explanatory diagram of the principle and the results of theoretical calculation are shown in FIG. That is, FIG. 5(a) shows the Rade oscillation transverse mode TEMo, where ■○ is the direction of the electric field. Also, in Fig. 5(b),
This oscillation transverse mode is converted into a fast Fourier transform (F
FT) and show the results. This result has been proven to correspond to the state of light at an infinite distance according to the principle of Fourier optics, or to the state (energy distribution) of light at the focal plane when focused by a lens.

そこで、第5図(c)に示したように、上記TEMo。Therefore, as shown in FIG. 5(c), the above TEMo.

モードのうち、片側のみ利用するとする。その場合の高
速フーリエ変換の結果を第5図(d)に示す。
Assume that only one of the modes is used. The results of fast Fourier transform in that case are shown in FIG. 5(d).

この結果から明らかなように、18M0□モードをその
エネルギー分布の谷の部分で分割する限シ、それほど大
きな擾乱は受けず、そのモードパターンは可成シガウス
分布に近いものが得られる。このことは、このようにレ
ーザ光を分割して用いる場合も、そのレーデ光の集光性
は大きくは損なわれない。これは実験においても、はぼ
実現することが確かめられている。
As is clear from this result, as long as the 18M0□ mode is divided at the valley portion of its energy distribution, it will not be subjected to much disturbance, and its mode pattern will be close to a Sigaussian distribution. This means that even when the laser beam is divided and used in this way, the convergence of the laser beam is not significantly impaired. This has been confirmed in experiments as well.

又、発明の不適切な応用例を第6図(、)に示す。An example of an inappropriate application of the invention is shown in FIG. 6(,).

これは上記のTEM。、モードにおいて、その出力のピ
ーク部分でエネルギーを分割した場合、即ち T EM
o、モードの中心部を抜き出して半分取った場合の例を
示しておシ、この結果は第6図(b)に示すようになる
。この結果は、非常に拡がυ角の大きく、又、光として
はりツプルの大きな散乱光となっていることを意味する
。従って、このような光は本来持っているレーデ光の性
質を失なっている。そのため、レンズによる集光時もそ
の集光性は非常に悪い。
This is the TEM mentioned above. , mode, if we divide the energy at the peak part of its output, i.e. T EM
o. An example is shown in which the central part of the mode is extracted and half is taken, and the result is shown in FIG. 6(b). This result means that the spread is extremely large at the υ angle, and the light is scattered with a large beam tupple. Therefore, such light has lost its original property of Rede light. Therefore, even when light is focused by a lens, its light focusing ability is very poor.

〔発明の変形例、応用例〕[Modifications and application examples of the invention]

上記レーザ光分割の原理は、全てのレーザ発振横モード
に応用できる。即ち、その発振横モードのエネルギー値
の零の所で分割すれば、それらのモードはそれほど大き
くは乱されない。
The above principle of laser beam splitting can be applied to all laser oscillation transverse modes. That is, if the oscillation transverse mode is divided at the zero energy value, those modes will not be disturbed so much.

そのため、T EMo2、TEM、、3、TEMo4・
・・成るいはTEM、1.18M2m、T EM、2・
・・というような単一モードであれば、それらの谷の部
分にて分割することができる。TEMo、モードで3分
割した例、TEMo4モードで4分割した例をそれぞれ
第7図、第8図に示す。図中の■〜■は分割の数である
Therefore, TEMo2, TEM, ,3, TEMo4・
...or TEM, 1.18M2m, TEM, 2.
If it is a single mode such as ..., it can be divided at the valley part. FIGS. 7 and 8 respectively show an example of dividing into three in TEMo mode and an example of dividing into four in TEMo4 mode. ■ to ■ in the figure are the numbers of divisions.

又、実際にこれらの分割を行なう場合、第4図に示した
ような平面ミラーによることもできるが、第9図(、)
、(b)、(C)に示す多面ミラー17.18.19に
よることもできる。
In addition, when actually performing these divisions, it is possible to use a plane mirror as shown in Fig. 4, but as shown in Fig. 9 (,)
, (b) and (C) may also be used.

更に、ここでは角型のモード(T E Mvtan )
を中心に述べたが、この方法は円形のモード(TEMP
A’)にも応用することができる。その場合には、第1
0図に示すような円柱状のミラー20を用いればよい。
Furthermore, here, the square mode (T E Mvtan )
This method focuses on the circular mode (TEMP
It can also be applied to A'). In that case, the first
A cylindrical mirror 20 as shown in FIG. 0 may be used.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、1謂以上のレーデ光が、部分透過ミ
ラー2を用いることなく2分割以上に分割することがで
きる。この結果、装置の価格を安くすることができると
共に、光学部品の信頼性が高くなる。又、全反射ミラー
9に金属ミラーを用いることができるだめ、レーザ光に
対する耐光強度が向上し、数十所のものにまで応用する
ことができ、大出力レーザのレーデ光の分割に非常に有
効である。
According to this invention, one or more so-called Raded lights can be divided into two or more parts without using the partially transmitting mirror 2. As a result, the cost of the device can be reduced and the reliability of the optical components can be increased. In addition, since a metal mirror can be used as the total reflection mirror 9, the light resistance against laser light is improved, and it can be applied to dozens of locations, making it very effective for splitting the laser beam of a high-power laser. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来から用いられている多分割方式
のビームスシリツタ装置を示す概略構成図、第3図はこ
の発明の一実施例に係る高出力レーデ用ビームスプリッ
タ装置を示す概略構成図、第4図は第3図のビームスノ
リツタ装置における動作説明図、第5図(a)〜(d)
はこの発明における分割の原理と理論的計算結果を示す
一特性曲線図、第6図(a)、(b)はこの発明の不適
切な応用例を示す特性曲線図、第7図及び第8図はこの
発明の適切な応用例、第9図(a)、(b)、(C)及
び第10図はこの発明に用いる全反射ミラーの変形例を
示す概略構成図である。 1・・・レーザ発振器、2・・・部分透過ミラー、3・
・・全反射ミラー、4・・・光路カバー、5・・・レー
デ光、6・・・部分透過光、7・・・部分反射光、8・
・・集光レンズ、9・・・全探射ミラー、10・°°反
射光、11・・・透過光、12・・・レーデ出力分布、
13・・・レーザ光進行方向、14・・・反射方向、1
5・・・通過方向、16・・・反射方向。 出願人代理人 弁理士 鈴 江 武 彦第3図 第4図 第5図 (a) 第5図 (b) −EI O+8 青 度 第5図 (C) 第5図 (d) 一θ +e 負ル 第6図 (a) 第6図 勇 展 第7図 第9図 第10図 8
1 and 2 are schematic configuration diagrams showing a conventionally used multi-division beam splitter device, and FIG. 3 is a schematic diagram showing a beam splitter device for a high-power radar according to an embodiment of the present invention. A configuration diagram, FIG. 4 is an explanatory diagram of the operation in the beam snoritzer device of FIG. 3, and FIGS. 5(a) to (d)
6(a) and (b) are characteristic curve diagrams showing inappropriate application examples of this invention, and FIGS. 7 and 8 are characteristic curve diagrams showing the principle of division and theoretical calculation results in this invention. The figure shows a suitable application example of the present invention, and FIGS. 9(a), (b), (C), and 10 are schematic configuration diagrams showing modified examples of the total reflection mirror used in the present invention. 1...Laser oscillator, 2...Partial transmission mirror, 3.
... Total reflection mirror, 4... Optical path cover, 5... Rede light, 6... Partially transmitted light, 7... Partially reflected light, 8...
...Condensing lens, 9...All-search mirror, 10.°° reflected light, 11..Transmitted light, 12.. Rade output distribution,
13... Laser beam traveling direction, 14... Reflection direction, 1
5... Passing direction, 16... Reflection direction. Applicant's representative Patent attorney Takehiko Suzue Figure 3 Figure 4 Figure 5 (a) Figure 5 (b) -EI O+8 Blueness Figure 5 (C) Figure 5 (d) 1θ +e Negative Le Figure 6 (a) Figure 6 Isamu Exhibition Figure 7 Figure 9 Figure 10 Figure 8

Claims (1)

【特許請求の範囲】 1腑以上の高出力レーデ光のうち、TEM、、、TEM
。、、成るいはTEMl、 、TEM、、等の正規な単
−横モードを有するレーデ光を、2分割以上行なうビー
ムスプリッタ装置において、 上記レーザ光を正規の単−横モードのエネルギー分布に
おける谷部分において2方向以上に分割することを特徴
とする高出力レーザ用ビームスノリツタ装置。
[Claims] Of one or more types of high-power radar light, TEM, ..., TEM
. , , or TEM1, , TEM, etc. In a beam splitter device that splits the laser beam having a normal single transverse mode into two or more, A beam snoritter device for a high-output laser, characterized by dividing the beam into two or more directions.
JP975884A 1984-01-23 1984-01-23 Beam splitter device for high output laser Pending JPS60153023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP975884A JPS60153023A (en) 1984-01-23 1984-01-23 Beam splitter device for high output laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP975884A JPS60153023A (en) 1984-01-23 1984-01-23 Beam splitter device for high output laser

Publications (1)

Publication Number Publication Date
JPS60153023A true JPS60153023A (en) 1985-08-12

Family

ID=11729178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP975884A Pending JPS60153023A (en) 1984-01-23 1984-01-23 Beam splitter device for high output laser

Country Status (1)

Country Link
JP (1) JPS60153023A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1661165A2 (en) * 2003-08-14 2006-05-31 Cytonome, Inc. Optical detector for a particle sorting system
US9260693B2 (en) 2004-12-03 2016-02-16 Cytonome/St, Llc Actuation of parallel microfluidic arrays
US9823252B2 (en) 2004-12-03 2017-11-21 Cytonome/St, Llc Unitary cartridge for particle processing
US11027278B2 (en) 2002-04-17 2021-06-08 Cytonome/St, Llc Methods for controlling fluid flow in a microfluidic system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11027278B2 (en) 2002-04-17 2021-06-08 Cytonome/St, Llc Methods for controlling fluid flow in a microfluidic system
US9752976B2 (en) 2003-08-14 2017-09-05 Cytonome/St, Llc Optical detector for a particle sorting system
US10520421B2 (en) 2003-08-14 2019-12-31 Cytonome/St, Llc Optical detector for a particle sorting system
JP2009282049A (en) * 2003-08-14 2009-12-03 Cytonome Inc Optical detector for particle sorting system
US8964184B2 (en) 2003-08-14 2015-02-24 Cytonome/St, Llc Optical detector for a particle sorting system
JP2007503572A (en) * 2003-08-14 2007-02-22 サイトノーム インコーポレーテッド Photodetector for particle classification system
EP1661165A2 (en) * 2003-08-14 2006-05-31 Cytonome, Inc. Optical detector for a particle sorting system
US11002659B2 (en) 2003-08-14 2021-05-11 Cytonome/St, Llc Optical detector for a particle sorting system
EP1661165A4 (en) * 2003-08-14 2008-01-23 Cytonome Inc Optical detector for a particle sorting system
US10065188B2 (en) 2004-12-03 2018-09-04 Cytonome/St, Llc Actuation of parallel microfluidic arrays
US10222378B2 (en) 2004-12-03 2019-03-05 Cytonome/St, Llc Unitary cartridge for particle processing
US10794913B2 (en) 2004-12-03 2020-10-06 Cytonome/St, Llc Unitary cartridge for particle processing
US10994273B2 (en) 2004-12-03 2021-05-04 Cytonome/St, Llc Actuation of parallel microfluidic arrays
US9823252B2 (en) 2004-12-03 2017-11-21 Cytonome/St, Llc Unitary cartridge for particle processing
US9260693B2 (en) 2004-12-03 2016-02-16 Cytonome/St, Llc Actuation of parallel microfluidic arrays

Similar Documents

Publication Publication Date Title
JPH0412039B2 (en)
RU2047875C1 (en) Device for light-beam treatment
JPS6250811A (en) Method and apparatus for shaping and deflecting electromagnetic beam in anamorphic fashion
JPH11501738A (en) Laser scanner with reflective optics
WO1990013390A1 (en) Laser beam machining device
JPS60153023A (en) Beam splitter device for high output laser
JPS62165985A (en) Laser oscillator stabilized at diverging angle of laser beam
EP0121069A2 (en) Reflecting system for improving the uniformity of a light beam
JPS58154484A (en) Method for converting laser beam
JP2800006B2 (en) Laser device
JPS60181701A (en) Grating lens for coupling optical fiber
JPH0259192A (en) Laser beam equipment with large power
JPS6167821A (en) Reflecting optical system
JPS5935003B2 (en) optical equipment
CN106773075A (en) A kind of dizzy beam homogenization optical system of total-reflection type delustring
JP2580704B2 (en) Laser device
JP2884075B2 (en) Laser beam focusing and irradiation equipment
JP3183635B2 (en) Laser processing equipment
JPH10197709A (en) Binary optics and laser working device using the same
JPH0780673A (en) Laser beam machine
JPH08300179A (en) Method and device for converging laser beam
KR930001644Y1 (en) Optical device
JPS63252688A (en) Laser beam machining head
JPS605605Y2 (en) Submillimeter wave band low loss transmission line
SU1748128A1 (en) Laser emission special filter